Evaluating functions as processes

Beniamino Accattoli

Carnegie Mellon University

Accattoli (CMU) Evaluating functions as processes 1/26

Functions as processes

@ JA-calculus model of functional programming.

m-calculus model for concurrency.

A-calculus can be simulated in the 7-calculus (Milner, 1992).

@ The simulation is subtle, not tight as one would expect.

Here refined using:

o Linear logic;
o DeYoung-Pfenning-Toninho-Caires session types (but no types here);

e A novel approach to relate terms and proof nets.

o Contribution:
Original and simple presentation, revisiting a work by Damiano Mazza.

Accattoli (CMU) Evaluating functions as processes 2 /26

The simulation

The expected simulation:

'S

i g t N
| | |
| = l |
. v .
Py P — Ps

Does not hold, there is a mismatch about reduction. One gets:

B

4

We-----
.

S
.
QNPs

where ~ is strong bisimulation (with respect to the environment).

Accattoli (CMU) Evaluating functions as processes 3/26

Improved simulation

We refine A-calculus and (head) (-reduction to a reduction —o s.t.:

t——oO S t—OSs

l | l

l = | l

v v '

P: Py —— Ps

and

t t—OS
l | l
| = Js s.t. | |
‘ ‘ .
Py —— Q P —— Q

Novelty: the translation is a strong bisimulation of reductions.

Accattoli (CMU) Evaluating functions as processes 4 /26

m-calculus evaluates terms in small steps (abstract machine).

Small-step evaluation ~ A-calculus + explicit substitutions (ES).

A + ES injects in linear logic (LL).

Pfenning-Caires et al.: linear logic injects in the 7-calculus.

Schema:

(A C) A+ES C LL C «

Here: we pull back m-reduction to A 4+ ES, hiding LL.

Accattoli (CMU) Evaluating functions as processes 5/ 26

© TERM(s and)GRAPH(s)

Accattoli (CMU) Evaluating functions as processes 6 /26

Explicit substitutions

@ Refine A-calculus with explicit substitutions:
t,s,u = x| Axt | ts | t[x/s]
e Evaluation contexts (weak head contexts):
E = () | Es | Elx/s
@ Substitution contexts (or Lists of substitutions):
L= () | L/l
@ Rewriting strategy (closed by evaluation contexts E-):

L(Ax.t)s —oas L{t[x/s])

E(lx/s] —ers E(s)[x/s]

Accattoli (CMU) Evaluating functions as processes 7 /26

Example of evaluation

@ Rewriting strategy (closed by evaluation contexts E-):

L(Ax.t)s —oap L(t[x/s])
E(x)[x/s] —o1s E(s)[x/s]

is linear weak head reduction
(Game semantics, KAM, Bohm's theorem, Geometry of interaction).

@ Use of contexts in rules = Distance.

o Example of reduction:

(Axxx)Ay.yy —oap (xx)[x/Ay.yy]
—o1s ((Ay-yy)x)[x/Ay.yyl
—oaz ((yy)ly/xDIx/Ay.yy]
—o1s ((y)ly/xDIx/Ay-yy]
—o1s (A y)y)ly/xDIx/Ay.yyl

Accattoli (CMU) Evaluating functions as processes 8 /26

%
Il

X b e

X edwQ 4o

NOTE: the hole of an evaluation context is out of all boxes.

E == () | Es | Elx/s]

Accattoli (CMU) Evaluating functions as processes

Multiplicative rule

i D

(Ax.t) u — t[x/u]

Accattoli (CMU) Evaluating functions as processes 10 / 26

The translation is not injective, in particular if y ¢ fv(u):

(Ax-t)u)ly/s] = (Mxt)ly/slu =

So, both ((Ax.t)u)[y/s] and (Ax.t)[y/s]u have a redex!

Accattoli (CMU) Evaluating functions as processes 11 /26

More on distance

@ Rule at a distance:

L(Ax.t)s —oqp L(t[x/s])
(Ax.t)[-/].--[/] u —B-distance tIx/u][-/]...[-/]

o Traditionally a configuration like:

(Ax.t)[y/v] u

is not a redex, as it is blocked by [y/v].

@ Here, instead, it is a redex.

Accattoli (CMU) Evaluating functions as processes 12 /26

Substitution rule

The substitution rule:
E(x)[x/s] —o1s E(s)[x/s]

Corresponds to:

e

/o

—O1s

S

Y1t Yk Yittoyk

Note: the substituted variable/dereliction is out of all boxes.

Accattoli (CMU) Evaluating functions as processes 13 /26

Strong bisimulation

ES at a distance and proof nets satisfy:

t——os t——os

| | |

| = | |

v v '

G G —0 G;

and

t t—o0S
| l |
| = Js s.t. | |
H H '
G —o G’ G ——o G’

Idea: distance turns terms in an algebraic language for graphs.
Accattoli (CMU) Evaluating functions as processes 14 / 26

Outline

© r-calculus

Accattoli (CM Evaluating functions as processes

m-calculus

o Processes:
P.Q,R = 0|Xy)|xy,2) | vxP | x(y,2).P |'x(y).P| P | Q
o Non-blocking contexts:
N = () | NIQ | PIN | vxN

@ Structural congruence =: closure by N(-| of

Pl0o=P PI(QRQIR)=(P|Q)|R PlR=Q|P

x ¢ fn(P)
P vx@=vx(P]| Q) vxvyP = vyvxP

vx0=0

Accattoli (CMU) Evaluating functions as processes 16 / 26

m-calculus

@ Substitution of y to x in P is P{x/y}.

e The rewriting rules (closed by N(-) and =):
X(y,2) | x(v',2).P —e P{y'/yH{Z/z}
x(y) [!x(2).P — P{z/y} [!x(2).Q

e Binary communication = multiplicative cut-elimination

Unary communication = exponential cut-elimination

Variation on the rules due to Pfenning-Caires et al.

Accattoli (CMU) Evaluating functions as processes 17 / 26

Milner's translation with ES

@ The translation from A + ES to 7 is parametrized by a name.

@ Minor variation over Milner's translation:

[xla == X(a)
[Ax.t]. = a(x,b).[t]s B
[ts]. = vbux([t]s | b{x,a) | 'x(c).[s]c) x is fresh
[tlx/slla = wx([t]a ['x(b).[s]»)

@ Red names correspond to multiplicative formulas.

@ Usual names (x,y,...) correspond to exponential formulas.

Accattoli (CMU) Evaluating functions as processes 18 / 26

Proof nets as processes

[x]a =

x{a) | =vbux([t]p | b{x, a) | Ix(c).[s]c)

Accattoli (CMU)

S VAN
d
¥

[ts]a =

i
X
//

v

[Ax.s]a =

= a(X7 b)'[[t]]b

Evaluating functions as processes

[tlx/s]la =

= VX(HfHa | |X(b)ﬂ5ﬂb)

19 / 26

Term reductions to process reductions

Lemma (action on contexts)
[EQ-D]a = N([-])

Straightforward induction on E(|

Theorem (Strong simulation)

Q t —ogp s implies [t], == [s]..
@ t —oy5 s implies [t], == [s]..

By induction on t —ogg s and t —o;15 s, using the lemma.

Accattoli (CMU) Evaluating functions as processes 20 / 26

Converse relation and distance

o Distance for m = simpler converse relation.

o The traditional rewriting rules (closed by N(-) and =):
X(y,2) | x(y',2).P —e P{y'/yH{/z}
x(y) | x(2).P =1 Plz/y} | x(2).Q
o The rewriting rules at a distance (closed by N/(- only):
N@x(y.z)) | M(x(y',2).P) e M(N(P{y'/y}{'/z}))

N(x{y)) | M(x(z).P) = MN(P{z/y} | x(2).P))

Accattoli (CMU) Evaluating functions as processes 21 /26

Reflecting process reductions

Lemma (reflection of reduction contexts)
If N(P) = N(Q) then 3E(-) s.t. [E(-)].= N(-).

Theorem (strong converse simulation)

Q If[t], =g Q then exists s s.t. t —ogp s and [s]., = Q.
@ If[t], =1 Q then exists s s.t. t —o15 s and [s]., = Q.

Accattoli (CMU) Evaluating functions as processes 22 /26

Improved simulation

Summing up we obtain:

t——o0Ss t——o0s
| | |
| = | |
. . v
[t]a [t]ls ——[s]a
and
t t——o0s
| | |
| = ds s.t. | |
. . .

[t —— @ [t]: —— @

Accattoli (CMU) Evaluating functions as processes 23 /26

Call-by-value

@ The same approach can be applied to the call-by-value A-calculus.

There is a CBV translation of A-calculus in linear logic.

| obtained a calculus strongly bisimilar to CBV proof nets [LSFA'12].
@ One gets exactly the same strong bisimulation.

A notion of CBV linear weak head reduction, which is new.

Accattoli (CMU) Evaluating functions as processes 24 / 26

Conclusions

o Distance = rewriting rules via contexts =
Term rewriting matching graph rewriting.

@ General technique, developed for ES, working also for 7.

@ Distance provides a simple and elegant re-understanding of \ — .

Catching also the call-by-value case.

Unification of A\ + ES, linear logic, m-calculus (session types).

Accattoli (CMU) Evaluating functions as processes 25/ 26

THANKS!

Accattoli (CMU) Evaluating functions as processes 26 / 26

	TERM(s and)GRAPH(s)
	-calculus

