
Concurrent Logic Programming: Met and Unmet Promises

Iliano Cervesato1 and Edmund S.L. Lam2

1 Carnegie Mellon University
iliano@cmu.edu

2 University of Colorado, Boulder
edmund.lam@colorado.edu

Abstract

Logic programming has been heralded as the quintessential declarative programming
paradigm, although many instances provide extra-logical constructs that undermine this
aspiration. The word “declarative” conjures two promises: the first is the ability to write
code that reflects a natural, human-friendly, description of the problem at hands as opposed
to a mechanistic, hardware-oriented, encoding of a solution. The second is the opportu-
nity to reason logically about it, thereby automatically strengthening assurance, security
and performance. While the first promise has been fairly successful in some domains, the
second still has to live to its expectations. We explore both promises in the context of
concurrent logic programming. We highlight them using CoMingle, a logic programming
language designed to develop mobile Android applications.

1 Logical Specification of Concurrent Applications

Concurrent and distributed applications have traditionally been developed by writing a
separate piece of code for each participating device (or class of devices). This node-centric
approach puts the onus of handling messaging and synchronization on the programmer.
This is no small burden: on the messaging side, the programmer needs to make sure that
each sent message has a recipient and vice versa, and that sender and receiver agree on
its format — simple tasks that quickly become a time sink as an application grows larger.
The synchronization side is more tricky as the programmer is left alone battling the many
pitfalls of concurrency (deadlocks, live locks and unwanted race conditions) — complex
tasks even for small applications. Because the code running on each device is a separate
control flow, little automation is available to alleviate these concerns as current program
analysis techniques typically focus on individual control-flows and do not work well for
reasoning about the executions of a concurrent program as a whole. These effects are
compounded by the fact that, as mobile applications become commonplace, many of them
are being developed by programmers with relatively little training or experience.

An alternative approach is to write a unified program that captures the behavior of a
distributed application as a single entity. This system-centric approach gives the program-
mer a bird-eye’s view of the behavior he/she is trying to achieve. Being a single program,
it is easier to automate basic checks such as message format consistency, for example as
a form of type-checking. This unitary system-centric specification is automatically trans-
formed into the node-centric code that runs on actual devices through a process called
choreographic compilation. It is this transformation, rather than the programmer, that
handles the tedium of managing communication and the intricacies of getting synchroniza-
tion right.

While the system-centric approach to programming distributed application is not exclu-
sive to the paradigm of logic programming (in fact, it underlies many of Google’s applica-
tions [4]), logic programming is proving particularly well-suited for this purpose [1, 5, 9, 10].
Logic programming provides a natural way to write specifications that represent how the
distributed computation proceeds as a whole rather than forcing the point of view of any



Concurrent Logic Programming: Met and Unmet Promises Cervesato and Lam

specific node. One language that embraces this philosophy is CoMingle [9]. CoMingle is a
rule-based language for programming mobile distributed applications, originally Android
apps. CoMingle implements a fragment of first-order linear logic using a forward-chaining
semantics, as found in languages based on multiset-rewriting such as CHR [3]. It enriches
it with sorts (making it a strongly-typed polymorphic language), locations (which iden-
tify computing nodes), and multiset comprehensions (which provide a natural mechanism
to manipulate arbitrarily many facts matching a given pattern). Specifically designated
atomic facts allow CoMingle to trigger local computations and respond to them (used for
example to process input from an Android device or to render output on the screen). We
used an advanced prototype of CoMingle [7] to implement a number of mobile applica-
tions. We were able to write each of them in a few hours, which compares favorably with
the standard node-centric approach. We built one such application both using CoMingle
and by writing traditional code: the former was about one tenth of the size of the latter
with no noticeable difference in performance [8]. This ease of development gave us time to
experiment with application-level features, with new communication behaviors typically
taking minutes to implement.

2 Reasoning about Concurrent Applications

Because in its purest form a program is a logical formula, logic programming has often
been trumpeted as facilitating reasoning about one’s code, where reasoning is variedly
understood as providing provable assurances of correctness, guaranteed performance, and
more recently security. With a few exceptions (e.g., [11] about performance bounds), we
argue that such expectations of correctness have not been met. For example, correctness
presupposes a specification that can be compared with an implementation, but rarely does
a programmer write two such formulas for the same problem, and in any case tools to
verify the expected subsumption are rarely available.

Concurrent logic programs, for example the ones we wrote in CoMingle, similarly come
short of availing themselves of the reasoning possibilities of the underlying logic. The con-
sequences are somewhat more dire in this setting as writing concurrent programs is much
harder than developing code that does not engage in synchronization. The proliferation
and ease of deployment of mobile apps, again often developed by novices, means that there
is a lot of buggy code out there, with much more to come.

Even in a large program, a fairly small part of the code of a distributed application is
about concurrent interactions, often with recurring patterns (this is particularly evident in
CoMingle programs, where inter-node communication and local computation are written in
separate languages — CoMingle itself and Java, respectively). We postulate that this is an
opportunity for logic-based methods, if not wholesale logical reasoning, to participate in the
development of concurrent and distributed applications in the form of formal analysis tools.
One promising idea is session types [6], which describe the communication pattern of a
program, thereby allowing the implementation of a tool to statically catch messaging errors
and deadlocks. Session types are currently limited to relatively simple interactions, but
they are rapidly being developed to handle larger classes. Other techniques include logic-
based modularity [2], which gives the programmer control over the scope of interactions
(in contrast to the traditionally flat name-space of logic programming). One last class
of techniques that holds substantial promises in the development of correct concurrent
programs specifically is coinductive reasoning, for example in the form of bisimulation.
While tools are still in their infancy, the growing realization that many program properties
are coinductive in nature are sure to accelerate their development.

What logic programming does is to give the programmer a language that abstracts
some idiosyncrasies of the underlying machine, ultimately letting him/her write less code:
abstraction, not reasoning, makes small programs easier to get right. But as programs grow,

2



Concurrent Logic Programming: Met and Unmet Promises Cervesato and Lam

coding complexity creeps back up, with little available to the programmer to manage it in
a typical logic programming language. We postulate that the largely untapped reasoning
potential of logic programming in general, and concurrent logic programming in particular,
holds the promise provide assurances that is elusive in other paradigms.

References

[1] M. P. Ashley-Rollman et al. A Language for Large Ensembles of Independently Exe-
cuting Nodes. In ICLP’09, pages 265–280. Springer LNCS 5649, 2009.

[2] I. Cervesato and E. S. Lam. Modular Multiset Rewriting. In Proceedings of LPAR’15,
pages 1–17, Suva, Fiji, mber. Springer LNCS 9450.

[3] T. Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.

[4] Google Inc. Google Web Toolkit. Available at http://code.google.com/webtoolkit/.

[5] S. Grumbach and F. Wang. Netlog, a Rule-based Language for Distributed Program-
ming. In PADL’10, pages 88–103. Springer LNCS 5937, 2010.

[6] K. Honda. Types for dyadic interaction. In Proceedings of CONCUR’93, pages 509–
523. Springer LNCS 715, 1993.

[7] E. S. Lam. CoMingle: Distributed Logic Programming Language for Android Mobile
Ensembles. Download at https://github.com/sllam/comingle, 2014.

[8] E. S. Lam and I. Cervesato. Comingle: Distributed Logic Programming for Decen-
tralized Android Applications. Technical Report CMU-CS-15-101, Department of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2015.

[9] E. S. Lam, I. Cervesato, and N. F. Haque. Comingle: Distributed Logic Programming
for Decentralized Mobile Ensembles. In COORDINATION’15. Springer LNCS 9037,
2015.

[10] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. In SIGMOD’06, pages 97–108, 2006.

[11] D. McAllester. On the complexity analysis of static analyses. Journal of the ACM,
49(4):512–537, July 2002.

3

https://github.com/sllam/comingle

	Logical Specification of Concurrent Applications
	Reasoning about Concurrent Applications

