
On Matching Concurrent Traces?

Iliano Cervesato1, Frank Pfenning2, Jorge Luis Sacchini1,
Carsten Schürmann3, and Robert J. Simmons2

1 Carnegie Mellon University – Doha, Qatar
iliano@cmu.edu, sacchini@qatar.cmu.edu

2 Carnegie Mellon University – Pittsburgh, PA, USA
fp@cs.cmu.edu, rjsimmon@cs.cmu.edu

3 IT University of Copenhagen – Copenhagen, Denmark
carsten@itu.dk

Abstract. Concurrent traces are sequences of computational steps where
independent steps can be permuted and executed in any order. We study
the problem of matching on concurrent traces. We outline a sound and
complete algorithm for matching traces with one variable standing for
an unknown subtrace.

1 State-Transition Concurrency

Computation in a concurrent system results from the interactions of computing
units such as threads or agents. One popular approach to modeling concurrent
computation views each such agent as being able to perform local transforma-
tions on a global state, possibly in parallel. This is the approach embraced by
Petri nets [5]. This is also the approach underlying propositional multiset rewrit-
ing, which we will now describe in further detail.

A multiset rewriting system is determined by a set of rules of the form ã→ b̃,
where ã and b̃ are multisets over some support set S. We write “·” for the empty
multiset and “ã, b̃” for the union of multisets ã and b̃. Multiset union is associative
and commutative, and has the empty multiset as its unit. Therefore, the set of
multisets over S is a commutative monoid with respect to “,” and “·”. We give
each rule ã→ b̃ with a unique name, r, writing the association as r : ã→ b̃. We
write R for a set of labeled rules.

A state s is a set of pairs x : a where a ∈ S is an element of the support set
S and x is a unique name. Abusing notation, we occasionally write such a state
as x̃ : ã, where ã is the multiset of occurrences of elements of S in s and x̃ the
corresponding names. We also use “,” for set union in the context of states.

A rule r : ã → b̃ in a multiset rewriting system R is enabled in a state
s if s = s′, (x̃ : ã), i.e., if s contains its antecedent. In this circumstance, the

? Partially supported by the Qatar National Research Fund under grant NPRP 09-
1107-1-168, the Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) through the Carnegie Mellon Portugal Program under
Grant NGN-44, and the Danish Council for Strategic Research, Programme Com-
mission on Strategic Growth Technologies under grant 10-092309.

2 I. Cervesato, F. Pfenning, J.L. Sacchini, C. Schürmann, R.J. Simmons

application of r to s results in the state s′′ = s′, (ỹ : b̃) where ỹ are fresh names:
the portion of s matching ã has been replaced with new state elements for b̃. The
triple r(x̃; ỹ), generically denoted t, is a rule instance, or transition. We call x̃ : ã
the pre-condition of t and denote it as •t and ỹ : b̃ its post-condition, denoted
t•. We formalize the state transformation embodied by the application of a rule

by means of the multiset rewriting judgment R ` s t−→ s′′. Then, application is
defined simply as

R, (r : ã→ b̃) ` s′, x̃ : ã︸ ︷︷ ︸
s

r(x̃;ỹ)−→ s′, ỹ : b̃︸ ︷︷ ︸
s′′

or more succinctly as R ` s′, •t t−→ s′, t• for t an instance of a rule r ∈ R.

Multistep computation is obtained by iterating application. We write R `
s

t
=⇒ s′ for the reflexive and transitive closure of our base judgment, where t

records the rules that have been applied to go from s to s′. It is defined by the
following grammar:

t ::= · | r(x̃; ỹ) | t1; t2

We call t a trace. Here, “·” represents the empty trace and “t1; t2” is the con-
catenation of t1 and t2.

A concurrent trace t can be interpreted as a bipartite directed acyclic graph
(BDAG) G = (N1, N2, E) where N1 is the set of transitions t in t and N2 is
the set of state elements x : a mentioned in t. There is an edge from x : a to
t = r(x̃; ỹ) if and only if x occurs in x̃, and there is an edge from t to y : b iff y
occurs in ỹ. These BDAGs are exactly what we get by graphically unfolding the
computation of a place/transition Petri net.

2 Concurrent Traces

A trace is a precise record of all the steps that occurred in a concurrent com-
putation. Indeed, given the initial state, it allows us to replay the computation
exactly and determine the final state. If the latter is known, it can be replayed
backward and reconstruct the initial state.

Traces have an interesting algebraic structure that is key to reasoning about
concurrent computations. To expose it, it will be useful to define the natural
extension of pre- and post-conditions:•(·) = ·

•r(x̃; ỹ) = x̃ : ã
•(t1; t2) = •t1 ∪ (•t2 \ t1•)


(·)• = ·
r(x̃; ỹ)• = ỹ : b̃
(t1; t2)• = (t1• \ •t2) ∪ t2•

for r : ã→ b̃. Two traces t1 and t2 are independent, written t1 ‖ t2, if •t1∩t2• =
t1• ∩ •t2 = ∅. A name x is internal to a trace t if it does not occur in neither
•t nor t•.

On Matching Concurrent Traces 3

Two traces t and t′ are equal, written t = t′, if there are renamings ρ and ρ′

of their internal variables such that R ` s ρt
=⇒ s′ iff R ` s ρ′t′

=⇒ s′ for any s and
s′. It is easy to prove that if t = t′, then •t = •t′ and t• = t′•.

Trace concatenation is associative with respect to trace equality, and the
empty trace (“·”) is its left and right unit. Moreover, independent traces can be
permuted, i.e., t1; t2 = t2; t1 whenever t1 ‖ t2.

Altogether, traces obey the following equational theory:

Associativity (t1; t2); t3 = t1; (t2; t3)
Left identity ·; t = t
Right identity t; · = t
Independent commutativity t1; t2 = t2; t1 if t1 ‖ t2

Two traces are equal whenever the corresponding BDAGs are isomorphic up to
the name of internal state elements. Although the complexity of trace equality
has not been determined as far as we know, the isomorphism problem for both
bipartite graphs and directed acyclic graphs is known to be GI-complete, where
GI is a complexity class between P and NP [6].

The equational theory we just gave is closely related to trace monoids, the
laws that govern Mazurkiewicz trace theory [4]. Mazurkiewicz traces may contain
several occurrences of what corresponds to our transitions, while our traces are
limited to a single occurrence of each transition.

It should be observed that, although our definition of trace was based on finite
concurrent computations, the same equational theory applies to traces of infinite
computations, as produced by operating systems, streaming computations, and
reactive systems.

3 Reasoning about Concurrent Traces

Reasoning about concurrent systems requires reasoning about concurrent com-
putations, whether implicitly or explicitly. Typical reasoning tasks include 1) the
analysis of a given computation, whether to gather information about it as done
in profilers or to react to unexpected states as done by monitors; 2) reasoning
about all possible computations from a given state, for example to verify cor-
rectness as in model checking, to ensure termination, and to detect deadlocks or
starvation; and 3) verifying the soundness and often completeness of a program
transformation, through some sort of (bi)simulation.

While many of these reasoning tasks can be performed by just looking at
the successive states of the system, an analysis that explicitly works on the
traces of the concurrent computation can be much more precise and economical,
especially when the state is large or geographically distributed. To carry out
such forms of trace-based reasoning, we must be able to work with traces that
are not completely specified. This can be captured by extending our definition
of trace with trace variables:

t ::= X(x̃; ỹ) | · | r(x̃; ỹ) | t1; t2

4 I. Cervesato, F. Pfenning, J.L. Sacchini, C. Schürmann, R.J. Simmons

Equality and other notions introduced for traces carry over to traces containing
variables. They also allow asking whether there are instances of said variables
that make two traces equal, a typical unification problem. With the requirement
that •t = •t′ and t• = t′•, we write

t
?
= t′

for such a problem. A solution is a substitution θ = (X1 ← t1, . . . , Xn ← tn)
such that for each i, •Xi = •ti and Xi• = ti• and moreover [θ]t = [θ]t′ where
substitution application is defined in the standard way.

Because the equational theory of traces is only partially commutative, stan-
dard results about ACU or string unification do not apply directly [1]. We have
no proof that it is decidable. We know however that there can be multiple so-
lutions to a trace unification problem since multiset unification can be encoded
as a form of trace unification where all transitions are independent from each
other.

4 Matching

While trace unification is necessary for reasoning tasks (2) and (3) above, match-

ing is sufficient for task (1). In a matching problem t
?
= t′, the trace t′ does not

contain trace variables. Matching is decidable: freeze the order of the transitions
in t and consider all dependency-preserving permutations of t′ in turn; each
permutation gives rise to a string matching problem, which is solvable in linear
time. Of course such a brute-force approach has exponential complexity.

In this section, we present an algorithm for the restriction of the matching
problem with a single trace variable. This algorithm behaves better than the
brute force approach just mentioned. These matching problems have therefore
the form

t1;X(x̃; ỹ); t′1
?
= t2

where t1, t′1 and t2 do not contain trace variables.
Our algorithm will work as follows: strip common transitions from the be-

ginning and the end of the two sides until only the trace variable is left on the
left-hand side. While intuitively simple, care must be taken because indepen-
dent transitions can be permuted and especially because the two sides may not
use the same internal names. This means that as we strip initial and/or final
transitions, we will need to apply a renaming to the rest of the trace.

Given sequences of names x̃ and x̃′ of the same length, we write ρ = [x̃′/x̃]
for the renaming that replaces each name xi in x̃ with the corresponding name
x′i in x̃′. A renaming ρ = [x̃′/x̃] is legal for a trace t if it is the identity for •t
and t•. Applying a renaming ρ to a trace t, written ρt, preserves •t and t• if ρ
is legal for t.

Our matching algorithm is given next for a generic problem t1
?
= t2. We fix

the order of t1 but allow permutations in t2. We propagate the internal names in
t2 to t1. Legality constraints ensure the invariant that •t1 = •t2 and t1• = t2•.

On Matching Concurrent Traces 5

1. p(x̃; ỹ); t1
?
= p(x̃; ỹ′); t2:

If ỹ′/ỹ is legal for p(x̃; ỹ); t1, then solve [ỹ′/ỹ]t1
?
= t2, otherwise fail.

2. t1; p(x̃; ỹ)
?
= t2; p(x̃′; ỹ):

If x̃′/x̃ is legal for t1; p(x̃; ỹ), then solve [x̃′/x̃]t1
?
= t2, otherwise fail.

3. X(x̃; ỹ)
?
= t2: Simply return the solution X ← t2.

This algorithm is sound and complete in the sense that computed solutions
do yield equal traces, and that it computes all solutions. Proofs, although using
a different presentation of traces, will appear in a forthcoming technical report.

Theorem 1 (Soundness). Given a matching problem t1;X(x̃; ỹ); t′1
?
= t2, if

the matching algorithm reports a solution X ← t, then there is a legal renaming
ρ such that ρt1; t; ρt′1 = t2.

Theorem 2 (Completeness). Given a matching problem t1;X(x̃; ỹ); t′1
?
= t2,

if there is a trace t such that t1; t; t′1 = t2, then the matching algorithm will
report the solution X ← ρt for some renaming ρ.

Because this algorithm embeds two trace equality subproblems, it is at least
GI-complete. It may report multiple solutions.

5 Generalizations

In this paper, we have investigated the matching problem for the notion of
concurrent traces emerging from multiset rewriting systems (or equivalently
place/transition Petri nets [3]). In recent years, more expressive languages for
describing concurrent computations have been successfully proposed. State ele-
ments can carry information to allow agents to store and exchange data. Some
may be read repeatedly rather than consumed on access. In process algebras,
synchronization changes the involved processes while our rules are immutable.
Each of these extensions, and others, yields much more sophisticated notions of
trace. The logical framework CLF [2] provides mechanisms rooted in linear type
theory to support these forms of concurrency, and others. Being a type theory,
its term language contains constructs that describe the associated traces.

We are extending the matching algorithm outlined here to a large sublan-
guage of CLF. Supporting reusable state elements, in particular, adds substantial
complications. We have also started examining the general matching problem as
well as unification for concurrent traces.

References

1. F. Baader and W. Snyder. Handbook of Automated Reasoning, chapter Unification
Theory, pages 441–526. Elsevier, 2001.

6 I. Cervesato, F. Pfenning, J.L. Sacchini, C. Schürmann, R.J. Simmons

2. I. Cervesato, F. Pfenning, D. Walker, and K. Watkins. A concurrent logical frame-
work II: Examples and applications. Technical Report CMU-CS-02-102, Computer
Science Department, Carnegie Mellon University, 2002.

3. I. Cervesato and A. Scedrov. Relating State-Based and Process-Based Concurrency
through Linear Logic. Information & Computation, 207(10):1044–1077, 2009.

4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
5. Carl Adam Petri. Fundamentals of a theory of asynchronous information flow. In

Proc. IFIP, pages 386–390, Amsterdam, 1963. North Holland Publ. Comp.
6. V.N. Zemlyachenko, N.M. Korneenko, and R.I. Tyshkevich. Graph isomorphism

problem. Journal of Mathematical Sciences, 29(4):1426–1481, 1985.

