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IT University of Copenhagen — Copenhagen, Denmark

carsten@itu.dk

Robert J. Simmons
Carnegie Mellon University — Pittsburgh, PA, USA

rjsimmon@cs.cmu.edu

Abstract
Matching and unification play an important role in implementations
of proof assistants, logical frameworks, and logic programming
languages. In particular, matching is at the heart of many reasoning
tasks and underlies the operational semantic for well-moded logic
programs. In this paper, we study the problem of matching on
concurrent traces in the CLF logical framework, an extension of
LF that supports the specification of concurrent and distributed
systems. A concurrent trace is a sequence of computations where
independent steps can be permuted. We give a sound and complete
algorithm for matching traces with one variable standing for an
unknown subtrace. Extending the result to general traces and to
unification is left to future work.

Categories and Subject Descriptors F.4.4 [Mathematical Logic
and Formal Languages]: Mathematical Logic—lambda calculus
and related systems

Keywords Concurrent traces, matching, logical frameworks

1. Introduction
Meta-logical frameworks are specialized formalisms designed
to capture the meta-theory of formal systems such as program-
ming languages and logics. They allow expressing properties such
as type preservation, semantics-preserving compilation and cut-
elimination, as well as their proofs. Meta-logical frameworks form
the very foundation that underlies systems such as Coq [10], Is-
abelle [26], Agda [16], and Twelf [18], which can automate the
verification that a proof is correct. The form of reasoning that
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the current generation of meta-logical frameworks handles well
operates on inductively-defined derivation trees that obey a sim-
ple equational theory (often just equality modulo α-equivalence).
Typing and evaluation derivations for sequential programming lan-
guages have this form; so do the derivations of many logics.

Reasoning about languages, such as the π-calculus [14] or Petri
nets [17], that exhibit a parallel, concurrent or distributed seman-
tics, does not fit this pattern, however. Some steps on parallel
threads can occur in any order without affecting the result of a
computation, but communication and other forms of concurrency
introduce dependencies that force the order of some steps. This se-
lective permutability of steps poses a new challenge for the design
of meta-logical frameworks for concurrent systems. The resulting
equational theory is more complex and algorithmically not as well
understood. Indeed, computation traces in these systems are often
depicted as directed acyclic graphs, because graphs are agnostic
to the particular order of the computation steps that are executed
while still capturing the causal dependencies between inputs and
outputs [19].

Reasoning about such languages can be automated in two ways.
One way is to encode the equational theory of concurrent com-
putations in a traditional logical framework. Honsell et al. [9] did
precisely this when developing a significant portion of the meta-
theory of the π-calculus in Coq [10]. The main drawbacks of this
approach are that it is extremely labor intensive and that applying
it to a new language often amounts to starting from scratch. The
other way is to develop a logical framework that internalizes the
equational theory of concurrent computations. This is the approach
taken in CLF [5, 24], an extension of the LF type theory with mon-
ads and constructs borrowed from linear logic. CLF has supported
the syntax and semantics of every concurrent language we have
attempted to encode in it: we could simulate the execution of con-
current programs written in these languages in the accompanying
Celf tool [22], obtaining proof-terms that, thanks to CLF’s equa-
tional theory, express the corresponding computations in their full
generality. We are now in the process of extending Celf with sup-
port for reasoning about these concurrent computations. This paper
presents an initial step in this direction.

The key to any reasoning task on computations is to isolate steps
and name subcomputations: the steps are immediately examined
and the subcomputations are analyzed recursively or co-recursively.
Operationally, naming computations is realized through unification
when subcomputations of different origin are required to be equal,
or matching when reasoning about one given trace. Furthermore,



matching underlies the operational semantics of well-moded pro-
grams in a logical framework.

In this paper, we examine the matching problem for a large
fragment of CLF’s language of computational traces. We show that,
for the fragment considered, matching is decidable although highly
non-deterministic. We propose a sound and complete algorithm for
the case where there is at most one logic variable standing for an
unknown trace.

We are not aware of any comprehensive study of matching, let
alone unification, for computational traces, even as they are at the
heart of automated reasoning on parallel and concurrent compu-
tations. Closest is the work of Messner [12] that studies a spe-
cific form of matching for Mazurkiewicz traces [19], a simpler no-
tion than ours. Those problems have however been studied exten-
sively for related equational theories. Examples include unification
in a commutative monoid (ACU unification) which is the basis of
any multiset rewriting framework and string unification (associative
with unit) [1, 6], as well as graph matching and isomorphism [28].

The fragment of CLF examined in this paper captures a gen-
eral form of concurrent computation based on state transition rules.
Languages that can be directly expressed in this fragment include
place/transition Petri nets [17], colored Petri nets [11] and various
forms of multiset rewriting [2, 3]. The associated computational
traces are a more concrete, more general form of Mazurkiewicz
traces [19] as our notion of independence is given by a binding
structure, while in Mazurkiewicz traces, independence is given by
a fixed relation between the elements of a trace. For space reasons,
we do not consider the type of traces produced by computations in
shallow encodings of process algebra [14], although CLF supports
them. CLF also allows arbitrary combinations of forward chaining,
typical of concurrent computations, and backward chaining found
in top-down logic programming. We focus on matching for for-
ward chaining traces, as unification in the backward chaining sub-
language is well understood [15].

The rest of the paper is organized as follows: in Section 2 we
define the fragment of CLF we use, its equational theory, and
the infrastructure to explore the matching problem. We present a
matching algorithm for it and prove its correctness in Section 3.
We outline areas of future development in Section 4.

2. Setting
In this section, we define the syntax, typing, and equality for our
language and some of the infrastructure needed for equations.

2.1 Language
The language examined in this paper is a large fragment of the CLF
type theory [5, 24] (see Section 2.2 for a comparison). For sim-
plicity, we rely on a somewhat non-standard presentation organized
around contexts, terms, traces, and types [20].

Contexts A context is a sequence of variable declarations of the
form x:A, where A is a type (defined below) and is one of three
modalities: ! (persistent), @ (affine), or ↓ (linear).

Modalities: ::= ! | @ | ↓
Contexts: ∆ ::= · | ∆, x:A

Signatures: Σ ::= · | Σ, c:A

We assume that each variable name x is declared at most once in
a context. The typing semantics below allows persistent variables
(!x) to occur free in a type, but not linear (↓x) or affine (@x) vari-
ables. Said differently, we allow variable dependencies on persis-
tent, but not affine or linear declarations.

We write !∆ for the largest subcontext of ∆ declaring only
persistent variables. Similarly, @∆ is the largest subcontext of
∆ containing only affine or persistent declarations (i.e., @∆ is

obtained from ∆ by removing all linear variables). For uniformity,
we write ↓∆ as a synonym for ∆. At times, !∆ will denote a context
consisting of persistent declarations only.

Given a context ∆ and a variable x declared in ∆, we denote
with ∆ \\ x the context obtained by removing the declaration for x
if it is affine or linear, formally: (∆0, x:A,∆1) \\ x = (∆0,∆1)
if ∈ {@, ↓} and (∆ \\ x) = ∆ if !x:A ∈ ∆ for some A.

As usual, a signature declares the constants in use. We will
implicitly assume a global signature Σ.

Terms The language of terms of our language combines aspects
of the spine calculus of [4] and of the pattern-based presentation of
CLF in [21]. It is given by the following grammar:

Terms: N ::= λ̂∆. H·S
Heads: H ::= x | c
Spines: S ::= · | N,S

A term λ̂∆. H·S consists of an abstraction pattern ∆ applied to
an atomic term H·S. Its head H can be either a constant from the
global signature or a variable. Its spine S is a sequence of moded
terms, and has therefore a structure similar to a context. A spine can
be viewed as the uncurrying of iterated applications in a λ-calculus.
An atomic term is closely related to the monadic terms of [21, 24].
The abstraction pattern ∆ is a binder for the term and its scope is
H·S. It can be understood as the uncurrying of iterated abstractions
over individual variables. In examples, we omit empty abstraction
contexts, writing H·S for λ̂(·). H·S. We also omit empty spines in
an atomic term.

Given a spine S and a context ∆ of the same length (and type,
see below), we write S/∆ for the simultaneous substitution of each
variable in ∆ with the corresponding term in S. Given a termN , we
write N [S/∆] for the term obtained after applying S/∆ hereditar-
ily to N . Hereditary substitution applies S/∆ and at once reduces
the result to canonical form [21, 24]. We similarly write S′[S/∆]
and ∆′[S/∆] for the simultaneous substitution hereditarily applied
to a spine and a context, respectively.

Traces and expressions The trace of a concurrent computation is
a record of all the steps performed together with any dependency
among them. Each step uses certain resources modeled here as
context variables, possibly embedded within terms, and produces
other resources, modeled as a context with fresh variables. This
notion of step is found in all concurrent languages based on state
transitions, e.g., Petri nets [11, 17] and multiset rewriting [2, 3].

Traces and the related notion of expressions are defined as
follows in our language:

Traces: ε ::= � | ε1; ε2 | {∆}�c·S
Expressions: E ::= {let ε in ∆}

A trace is either empty (�), a composition of two traces (ε1; ε2), or
an individual computation step of the form {∆}�c·S, where c is a
constant in the global signature Σ, and S is a spine. We write δ for
a generic computational step {∆}�c·S. We call c the head of δ.
A step of the form {∆}�c·S represents an atomic computation c
that uses the variables in S and produces the variables in ∆. Linear
and affine variables in S are consumed and cannot be used again.
Persistent variables can be used more than once.

In a step δ = {∆}�c·S, the context ∆ acts as a binder for
the variables it declares. Its scope is any trace that may follow
δ. As with any binder, variables bound in this way are subject
to automatic α-renaming as long as no variable capture arises.
These variables will need to be managed with care in the matching
algorithm in Section 3.

An expression {let ε in ∆} is essentially a trace with delimited
scope: no variable produced by ε is visible outside it. The context
∆ collects all unused linear variables and some affine and persis-



Contexts:

!∆ ` ·
!∆ ` A : type !(∆, x:A) ` ∆′

!∆ ` x:A,∆′

Base types:

a:Π!∆′.type ∈ Σ !∆ ` S : !∆′

!∆ ` a·S : type

!∆ ` ∆′

!∆ ` {∆′} : type

Types:

!∆ ` ∆′ !(∆,∆′) ` P : type

!∆ ` Π∆′.P : type

Kinds:
!∆ ` !∆′

!∆ ` Π!∆′.type : kind

Figure 1. Typing rules for types and kinds

tent variables. In CLF [21, 24], this context is essentially a spine.
Furthermore, CLF expressions can appear in terms. We disallow
this here. Finally, CLF terms of the form λ̂∆. E are not considered
since they play no part in our matching algorithm, although we will
occasionally use them in the examples.

Types and kinds Terms and expressions are classified by types,
themselves classified by kinds. They are defined by the following
grammar:

Base types: P ::= a·S | {∆}
Types: A ::= Π∆.P
Kinds: K ::= Π!∆.type

Base types are either atomic or monadic. Atomic types have the
form a·S, where a is a constant defined in the signature Σ applied
to a spine S containing only persistent terms (i.e., terms of the form
!N ). Monadic types have the form {∆}, which are equivalent to the
positive types of CLF [22]. The scope of the declarations in {∆} is
limited to ∆ itself.

For convenience, we writeA→ B for Π(!x:A).B when x does
not occur in B. Similarly, we write A ( B for Π(↓x:A).B and
A −@ B for Π(@x:A).B — recall that only persistent variables
can appear free in a type. These are the types of persistent, lin-
ear and affine functions, respectively. Although the syntax prevents
iterated functions, the general form Π∆.P captures them in un-
curried form: for example, the function A → B ( C −@ D is
expressed as Π(!x:A, ↓y:B,@z:C). D. We will often curry such
types for clarity. As for terms, we usually omit empty contexts in
types and kinds, writing type for Π(·).type and P for Π(·).P .

2.2 Typing and Equality
As in most type theories, the typing semantics of our language is
based on a notion of equality over its various syntactic constructs.
We present the typing rules and then the underlying equational
theory.

Typing The typing semantics of our language is expressed by the
following judgments [20]:

Terms:
!∆ ` ∆′ ∆,∆′ ` H·S ⇐ P

∆ ` λ̂∆′. H·S ⇐ Π∆′.P

x:Π∆′.a·S′ ∈ ∆
∆ \\ x ` S ⇐ ∆′ P ≡ a·S′[S/∆′]

∆ ` x·S ⇐ P

c:Π∆′.a·S′ ∈ Σ ∆ ` S ⇐ ∆′ P ≡ a·S′[S/∆′]
∆ ` c·S ⇐ P

Spines:

@∆ ` · : ·

!∆1 ` N ⇐ A ∆0 ` S : ∆2[!N/!x]

∆0 ./ @∆1 ` !N,S ⇐ !x:A,∆2

@∆1 ` N ⇐ A ∆0 ` S : ∆2

∆0 ./ @∆1 ` @N,S ⇐ @x:A,∆2

↓∆1 ` N ⇐ A ∆0 ` S : ∆2

∆0 ./ ↓∆1 ` ↓N,S ⇐ ↓x:A,∆2

Traces:

∆ ` � : ∆

∆ ` ε1 : ∆1 ∆1 ` ε2 : ∆2

∆ ` ε1; ε2 : ∆2

c:Π∆′.{∆′′} ∈ Σ ∆1 ` S ⇐ ∆′ ∆2 ≡ ∆′′[S/∆′]

∆0 ./ ∆1 ` {∆2}�c·S : ∆0,∆2

Expressions:

∆0 ` ε : ∆1 ∆1 4 ∆′

∆0 ` {let ε in ∆′} ⇐ {∆′}

Figure 2. Typing rules for terms and traces

Kinds: !∆ ` K : kind
Base types: !∆ ` P : type

Types: !∆ ` A : type
Contexts: !∆ ` ∆′

Expressions: ∆ ` E ⇐ {∆}
Traces: ∆ ` ε : ∆′

Spines: ∆ ` S ⇐ ∆′

Terms: ∆ ` N ⇐ A

Their definition, in Figures 1 and 2, relies on equality ≡ (defined
below) and two additional relations. First, context ∆ splits into
∆1 and ∆2, written ∆ = ∆1 ./ ∆2, iff !∆ = !∆1 = !∆2

and each affine or linear declaration in ∆ appear in exactly one
of ∆1 and ∆2. Second, we say that ∆ is weaker than ∆′, denoted
∆ 4 ∆′ (or equivalently ∆′ < ∆), iff ∆ = ∆′ ./ @∆0 for some
context ∆0, i.e., if ∆′ is included in ∆ and ∆ does not contain any
linear hypotheses not present in ∆′. Furthermore, we will be able
to rely on implicit α-renaming to ensure that a context extension or
concatenation does not declare duplicate variable names.

The rules for types and kinds in Figure 1 are standard. Note
that only persistent hypotheses are used for type-checking them as
linear and affine hypotheses cannot appear free in them — !∆ in
these rules is required to mention only of persistent variables while
! applied to constructed contexts (e.g., !(∆,∆′)) filters out non-
persistent declarations. Context typing works similarly.



The typing rules for terms and spines are a minor variant of
the semantics of [4, 21] for these entities. The typing rules for
traces reflect that a trace can be seen as a transformation on states,
modeled as contexts. The empty trace does not change the state.
A step transforms a part of the state. The spine S uses ∆1 and
produces ∆2 leaving the rest of the state, represented by ∆0, intact.
The typing rule for composition of traces effectively composes the
transformations given by each trace. Note that the monadic type of
an expression does not leak out the variables produced by the trace
it embeds.

By relying on hereditary substitution, these judgment ensure
that well-typed objects are canonical, i.e., do not contain re-
dexes [21, 24]. They also satisfy the following properties.

Lemma 1 (Frame rule). If ∆1 ` ε : ∆2, then ∆0 ./ ∆1 ` ε :
∆0 ./ ∆2.

Lemma 2 (Inversion for trace typing). If ∆0 ` ε1; ε2 : ∆2, then
there exists ∆1 such that ∆0 ` ε1 : ∆1 and ∆1 ` ε2 : ∆2.

Equality Equality for terms, spines, and types, denoted ≡, is
defined in the usual way, up to α-equivalence. Context equality is
also defined in the usual way: two contexts are equal if they declare
the same variables with equal types. We omit their definition [20].
Equality for traces and expressions is more complex as it allows
permuting independent computations.

Independence The input interface of a trace ε, denoted •ε, is the
set of variables available for use in ε, the free variables of ε. The
output interface of ε, denoted ε•, is the set of variables available
for use to any computation that may follow ε. Together they form
the interface of ε. They are formally defined as follows:

•(�) = ∅
•({∆}�c·S) = FV(S)

•(ε1; ε2) = •ε1 ∪ (•ε2 \ ε1•)

(�)• = ∅
({∆}�c·S)• = dom(∆)

(ε1; ε2)• = ε2• ∪ (ε1• \ •ε2) ∪ !(ε1•)

where FV(S) denotes the free variables of S, defined in the usual
way, and dom(∆) is the set of variables declared in ∆. Observe
that (ε1; ε2)• includes the persistent variables introduced by ε1
since these variables are available after executing ε2 even if ε2
uses them. The input and output interfaces of a typable ε are the
variables declared in smallest contexts ∆ and ∆′ respectively such
that ∆ ` ε : ∆′.

Two traces ε1 and ε2 are independent, denoted ε1 ‖ ε2, iff
•ε1 ∩ ε2• = ∅ and •ε2 ∩ ε1• = ∅ [19]. Permuting a typable
composition of independent traces is always typable [20].

Trace equality Trace composition is associative with the empty
trace as it unit, thereby endowing traces with a monoidal struc-
ture [20]. Furthermore, independent subtraces can be permuted.
Formally, trace equality, also written≡, is defined by the following
rules:

ε; � ≡ ε ε ≡ ε; � ε1; (ε2; ε3) ≡ (ε1; ε2); ε3

ε1 ‖ ε2
ε1; ε2 ≡ ε2; ε1

ε1 ≡ ε′1
ε1; ε2 ≡ ε′1; ε2

ε2 ≡ ε′2
ε1; ε2 ≡ ε1; ε′2

For example, the following equality among traces holds:(
{↓x2}�c·↓x1;
{↓y2}�c·↓y1

)
≡
(
{↓y2}�c·↓y1;
{↓x2}�c·↓x1

)

Expression equality In an expression {let ε in ∆}, the scope of
the variables produced by ε extends to the context ∆ (and indeed
stops there). It is therefore natural to allow the output variables
to α-vary in unison with the variables declared in ∆ when defin-
ing α-equivalence over expressions. Specifically, two expressions
{let ε1 in ∆1} and {let ε2 in ∆2} are α-equivalent if the internal
and output variables of the two traces ε1 and ε2 can be renamed
(without distinct variables within each trace being identified) as to
become syntactically equal and the same output renaming makes
the two contexts syntactically equal as well. For example,

{let
(
{z}�c;
{y}�c′·z

)
in y} and {let

(
{x}�c;
{z}�c′·x

)
in z}

are α-equivalent, although the traces in them are not (since their
output interfaces differ). As usual, α-equivalence yields the derived
notion of α-renaming, which we will exploit to implicitly rewrite
an expression {let ε in ∆} by altering synchronously the output in-
terface ε• of ε and the variables dom(∆) declared by ∆ whenever
convenient.

Exploiting the implicit α-renaming of bound variables, we can
define expression equality simply as:

ε1 ≡ ε2 ∆1 ≡ ∆2

{let ε1 in ∆1} ≡ {let ε2 in ∆2}

Comparison with CLF The language presented in this paper dif-
fers from CLF [21, 24] in a several ways. We exclude CLF’s ad-
ditive conjunction on types as it does not complicate the matching
problem. Furthermore, we replaced CLF’s untyped patterns with
contexts in binding positions. This has the effect of simplifying
the typing rules in two ways: first contexts are flat while patterns
can be nested arbitrarily, and second the availability of the typing
information avoids hunting it down. The most substantial differ-
ence concerns expressions: using our syntax, CLF expressions have
the general form {let ε in S} rather than {let ε in ∆}. We make
this restriction for two reasons: first, most CLF specifications we
have developed fit in the fragment presented in this paper; second,
matching trailing spines S (monadic terms in CLF parlance) is a
much more difficult problem than matching trailing contexts (pat-
terns in CLF) as discussed in the next section. Finally, the head of
a CLF step can be a variable, not just a constant. Although this fea-
ture allows directly representing process algebras rather than just
state transition systems, we omitted it for simplicity — see [20] for
a full treatment.

The language presented here allows us to develop a simpler
matching algorithm that is described in the next section. We will
address the matching problem in full CLF in forthcoming work.

2.3 Equations
An equation is a postulated equality between entities that may
contain logic variables. A logic variable X stands for an unknown
term or trace. Logic variables are distinct from term variables x.
We now develop the machinery to solve equations in Section 3.

Logic variables A contextual modal context [15] is a sequence of
logic variable declarations, formally defined as follows:

Ψ ::= · | Ψ, X :: ∆ ` A
Each declaration of the form X :: ∆X ` AX determines a distinct
logic variable X with its own context ∆X and type AX (under
∆X ). We will assume a global contextual modal context Ψ.

Within a term defined in a context ∆0, a logic variable X is
accompanied by a substitution θ that maps the variables in ∆X to
well-typed terms over ∆0. The pair is denoted X[θ]. Substitutions
are defined by the following grammar:

θ ::= · | θ, N/ ′x



In a substitution item N/
′
x, the modalities and ′ may be

different: indeed, a linear variable may be replaced by a persistent
term without violating typing (so that !N/↓x is allowed), while
the opposite may yield an ill-typed term (e.g., ↓N/!x may lead to
multiple copies of ↓N ). The valid values for ( ,

′
) are given by

the reflexive-transitive closure of {(!,@), (@, ↓)}. Substitutions of
this form are called linear changing.

We extend the syntax of our language by allowing logic vari-
ables as heads and in steps:

Heads: H ::= x | c | X[θ]
Steps δ ::= {∆}�c·S | {∆}�X[θ]

A logic variable is atomic (resp. monadic) if its type is atomic (resp.
monadic). Atomic logic variables can only occur as heads of terms,
while monadic logic variables can only occur as heads of steps.

Substitutions are type-checked using the following judgment:

∆1 ` θ : ∆2

The typing rules related to logic variables and substitutions are
given in Figure 3.

In this paper, logic variables have base types. Indeed, logic
variables with functional types can always be lowered [15], i.e.,
replaced with a new logic variable of base type. Given a logic
variable X :: ∆X ` Π∆.P , we introduce a new logic variable
Y declared by Y :: ∆X ,∆ ` P and replace every occurrence of
X by λ̂∆. Y [id], where id is the identity substitution.

An assignment σ is a sequence of bindings of the formX ← N
where X is a logic variable. An assignment σ is well typed if
for every X ← N with X :: ∆X ` AX , we have ∆X `
N : AX . Applying an assignment [X ← N ] to a term M (resp.
expression, type, etc.), denoted [X ← N ]M , means replacing
every occurrence ofX[θ] inM with θN and reducing the resulting
expression to canonical form. For traces, applying an assignment is
defined by the following rule:

[X ← {let ε0 in ∆0}](ε1; {∆}�X[θ]; ε2) = (ε1; θε0; [∆0/∆]ε2)

In the examples below, we usually do not specify the declaration
of logic variables and leave local variables implicit. E.g., given a
logic variable X :: x1:a1, x2:a2 ` {∆} we write X[y1, y2] for
X[y1/x1, y2/x2].

Pattern substitutions A pattern substitution [13] is a substitu-
tion whose codomain consists of distinct variables: it has the form
′
1y1/ 1x1, . . . ,

′
nyn/ nxn where y1, . . . , yn are pairwise dis-

tinct. Pattern substitutions are bijections. Because they are injec-
tive, an equation of the form X[θ] = N has at most one solution if
θ is a (linear-changing) pattern substitution, namely θ−1N . How-
ever, it may have no solution whenN contains variables not present
in θ.

For linear-changing pattern substitutions the existence of the
inverse applied to a term is subject to some conditions on the
occurrences of variables. We say that a variable x occurs in a
persistent position (resp. affine position, linear position) in a term
N if it occurs inN inside a term of the form !N ′ (resp. @N ′, ↓N ′).

Lemma 3 (Inversion [23]). Let T be either an expression, a trace, a
spine or a term, and θ a linear-changing pattern substitution. There
exists T ′ such that T ≡ θT ′ iff the following conditions hold:

• for every !y/↓x ∈ θ, !y occurs exactly once in T in a linear
position;

• for every !y/@x ∈ θ, !y occurs at most once in T in a linear or
affine position;

• for every @y/↓x ∈ θ, @y occurs exactly once in T in a linear
position.

Logic variables:

X :: ∆X ` Π∆′.a·!S′ ∈ Ψ
∆1 ` θ : ∆X ∆2 ` S : θ∆′ P ≡ a·!θS′[S/∆′]

∆1 ./ ∆2 ` X[θ]·S : P

X :: ∆X ` Π∆′.{∆′′} ∈ Ψ
∆1 ` θ : ∆X ∆2 ` S ⇐ θ∆′ ∆3 ≡ ∆′′[S/∆′]

∆0 ./ ∆1 ./ ∆2 ` {∆3}�X[θ]·S : ∆0,∆3

Substitutions:

@∆ ` · : ·
∆0 ` θ : ∆2 1∆1 ` N ⇐ A

∆0 ./ 1∆1 ` θ, 1N/ 2x : ∆2, 2x:A

Figure 3. Typing rules for substitutions and logic variables

2.4 Example
As a running example, we consider a formalization of the asyn-
chronous π-calculus with correspondence assertions [27], taken
from [25]. We use a deep embedding to avoid the use of embed-
ded clauses (which would require using steps headed by variables).
The syntax of processes is given by:

Q ::= 0 | (Q1|Q2) | !Q | (νx).Q | Q1 +Q

| x(y).Q | x〈y〉 | beginL;Q | endL;Q

where correspondence assertions are given by the constructors
begin and end.

CLF allows representations using higher-order abstract syntax.
In the case of the π-calculus, we use types pr (process), nm (name),
and label, and the following signature constants to represent pro-
cesses. As anticipated, we curry declarations and terms for read-
ability. We also omit unused variables.

stop : pr

choose : pr→ pr→ pr

par : pr→ pr→ pr

out : nm→ nm→ pr

repeat : pr→ pr

inp : nm→ (nm→ pr)→ pr

new : (nm→ pr)→ pr

begin : label→ pr→ pr

end : label→ pr→ pr

The process stop corresponds to (0) and represents a finished com-
putation; parQ1 Q2 corresponds to (Q1|Q2) and represents a con-
current execution of Q1 and Q2; repeatQ corresponds to !Q and
represents a process that can create copies of itself; new (λx.Q)
corresponds to νx.Q and represents a process that creates a new
name x that can be used in Q (note the use of higher-order ab-
stract syntax to represent names); chooseQ1 Q2 encodes Q1 +Q2

and represents a non-deterministic choice between Q1 and Q2;
inpx (λy.Q) and outx y correspond to x(y).Q and x〈y〉, respec-
tively, and represent communication between processes; finally,
beginLQ and endLQ represent correspondence assertions that
have to be matched in well-formed processes [27].

The operational semantics is modeled by the type constructor
run : pr → type. The process state is represented in the context as
a sequence of running processes of the form runP and actions that
transform the state.



Examples of the actions representing the operational semantics
are the following:

ev stop : run stop ( {·}
ev par : run (parQ1 Q2) ( {@runQ1,@runQ2}
ev new : run (new(λ!x.P x)) ( {!x,@run(P x)}

ev repeat : run (repeatQ) ( {!runQ}
ev sync : run (outX Y ) ( run (inpX (λy.Q y))

( {@run (QY )}
ev begin : run (beginLQ) ( {@runQ}

At run-time, the implicitly Π-quantified variables denoted with
capital letters are used as atomic logic variables.

A process state is modeled by declarations of type @runQ
and !runQ; the latter represents a process that can be executed
repeatedly. The objects of type runQ ( {·} represent com-
putations starting from a process Q. Computations that only
differ in the order of independent steps are represented by the
same object in CLF. We illustrate execution with an example:
consider the process νx.x(y).Q(y)|x〈x〉, represented by P ≡
new(λx.par(inpx (λy.Q(y)))(outxx)). Assuming p : runP , an
execution of this process is the following:

EP ≡ {let

{!x, p′}�ev new p;
{p1, p2}�ev par p′;
{p1, P2}�ev sync p1 p2;

 in ·}

We will demonstrate our matching algorithm on computations
drawn from this language below.

3. Matching
Given two objects T1 and T2 of the same syntactic class (traces,
terms, expressions, or spines) such that T2 is ground (i.e., does
not contain logic variables), the matching problem tries to find an
assignment σ for the logic variables in T1 such that σT1 ≡ T2.
We write T1

?
= T2 to denote a matching problem. Matching is a

well-understood problem for terms, spines and types, as they have
a simple equational theory [15], but not so much in the case of
traces with permutations. This is what we will be focusing on.

Matching on traces is inherently non-deterministic. For exam-
ple, the equation

{let
(
{·}�X;
{·}�Y

)
in ·} ?

= {let

{·}�c1;
. . . ;
{·}�cn

 in ·}

has 2n solutions: it encodes the problem of partitioning the multiset
{c1, . . . , cn} into the (disjoint) union of multisets X and Y .

Assuming that all logic variables in a trace matching problem
are applied to (linear-changing) pattern substitutions, matching is
decidable: in ε1

?
= ε2, any solution instantiates the monadic logic

variables in ε1 to subtraces of ε2. Since there are only finitely many
subtraces, one can try all possible dependency-preserving partitions
of ε2 among these monadic logic variables; a solution is found if the
interface of each subtrace matches the interface of the logic variable
and the inverse of the pattern substitution can be applied. Clearly,
this approach is extremely inefficient.

We present an algorithm for solving the matching problem in
the presence of (at most) one monadic logic variable, where every
logic variable is applied to a (linear-changing) pattern substitution.
This restriction suffices for many reasoning tasks of interest, for
example monitoring a computation and some program transforma-
tions. Lifting this restriction is the topic of on-going work [20].

A matching problem on traces can then be expressed by an equation
of the form δ1; . . . ; δk;

{∆}�X[θ];
δk+1; . . . ; δn

 ?
=
(
δ′1; . . . ; δ′m

)
(*)

where δi, δ′i have the form {∆}�c·S, where S might contain
atomic logic variables. Without loss of generality, the algorithm
fixes the order of the left-hand side of this equation and permutes
independent steps on the right-hand side as needed. The algorithm
proceeds by matching individual steps from each end of the trace.
To match, two steps must have the same head, use the same re-
sources, and produce resources that are used in the same way.
Matching pairs of steps are removed from the traces. The process
is repeated, matching two steps at the beginning or at the end of the
trace, until a problem of the form(

{∆}�X[θ]
) ?

= ε

is obtained. The solution is then X ← θ−1({let ε in ∆}), if this
term is well typed and the inverse substitution θ−1 can be applied.
If this is not the case, then either the steps were matched in the
wrong order (meaning that it is necessary to backtrack and try
a different permutation of the right-hand side), or if all possible
orders have been tried, the problem has no solution.

Example We continue with the π-calculus example from the pre-
vious section. We consider the operational semantics from Gordon
and Jeffrey [8] based on event sequences. An event is either beginL
(where L is a label), endL, tint for internal actions, or genN ,
where N is a name (corresponding to new names). A computation
is represented by P s−→ P ′, where s is an event sequence.

Event sequences are represented in CLF by a type ev and the
following signature constants:

snil : ev

sint : ev→ ev

sgen : (nm→ ev)→ ev

sbegin : label→ ev→ ev

send : label→ ev→ ev

The event sequence snil represents the empty sequence, sint rep-
resents an internal event (synchronization or choosing a process in
a non-deterministic choice), sgen represents the event of creating
a name, and finally sbegin and send represent the correspondence
assertions.

The operational semantics is given by an abstraction predicate
that relates an execution of a process with an event sequence. It is
represented in CLF by a type family abst : {·} → ev → type.
Some of the constructors of this type family are the following:

abst sync :

abst {let
( {@r}�ev sync@R1 @R2;

{·}�E r

)
in ·} (sint !s)

← (Πr.abst (E@r) !s)

abst begin :

abst {let
( {@r}�ev begin !L@R;

{·}�E r

)
in ·} (sbegin !L !s)

← (Πr.abst (E@r) !s)

abst new :

abst {let
( {!x,@r1}�ev new@R;

{·}�E x, r1

)
in ·} (sgen (λ!x.s x)

← (Πx, r1.abst (E x, r1c) (s x))



where A← B is a synonym of A→ B. The variable E is used, at
run-time, as a monadic logic variable, while L, R, R1, and R2 are
used as atomic logic variables.

The constructor abst sync relates an execution that starts with a
synchronization step with the event sequence sint s if the rest of the
execution is abstracted by s. Similarly, abst begin (resp. abst end)
treat the case where the execution starts with a begin (resp. end)
step. Since independent steps in an execution can be reordered, an
execution can be related to several event sequences.

We can view this definition as a Prolog-style backward chaining
program where the first argument of abst is an input and the
second is an output. Running this program with a query of the
form abst eX , where e is a ground computation and X is a logic
variable, reduces to solving matching problems of the form (*). The
variable E in each clause represents an unknown computation (a
trace in CLF). For example, consider the process P and execution
EP given in Section 2.4. Querying abstEP X for X would mean
trying all the constructors of the type family abst. Trying abst new
would trigger solving the following matching problem:

EP
?
= {let {!x,@r1}�ev new@R; {·}�E x, r1 in ·}

where R and E are logic variables. Matching succeeds yielding a
value for R and E, reducing the problem to solve a query of the
form abstE Y for Y , where E is the value returned by matching.

Renamings The main issues in designing a matching algorithm
for traces is how to deal with variables introduced in the trace.
Recall that in an expression {let ε in ∆} the context ∆ does not
necessarily list all the persistent and affine variables in the output
interface ε• of ε. When matching two expressions, which such un-
mentioned variables correspond to which is initially unknown but
revealed incrementally as the two embedded traces are examined.
Rather than guessing this correspondence a priori, we rely on the
notion of renaming to delay it until matching step pairs force it,
incrementally. A renaming is a modality-preserving substitution of
variables by fresh variables:

Renamings: ϕ, ρ ::= · | ϕ, x/ y

We write ε{ϕ} and ∆{ϕ} for the application of the renaming ϕ
to the free variables in a trace ε and a context ∆, respectively. We
omit the straightforward definition. Because variables are always
renamed to fresh variables, it will be convenient to extend this
definition to bound variables as well: in this way we can maintain
the correspondence between the variable names in an expression
{let ε in ∆} even after ε and ∆ have been separated. For example,
we will have ({↓y}�c·↓x){↓z/↓y} = ({↓z}�c·↓x).

Design of the matching algorithm Matching traces involves
picking an appropriate permutation of one of the traces and finding
a renaming that identifies the variables introduced by the trace. We
will now illustrate some of the design choices we made through
examples.

Intuitively, the algorithm is based on the judgment of the form
∆ ` ε1

?
= ε2 7→ σ which attempts to match ε1 against ε2 (both

well typed under context ∆) and results in the assignment σ (we
will update this judgment shortly). Since both traces are well typed
in the same context, input variables are considered fixed and cannot
be renamed. On the other hand, variables introduced in the trace
need to be matched. Consider the matching problem{↓y1}�c·↓x;

{↓z1}�c·↓x′;
{↓p}�X[↓y1, ↓z1]

 ?
=

{↓y2}�c·↓x;
{↓z2}�c·↓x′;
{↓p}�c·↓y2 ↓z2


where both terms are well typed in a context that contains x
and x′. Because variables ↓x and ↓x′ are defined in the outside
context, their name is fixed, while variables ↓y1, ↓y2, ↓z1, and

↓z2 are internal to the trace and can thus be (α-)renamed. Here,
{↓y1}�c·↓x must correspond to {↓y2}�c·↓x, while we cannot
match {↓y1}�c·↓x against {↓z2}�c·↓x′ as ↓x and ↓x′ are differ-
ent variables and cannot be renamed.

Similarly, {↓z1}�c·↓x′ must correspond to {↓z2}�c·↓x′.
Matching these two pairs of steps renames ↓y1 and ↓y2 to some
fresh variable ↓y, and ↓z1 and ↓z2 to ↓z, reducing the problem to(

{↓p}�X[↓y, ↓z]
) ?

=
(
{↓p}�c·↓y ↓z

)
The only solution for X[↓y, ↓z] is {let {↓p}�c·↓y ↓z in ↓p}.

The above example shows how the algorithm proceeds when
matching two steps at the beginning of a trace. Repeatedly match-
ing steps at the beginning of the trace reduces the problem to(

{∆}�X[θ]; ε1
) ?

= ε2

where no step in ε1 contains monadic logic variables. The variable
X corresponds to a subtrace of ε2. Instead of guessing the right
value for X , we can match each step in ε1 against a step in ε2.

Let us consider the following problem involving matching steps
at the end of a trace (for simplicity deprived of logic variables):

{let
(
{!x1}�c;
{!x2}�c

)
in ·} ?

= {let
(
{!y1}�c;
{!y2}�c

)
in ·}

Both expressions are α-equivalent, so the matching algorithm
should succeed. The problem is reduced to matching the inner
traces, but note that their output interfaces are different. Matching
steps at the end of two traces involves matching the output of steps,
incrementally building a renaming between both traces. However,
we should be careful not to rename variables twice. For example,
in a problem of the formε1;

{·}�c·!x1;
{·}�c·!x1

 ?
=

ε2;
{·}�c·!y1;
{·}�c·!y2


matching {·}�c·!x1 against {·}�c·!y2 renames !x1 and !y2 to a
fresh !z (assuming both are introduced in the trace), reducing the
problem to (

ε1{!z/!x1};
{·}�c·!z

)
?
=

(
ε2{!z/!y2};
{·}�c·!y1

)
Now matching {·}�c·!z against {·}�c·!y1 would identify !z and
!y1, but this is wrong since !z is already defined in ε2{!z/!y2}.
To avoid this issue we mark variables introduced in the trace and
remove the mark once they have been renamed (a marked variable
is denoted with x). For example, the equation over expressions

{let
(
{!x1}�c1;
{!x2}�c2·!x1

)
in ·} ?

= {let
(
{!y1}�c1;
{!y2}�c2·!y1

)
in ·}

reduces to the following trace equation, where all introduced vari-
ables have been marked:(

{!x1}�c1;
{!x2}�c2·!x1

)
?
=

(
{!y1}�c1;
{!y2}�c2·!x2

)
Matching {!x1}�c1 against {!y1}�c1 identifies !x1 with !y1 re-
naming both to a new unmarked variable, say !z, and reducing the
problem to (

{!x2}�c2·!z
) ?

=
(
{!y2}�c2·!z

)
In general, matching a step {∆1}�c·S1 against {∆2}�c·S2

implies matching S1 against S2 and ∆1 against ∆2. The latter
problem is defined by the judgment

∆1
?
= ∆2 7→ ϕ1;ϕ2



meaning that ∆1{ϕ1} ≡ ∆2{ϕ2}. The invariant of this judgment
ensures that the domains of ϕ1 and ϕ2 contain only marked vari-
ables and the codomains contain only unmarked variables.

The matching judgment for traces is modified to return the
renamings that match the variables introduced in the trace:

∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

meaning that (σε1){ϕ1} ≡ ε2{ϕ2}.
An invariant of the algorithm is that ε1 and ε2 are well typed

under ∆. In the presence of affine and persistent hypotheses, it
is necessary to keep track of the type of each variable, as unused
pattern steps cannot be matched. Let us illustrate the problem with
the following matching equation:(

{!x1}�X[!x]
) ?

=

(
{!y1}�c1·!x;
{!y2}�c2·!x

)
As the output of the trace on the right (!y1 and !y2) is not
used, they are still marked and have no relation to the out-
put of the left trace (!x1). The solution to this matching prob-
lem would be to assign to X the trace on the right hand side:
X ← {let {!y1}�c1·!x; {!y2}�c2·!x in©}. However, the output
© is missing. This problem has a solution only if !x1 has the same
type as either !y1 or !y2.

The example above is a particular case of the matching problem(
{∆}�X[θ]

) ?
= ε

This problem has a solution if we can match the context ∆ with
the output context of ε. Assume that both traces are well typed in a
context ∆0 and ∆0 ` ε : ∆2. There is a solution for X if ∆ is a
valid output interface for ε, up to renaming. In other words, if there
exists renamings ϕ1 and ϕ2 such that ∆2{ϕ2} 4 ∆{ϕ1}.

Matching in full CLF, where expressions have the form
{let ε0 in S}, is a much more difficult problem than the one con-
sidered here. This is because substituting a trace can trigger reduc-
tions [20]. The CLF substitution rule

[X ← {let ε0 in S}](ε1; {∆}�X[θ]; ε2) = (ε1; θε0; [S/∆]ε2)

does not necessarily produce a canonical term, as [S/∆]ε2 might
have redexes. These reductions can have the effect of removing
steps in ε2. Indeed, [S/∆]ε2 could even reduce to the empty trace.

Some of the issues described above are related to the use of
names to represent variables. A natural question is what happens if
we use de Bruijn indices [7] for representing variables. However,
de Bruijn indices are not a good representation for concurrent
traces. First, any permutation of independent traces involves shifts.
Second, a monadic logic variable stands for a shift of unknown size.
Put together, this means that, when matching two steps at the end of
a trace, the indices on both sides have no obvious relation between
them as they depend on the order of the previous steps.

The algorithm Our matching algorithm relies on the following
judgments [20]:

Contexts: ∆1
?
= ∆2 7→ ϕ1;ϕ2

∆1 < ∆2 7→ ϕ1;ϕ2

Spines: (∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2

Terms: (∆1 ` N1)
?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2

(∆1 ` H1·S1)
?
= (∆2 ` H2·S2) 7→ σ;ϕ1;ϕ2

Expressions: ∆ ` E1
?
= E2 7→ σ

Traces: ∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

The first matching context judgment is used for contexts intro-
duced by steps, while the second judgment is used for the output
contexts in equations of the form ({∆}�X[θ])

?
= ε. They are

defined in Figure 4. The output renamings have the property that
the domain contains marked variables while the codomain con-
tains unmarked variables (we call a renaming with this property
unmarked). This is an invariant of the matching algorithm (easily
checked by induction on the rules). Rules ctx-eq-* deal with con-
text equality. A judgment ∆1

?
= ∆2 7→ ϕ1;ϕ2 is derivable if ∆1

and ∆2 have the same length, and variables in corresponding posi-
tions are either both marked (rule ctx-eq-mark) or both unmarked
(rule ctx-eq-unmark).

The judgment ∆1 < ∆2 7→ ϕ1;ϕ2, defined by the rules
ctx-weak-*, is derivable when every declaration in ∆1 has a cor-
responding declaration in ∆2 (with a matching mark). It is de-
fined by induction on the structure of ∆1. If ∆1 is empty (rule
ctx-weak-empty), then ∆2 can only contain affine and persis-
tent variables. This means that all linear declarations in ∆1 must
be matched against a linear declaration in ∆2. A marked vari-
able in ∆1 must be matched against a marked variable in ∆2

(rule ctx-weak-mark) and similarly for unmarked variables (rule
ctx-weak-unmark).

When matching spines (and terms) each is well typed in its
own context. This is necessary for matching steps at the end of a
trace: in the matching equation ε1; {∆1}�c·S1

?
= ε2; {∆2}�c·S2,

spines S1 and S2 are well typed in different contexts that contain
the variables introduced by ε1 and ε2, respectively. The algorithm
also returns renamings between the marked variables in S1 and S2

that are propagated to ε1 and ε2, respectively. Matching on spines
and terms is defined in Figure 5.

The judgment (∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2 is given

by rules dec-sp-* and defined by induction on the structure of the
spines. In rule dec-sp-nil we require both spines to be empty (to
ensure that spines have the same length) and both context to have
no linear hypotheses (to maintain the typing invariant). In the case
of a non-empty spine, the first term of both spines is matched and
the results are propagated to the rest of the two spines.

The judgments (∆1 ` N1)
?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2 and

(∆1 ` H1·S1)
?
= (∆2 ` H2·S2) 7→ σ;ϕ1;ϕ2 are given by the

rule dec-term-lam and the rules dec-head-*, respectively. Note in
rule dec-term-lam that the context introduced by the abstraction is
added without marking variables. Marked variables are only used
for variables introduced by a trace.

In rule dec-head-const both terms must have the same constant
at the head, so the problem reduces to matching both spines. Rule
dec-head-var-unmark is similar for the case when both terms have
the same unmarked variable at the head. In rule dec-head-var-mark
both terms contain marked heads; the heads are equated and the
spines are matched.

Finally, rule dec-head-lvar considers the case where the left
term has a logic variable at the head. Recall that we assume that
logic variables have base types, so that the right side must be
of the form H·S (actually λ̂(·). H·S). The solution is basically
X ← θ−1(H·S) (if defined), but since both terms are typed in
different contexts, we first need to match the contexts. Note that
∆1 may contain affine and persistent hypotheses (occurring in θ)
that are not matched in ∆2. However, every linear hypotheses in
∆1 and ∆2 must be matched. We assume that the rule is applicable
only if the conditions of Lemma 3 are satisfied.

Matching on expressions and traces is defined in Figure 6. We
write ε for the trace obtained by marking every variable introduced
in ε. We write ∆ for the context obtained by removing all marked
variables from ∆.

Matching on expression is given by rule dec-expr. The problem
is reduced to matching traces by renaming the part of the output
interfaces that is collected in the expression. This does not imply



· ?
= · 7→ ·; ·

ctx-eq-empty
∆1

?
= ∆2 7→ ϕ1;ϕ2

x:A,∆1
?
= x:A,∆2 7→ ϕ1;ϕ2

ctx-eq-unmark

[ x/ x1]∆1
?
= [ x/ x2]∆2 7→ ϕ1;ϕ2

x1:A,∆1
?
= x2:A,∆2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)

ctx-eq-mark

· < @∆ 7→ ·; · ctx-weak-empty
x:A ∈ ∆2 ∆1 < (∆2 \\ x) 7→ ϕ1;ϕ2

x:A,∆1 < ∆2 7→ ϕ1;ϕ2
ctx-weak-unmark

x2:A ∈ ∆2 ∆1{ x/ x1} < (∆2 \\ x2){ x/ x2} 7→ ϕ1;ϕ2

x1:A,∆1 < ∆2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)
ctx-weak-mark

Figure 4. Matching on contexts

(· ` ·) ?
= (· ` ·) 7→ ·; ·; ·

dec-sp-nil

( 1, 2) ∈ {(@, !), (@,@), (↓, ↓)}
(∆′′1 ` N1)

?
= (∆′′2 ` N2) 7→ σ;ϕ1;ϕ2 (σ∆′1{ϕ1} ` σϕ1S1)

?
= (∆′2{ϕ2} ` ϕ2S2) 7→ σ′;ϕ′1;ϕ′2

(∆′1 ./ 2∆′′1 ` 1N1, S1)
?
= (∆′2 ./ 2∆′′2 ` 1N2, S2) 7→ σ′σ;ϕ′1ϕ1;ϕ′2ϕ2

dec-sp-cons

(∆1,∆
′ ` H1·S1)

?
= (∆2,∆

′ ` H2·S2) 7→ σ;ϕ1;ϕ2

(∆1 ` λ̂∆′. H1·S1)
?
= (∆2 ` λ̂∆′. H2·S2) 7→ σ;ϕ1;ϕ2

dec-term-lam

(∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2

(∆1 ` c·S1)
?
= (∆2 ` c·S2) 7→ σ;ϕ1;ϕ2

dec-head-const

(∆1 \\ x ` S1)
?
= (∆2 \\ x ` S2) 7→ σ;ϕ1;ϕ2

(∆1 ` x·S1)
?
= (∆2 ` x·S2) 7→ σ;ϕ1;ϕ2

dec-head-var-unmark

((∆1 \\ x1){x/x1} ` S1)
?
= ((∆2 \\ x2){x/x2} ` S2) 7→ σ;ϕ1;ϕ2

(∆1 ` x1·S1)
?
= (∆2 ` x2·S2) 7→ σ; (ϕ1, x/x1); (ϕ2, x/x2)

dec-head-var-mark

∆2 < ∆1 7→ ϕ1;ϕ2

(∆1 ` X[θ])
?
= (∆2 ` H·S) 7→ (X ← (ϕ1θ)

−1ϕ2(H·S));ϕ1;ϕ2

dec-head-lvar

Figure 5. Matching on terms

that both traces have the same interface, as they might contain
persistent and affine hypotheses that are not present in the context.

Matching on traces is given by the rules tr-*. In a matching
equation of the form ε1

?
= ε2 we leave the order of ε1 fixed, while

we implicitly reorder ε2 to match the order of ε1. Rule tr-empty
matches the empty trace on both sides. This rule is applicable only
if the left trace does not contain monadic logic variables.

Rule tr-step-hd matches a step at the beginning of the traces. As
explained above, we reorder the trace on the right side as needed
(preserving dependencies). Both steps use the same constant at
the head. The rule proceeds by matching the spines using the
necessary part of the context ∆ (denoted ∆|Si ). Note that S1

and S2 do not contain marked variables so matching returns the
empty renaming. Then, the output context of the steps are matched.
Matching proceeds with the rest of the trace. We add the output of

the first step to the context to ensure that the rest of the trace is well
typed.

Rule tr-step-tl matches a step at the end of the traces. The
context necessary to type S1 and S2 is part of the output context of
ε1 and ε2, respectively. Similar to tr-step-hd, the spines and output
contexts of the step are matched, and the results are propagated to
the rest of the trace. In this case, the context used to type the rest of
the trace does not change.

Finally, rule tr-inst handles the case of a monadic logic variable.
The input context on both sides is the same, but the output contexts
might differ. Hence, we need to ensure that all variables in the
output context on the left (∆′) are contained in the output on the
right (∆2). The rule is applicable only if the inverse substitution
θ−1 can be applied to {let ε2{ϕ2} in ∆′{ϕ1}}.

Correctness of the algorithm We outline a proof that the algo-
rithm in Figures 4, 5, and 6 is sound and complete [20].



∆ ` ε1{∆′/∆1}
?
= ε2{∆′/∆2} 7→ σ;ϕ1;ϕ2

∆ ` {let ε1 in ∆1}
?
= {let ε2 in ∆2} 7→ σ

dec-expr

∆ ` � ?
= � 7→ ·; ·; ·

tr-empty

(∆|S1 ` S1)
?
= (∆|S2 ` S2) 7→ σ; ·; · σ∆1

?
= ∆2 7→ ϕ1;ϕ2

∆ ./ σ∆1{ϕ1} ` σϕ1ε1
?
= ϕ2ε2 7→ σ′;ϕ′1;ϕ′2

∆ ` ({∆1}�c·S1; ε1)
?
= ({∆2}�c·S2; ε2) 7→ σ′σ;ϕ′1ϕ1;ϕ′2ϕ2

tr-step-hd

∆ ` ε1 : ∆′1 ∆ ` ε2 : ∆′2

(∆′1|S1 ` S1)
?
= (∆′2|S2 ` S2) 7→ σ;ϕ1;ϕ2 σ∆1

?
= ∆2 7→ ϕ′1;ϕ′2

∆ ` σε1{ϕ1}
?
= ε2{ϕ2} 7→ σ′;ϕ′′1 ;ϕ′′2

∆ ` (ε1; {∆1}�c·S1)
?
= (ε2; {∆2}�c·S2) 7→ σ′σ;ϕ′′1ϕ

′
1ϕ1;ϕ′′2ϕ

′
2ϕ2

tr-step-tl

∆0 ` ε : ∆2 ∆′ < ∆2 7→ ϕ1;ϕ2

∆0 ` ({∆′}�X[θ])
?
= ε 7→ (X ← θ−1{let ε{ϕ2} in ∆′{ϕ1}});ϕ1;ϕ2

tr-inst

Figure 6. Matching on traces

Before stating the results, we need some definitions. We say
that a term (resp. assignment, context, expression, spine, trace)
is unmarked if no free variable is marked. Recall that a renam-
ing is unmarked if the domain contains only marked variables
and its codomain contains only unmarked variables. It is easy to
check that all renamings and assignments returned by the match-
ing judgments are unmarked. In the proofs, we occasionally write
∆0

ε1−→ ∆1 . . .
εn−→ ∆n to mean that ∆i−1 ` εi : ∆i for all

i = 1, . . . , n.
The following lemmas state the soundness of the various match-

ing judgments [20].

Lemma 4 (Soundness of matching for contexts).

• If ∆1
?
= ∆2 7→ ϕ1;ϕ2, then ∆1{ϕ1} ≡ ∆2{ϕ2}.

• If ∆1 < ∆2 7→ ϕ1;ϕ2, then ∆1{ϕ1} < ∆2{ϕ2}.

Proof. By induction on the given derivation.

Lemma 5 (Soundness of matching for terms).

• Let N1 and N2 be well typed terms under contexts ∆1 and ∆2,
respectively. If (∆1 ` N1)

?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2, then

∆1{ϕ1} 4 ∆2{ϕ2}, and σϕ1N1 = ϕ2N2.
• Let S1 and S2 be well typed spines under contexts ∆1 and ∆2,

respectively. If (∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2, then

∆1{ϕ1} 4 ∆2{ϕ2}, and σϕ1S1 = ϕ2S2.

Proof. By simultaneous induction on the given derivation.

Lemma 6 (Soundness of matching for traces).

• If ∆ ` E1, E2 ⇐ {∆} and ∆ ` E1
?
= E2 7→ σ, then

σE1 ≡ E2

• If ∆ ` ε1 : ∆1, ∆ ` ε2 : ∆2, and ∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2,

then ∆2{ϕ2} 4 ∆1{ϕ1}, and σε1{ϕ1} ≡ ε2{ϕ2}.

Proof. By induction on the matching derivation. We expand the
most relevant cases.

Rule dec-expr. By inversion on the typing derivation, there ex-
ists ∆′1 and ∆′2 such that ∆ ` ε1 : ∆′1 with ∆′1 4
∆1 and ∆ ` ε2 : ∆′2 with ∆′2 4 ∆2. Applying re-
namings ρ1 = ∆2/∆1 and ρ2 = ∆2/∆2 respectively,
we obtain ∆ ` ε1{ρ1} : ∆′1{ρ1} and ∆ ` ε2{ρ2} :
∆′2{ρ2}. By IH, σε1{ρ1}{ϕ1} ≡ ε2{ρ2}{ϕ2}. We have then
σ{let ε1{ρ1}{ϕ1} in ∆2} ≡ {let ε2{ρ2}{ϕ2} in ∆2}.
The result follows since {let ε1{ρ1}{ϕ1} in ∆2} ≡
{let ε1 in ∆1} and {let ε2{ρ2}{ϕ2} in ∆2} ≡
{let ε2 in ∆2}.

Rule tr-step-hd. By IH, σS1 ≡ S2, and σ∆1{ϕ1} ≡ ∆2{ϕ2}.
Note that ε1 and ε2 are well typed under ∆,∆1 and
∆,∆2, respectively. Then, σε1{ϕ1} and ε2{ϕ2} are well
typed under ∆ ./ σ∆1{ϕ1}. By IH, σ′σε1{ϕ1}{ϕ′1} ≡
ε2{ϕ2}{ϕ′2}. Then, ({∆2}�c·S2);σ′σε1{ϕ1ϕ

′
1} ≡

({∆2}�c·S2); ε2{ϕ2ϕ
′
2}. The result follows, since

{∆2}�c·S2 ≡ σ({∆1}�c·S1){ϕ1ϕ
′
1}.

Rule tr-step-tl. By inversion on the typing derivation, there exists
contexts ∆0

1 and ∆0
2 such that the following diagrams hold:

∆
ε1−→ ∆0

1 ./ ∆′1
{∆1}�c·S1−−−−−−−→ ∆0

1 ./ ∆1

∆
ε2−→ ∆0

2 ./ ∆′2
{∆2}�c·S2−−−−−−−→ ∆0

2 ./ ∆2

By renaming, ∆ ` ε1{ϕ1} : (∆0
1 ./ ∆′1){ϕ1} and ∆ `

ε2{ϕ2} : (∆0
2 ./ ∆′2){ϕ2}. By IH, σ′σε1{ϕ1ϕ

′′
1} ≡

ε2{ϕ2ϕ
′′
2}. By IH on the last step of the trace, σϕ1S1 ≡ ϕ2S2,

and σ∆1{ϕ′1} ≡ ∆2{ϕ′2}. (Note that ϕ′i does not affect εi
nor Si (for i = 1, 2).) Then, σ({∆1}�c·S1){ϕ1ϕ

′
1}) ≡

({∆2}�c·S2){ϕ2ϕ
′
2}). The result follows by combining with

the IH from the rest of the trace.
Rule tr-inst. By IH ∆2{ϕ2} 4 ∆′{ϕ1}. Then
{let ε{ϕ2} in ∆′{ϕ2}} is well typed in context ∆0. Let
X :: ∆X ` {∆′X} and ∆′0 ` θ : ∆X , where ∆′0 is a
subcontext of ∆0. The result follows since we assume that
applying θ−1 to {let ε{ϕ2} in ∆′{ϕ2}} is well defined.



We give completeness statements for the different syntactic
classes. The next lemma states completeness of the matching judg-
ment for contexts.

Lemma 7 (Completeness of context matching).
• Let ϕ1 and ϕ2 be matching renamings such that ∆1{ϕ1} ≡

∆2{ϕ2}. Then there exists ϕ′1 ⊆ ϕ1 and ϕ′2 ⊆ ϕ2 such that
∆1

?
= ∆2 7→ ϕ′1;ϕ′2.

• Let ϕ1 and ϕ2 be matching renamings such that ∆1{ϕ1} <
∆2{ϕ2}. Then there exists ϕ′1 ⊆ ϕ1 and ϕ′2 ⊆ ϕ2 such that
∆1 < ∆2 7→ ϕ′1;ϕ′2.

Proof. By induction on the structure of ∆1.

The next lemma states completeness of the matching judgment
for spines.

Lemma 8 (Completeness of term matching). Let F1 and F2 be
elements of the same syntactic category (either terms, spines, or
head applied to spine, i.e., H·S), well typed under contexts ∆1

and ∆2, respectively. Assume there exists matching renamings ϕ1

and ϕ2, and an assignment σ such that σϕ1F1 = ϕ2F2 and
∆1{ϕ1} 4 ∆2{ϕ2}. Then, there exists ϕ′1 and ϕ′2 such that
(∆1 ` F1)

?
= (∆2 ` F2) 7→ σ;ϕ′1;ϕ′2 is derivable, ϕ′1 ⊆ ϕ1,

and ϕ′2 = ϕ2.

Proof. By induction on the structure of the structure of the elements
F1 and F2.

Next, we give completeness statements for traces and expres-
sions.

Lemma 9 (Completeness of matching for traces). Let ε1 and ε2
be well-typed expressions under context ∆ such that ε2 is ground.
Assume there exist renamings ϕ1 and ϕ2, where dom(ϕ1) ⊆ @ε1•
and dom(ϕ2) ⊆ @ε2•, and an assignment σ such that σε1{ϕ1} ≡
ε2{ϕ2}, then there exist ϕ′1 and ϕ′2 such that ∆ ` ε1

?
= ε2 7→

σ;ϕ′1;ϕ′2 is derivable.

Proof. We can assume that ε1 and ε2 have all their variables
marked, i.e., they are of the form ε. If there are renamings ϕ1

and ϕ2 between the output interfaces of ε1 and ε2, then there exists
renamings ϕ∗1 and ϕ∗2 between the output interfaces of ε1 and ε2.

Let ε1 be δ1; . . . ; δn; {∆}�X[θ]; δn+1; . . . ; δm, and σ =
(X ← {let ε0 in ∆0}), σ′. Then ε2 can be written as

δ′1; . . . ; δ′n; ε′0; δ′n+1; . . . ; δ′m,

where each δ′i corresponds to δi and ε0 corresponds to X . Let
δi = {∆i}�ci·Si and δ′i = {∆′i}�c′i·S′i. Matching succeeds for
δ1 and δ′1 since matching is complete for the terms in S1 and S′1.
This introduces a renaming between ∆1 and ∆′1 that is propagated
to the rest of the trace. Rule tr-step-hd can be applied n times to
match δi with δ′i for i = 1, . . . , n.

Since there is a renaming between the output interfaces of
ε1 and ε2, matching δm and δ′m succeeds; in particular, match-
ing the output contexts return a renaming that is a subset of
the renaming between ε1 and ε2. Rule tr-step-tl can be applied
m times to match the steps δi and δ′i for i = n + 1, . . . ,m.
σ′δ1; . . . ; δnσ

′; θε0;σ′θ0δn+1; . . . ;σ′θ0δm Finally rule tr-inst for
the last step containing the logic variable.

Lemma 10 (Completeness of matching for expressions). Let E1

and E2 be well-typed expressions under context ∆ such that E2 is
ground. If there exists σ such that σE1 ≡ E2, then ∆ ` E1

?
=

E2 7→ σ is derivable.

Proof. Follows directly from the previous lemma.

4. Conclusion
We have presented a sound and complete algorithm to perform
matching on a large fragment of CLF, with at most one variable
standing for an unknown concurrent trace. We showed that the
matching problem is decidable for the fragment of CLF studied
in this paper. We are in the process of extending this algorithm to
larger fragments of CLF [20], and expect to be able to handle the
whole language shortly. In the short term, this algorithm will be
used as the basis for a run-time environment for well-moded CLF
programs. Our long-term objective is to extend the Celf implemen-
tation of CLF with algorithms and methods for reasoning about
concurrent and distributed computations. This work represents a
small step in that direction.

We have recently started looking at the unification problem
for CLF traces, which, not surprisingly, appears to be much more
complicated than matching. We have some partial results for small
fragments of CLF [20].
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