
About coding style

15-212 Spring 2004

February 9, 2004

Contents

1 Correctness 2

2 Specification 2

3 Style 2
3.1 if-then-else Expressions . 3

3.1.1 Boolean if-then-else Expressions 3
3.1.2 if-then-else instead of Pattern Matching 4

3.2 Functions . 4
3.2.1 Multiple Evaluations . 4
3.2.2 Redefinition of Library Functions 5
3.2.3 Overly Complex Implementations 6

3.3 Helper Functions . 6
3.3.1 Non-local Helper Functions 6
3.3.2 Multiple Definitions of the Same Local Helper Function . 8

3.4 Pattern Matching . 10
3.4.1 Redundant Cases . 10
3.4.2 Pattern Matching Besides Function Arguments 11
3.4.3 Bindings to Identifiers and the Wildcard Pattern 11
3.4.4 Multiple Patterns for Function Arguments Corresponding

to the Same Expression 11
3.5 Shadowing of Previous Bindings 12

1

A few students have asked what are the style guidelines for a perfect home-
work. First of all, the code in the homework is graded based on three main
components: correctness, specification, and style.

1 Correctness

Correctness refers to the correctness of the function that is implemented, i.e., if
the function computes the value requested in the homework handout.

2 Specification

Specification refers to the presence and correctness of the specification in a
comment before the function: the comment must contain the identifier being
declared, its type, an explanation of the meaning of the value computed, a list of
invariants, and a list of possible effects. It is very important for the specification
to be present for all functions, global, auxiliary and local functions: you can refer
to the code distributed on the course webpage for some examples. Very simple
helper functions and lambda expressions may not have a specification: if the
function is very simple its meaning can be understood without the help of a
specification. Use your judgment to decide if a specification is needed for a
helper function, when in doubt, provide the specification: you will reduce the
risk of losing specification points.

3 Style

Style refers to the way you implemented the requested function: most functions
can be implemented in many different ways, each one of them satisfies the
correctness requirement, but some of them have a better style. In specific, since
the main focus of the course is functional programming, a “functional” style is
to be preferred. Moreover, in general an elegant solution should be preferred
to a more efficient one, if the more efficient solution is much more complicated.
However do not write a very elegant O(2n) solution instead of a bit less elegant
O(n) one! Sometimes we might ask to implement a function following particular
requirements (e.g., request a recursive definition): if there exists a more efficient
solution that does not adhere to such requirements, please do not use such
solution as it will not be considered a correct solution to the problem, as it
does not satisfy the explicit requirements. Often exercises are meant to test
the ability to use a particular programming technique (like the use of recursive
function definitions) and if the solution does not follow the given requirement,
it won’t be useful in establishing the ability to use such technique.

In terms of style, one of the purposes of homework #1 was to get familiar
with the functional programming style. The best sources for learning good
programming style are the example code presented at lectures and recitation
as well as the code distributed on the course webpage. The following contains

2

some example of bad style that you can use to understand what you should
avoid, and what to do instead:

3.1 if-then-else Expressions

3.1.1 Boolean if-then-else Expressions

if a = b then
true

else
false

It is bad style to have an if-then-else expression whose type is bool. The
previous expression is equivalent to a = b. Other examples include:

if a = b then
false

else
true

is equivalent to:

not (a = b)

if a = b then
if a > 0 then

true
else

false
else
false

is equivalent to:

(a = b) andalso (a > 0)

if a = b then
true

else
if a > 0 then

true
else

false

is equivalent to:

(a = b) orelse (a > 0)

3

3.1.2 if-then-else instead of Pattern Matching

fun natpred (n: int) : int =
if n = 0 then

0
else

n - 1

In this case, the if statement is used to discriminate over the value of an
argument that is matched against a constant. This should be done using pattern
matching as follows:

fun natpred (0: int) : int = 0
| natpred (n: int) : int = n - 1

3.2 Functions

3.2.1 Multiple Evaluations

if f (x) > 0 then
f (x)

else
0

In this case function f is evaluated twice. Since f does not have side effects
(you are not allowed to use the imperative features of SML), the function will
return the same value each time. If is better style to do the following:

let
val y = f (x)

in
if y > 0 then

y
else

0
end

or:

let
fun positiveorzero (n:int): int =

if n > 0 then
n

else
0

in
positiveorzero (f (x))

end

4

The second solution is to be preferred especially if the function positiveorzero
is reused in other parts of the code (in which case it has to be scoped accord-
ingly).

3.2.2 Redefinition of Library Functions

(*
val max: int * int -> int

max (x,y) returns the maximum of two numbers.

Invariants: none
Effects: none

*)

fun max (x: int, y: int): int =
if x > y then x else y

(*
val maxlist : int list -> int

maxlist (l) computes the maximum value contained in the list

Invariants: l is not empty and every element of l is positive.
Effects: none

*)

fun maxlist ([]: int list): int = 0
| maxlist (x::xs: int list): int =

max (x, maxlist (xs))

There is another additional improvement that should be done to this code.
The function max is actually equivalent to the library function Int.max. In
general, you should not define your own function when an equivalent function is
present in the library. Library functions are described in the SML base library
documentation, moreover, some of the most commonly used functions are also
summarized in the appendix of the textbook. Try to avoid “re-inventing the
wheel”, and make full use of the library functions. This is especially true in the
case of library functions for lists, like foldl, foldr, and map, which can often
be used to produce a very simple and elegant function that accomplishes the
given task.

(*
val maxlist : int list -> int

maxlist (l) computes the maximum value contained in the list

5

Invariants: l is not empty and every element of l is positive.
Effects: none

*)

fun maxlist ([]: int list): int = 0
| maxlist (x::xs: int list): int =

Int.max (x, maxlist (xs))

3.2.3 Overly Complex Implementations

(*
val divisible : int * int -> bool
divisible (n, m) returns true if n is divisible by m

Invariants: n >= 0 and m > 0
Effects: none

*)
fun divisible(n: int, m: int): bool =

if n = m then
true

else
if n < m then
false

else
divisible (n - m, m)

In this case, while the function is correct, the implementation is overly com-
plex: a natural number n is divisible by a positive natural number m, if the
remainder of the division of n by m is equal to zero. The remainder can be ob-
tained by using the mod operator. Moreover, the previous implementation has
complexity O(n/m), while the mod operation can be done in constant time. A
better solution would be:

(*
val divisible : int * int -> bool
divisible (n, m) returns true if n is divisible by m

Invariants: x and y are strictly positive
Effects: none

*)
fun divisible(n: int, m: int): bool = (n mod m) = 0

3.3 Helper Functions

3.3.1 Non-local Helper Functions

(*

6

val maxlisthelper : int * int list -> int

maxlisthelper (max, list) computes the maximum of max and each
value in the list

Invariants: none
Effects: none

*)

fun maxlisthelper (max: int, []: int list): int =
max

| maxlisthelper (max: int, x::xs: int list): int =
let
val newmax: int = if max > x then max else x

in
maxlisthelper (newmax, xs)

end

(*
val maxlist : int list -> int

maxlist (l) computes the maximum value contained in the list

Invariants: l is not empty
Effects: raises Invalid_argument if the list is empty

*)

fun maxlist ([]: int list): int =
raise Invalid_argument

| maxlist (x::xs: int list): int =
maxlisthelper (x, xs)

In this case the maxlisthelper function is an auxiliary function that is used
in the definition of maxlist. Since it has no specific use besides within maxlist,
it should be defined as a local function.

(*
val maxlist : int list -> int

maxlist (l) computes the maximum value contained in the list

Invariants: l is not empty
Effects: raises Invalid_argument if the list is empty

The function maxlist uses the local helper function:

7

val maxlisthelper : int * int list -> int

maxlisthelper (max, list) computes the maximum of max and each
value in the list

Invariants: none
Effects: none

*)

fun maxlist ([]: int list): int =
raise Invalid_argument

| maxlist (x::xs: int list): int =
let
fun maxlisthelper (max: int, []: int list): int =

max
| maxlisthelper (max: int, x::xs: int list): int =

let
val newmax: int = if max > x then max else x

in
maxlisthelper (newmax, xs)

end
in
maxlisthelper (x, xs)

end

3.3.2 Multiple Definitions of the Same Local Helper Function

(*
val maxlist : int list -> int

maxlist (l) computes the maximum value contained in the list

Invariants: l is not empty and every element of l is positive.
Effects: none

The function maxlist uses the local helper function:

val max: int * int -> int

max (x,y) returns the maximum of two numbers.

Invariants: none
Effects: none

*)

8

fun maxlist ([]: int list): int = 0
| maxlist (x::xs: int list): int =

let
fun max (x: int, y: int): int =
if x > y then x else y

in
max (x, maxlist (xs))

end

(*
val maxfun int * (int -> int) * (int -> int) -> int

maxfun (x, f, g) returns the maximum of f(x) and g(x).

Invariants: f and g are defined at x.
Effects: none

The function maxfun uses the local helper function:

val max: int * int -> int

max (x,y) returns the maximum of two numbers.

Invariants: none
Effects: none

*)
fun maxfun (x: int, f: int -> int, g: int -> int): int =

let
fun max (x: int, y: int): int =
if x > y then x else y

in
max (f (x), g (x))

end

In this case the function max: int * int -> int is defined as a local
helper function in both maxlist and maxfun. It is better style to define max as
a non local helper function, especially given the general nature of the function
max.

(*
val max: int * int -> int

max (x,y) returns the maximum of two numbers.

Invariants: none

9

Effects: none

*)

fun max (x: int, y: int): int =
if x > y then x else y

(*
val maxlist : int list -> int

maxlist (l) computes the maximum value contained in the list

Invariants: l is not empty and every element of l is positive.
Effects: none

*)

fun maxlist ([]: int list): int = 0
| maxlist (x::xs: int list): int =

max (x, maxlist (xs))

(*
val maxfun int * (int -> int) * (int -> int) -> int

maxfun (x, f, g) returns the maximum of f(x) and g(x).

Invariants: f and g are defined at x.
Effects: none

*)
fun maxfun (x: int, f: int -> int, g: int -> int): int =

max (f (x), g (x))

3.4 Pattern Matching

3.4.1 Redundant Cases

fun fib (0: int): int = 1
| fib (1: int): int = 1
| fib (2: int): int = 2
| fib (n: int): int = fib(n-1) + fib(n-2)

In this case the additional base case for n = 2 is not necessary. A better
definition for the function fib would be:

fun fib (0: int): int = 1
| fib (1: int): int = 1
| fib (n: int): int = fib(n-1) + fib(n-2)

10

3.4.2 Pattern Matching Besides Function Arguments

fun second (nil: int list) : int option = NONE
| second (x::nil: int list) : int option = NONE
| second (x::xs: int list) : int option =

let
val second::rest : int list = xs

in
SOME second

end

In this case, the let local definition is used to bind the second element of
the list of the local variable second. While the code is correct and sometimes
it is necessary to use pattern matching besides function argument, in this case
this is not good style: the pattern matching should have been done in the argu-
ment pattern instead, making it evident the intention. Moreover this approach
works correctly only because the pattern (x::nil) appears before the pattern
(x::xs). A better solution would be:

fun second (nil: int list) : int option = NONE
| second (x::nil: int list) : int option = NONE
| second (x::second::rest: int list) : int option =

SOME second

3.4.3 Bindings to Identifiers and the Wildcard Pattern

fun second (nil: int list) : int option = NONE
| second (x::nil: int list) : int option = NONE
| second (x::second::rest: int list) : int option =

SOME second

The previous function declaration can be further improved by replacing bind-
ings in the patterns to identifiers that are never used with the wildcard pattern
.

fun second (nil: int list) : int option = NONE
| second (_::nil: int list) : int option = NONE
| second (_::second::_: int list) : int option =

SOME second

3.4.4 Multiple Patterns for Function Arguments Corresponding to
the Same Expression

fun second (nil: int list) : int option = NONE
| second (_::nil: int list) : int option = NONE
| second (_::second::_: int list) : int option =

SOME second

11

The pattern in the previous definition is used only to discriminate between
a list with at least 2 elements, and a list with fewer than 2 elements. The same
result can be obtained by the more compact:

fun second (_::second::_: int list) : int option =
SOME second

| second (_: int list) : int option = NONE

Beware, however, that the use of the wildcard pattern as well as overlapping
patterns (multiple pattern that can match the same value), can be sometimes
misleading. For instance, in the last example and ::second:: both match
the list [1,2,3]: however the first pattern will be the one chosen because it
appears first.

3.5 Shadowing of Previous Bindings

fun convolve (1: int, f: int -> int, g: int -> int): int =
f(1) * g(1)

| convolve (k: int, f: int -> int, g: int -> int): int =
let
val f = fn (n: int) => f(n+1)

in
f(0) * g(k) + convolve (k-1, f, g)

end

The function convolve defines a binding for f that overrides the previous
binding of f. In general, it is bad style to define new bindings for an identifier
which shadow previous bindings unless strictly necessary. In this case, it would
have been better to create a new binding with a different name, or use the
lambda expression directly.

fun convolve (1: int, f: int -> int, g: int -> int): int =
f(1) * g(1)

| convolve (k: int, f: int -> int, g: int -> int): int =
let
val f’ = fn (n: int) => f(n+1)

in
f(1) * g(k) + convolve (k-1, f’, g)

end

or:

fun convolve (1: int, f: int -> int, g: int -> int): int =
f(1) * g(1)

| convolve (k: int, f: int -> int, g: int -> int): int =
f(1) * g(k) + convolve (k-1, fn (n: int) => f(n+1), g)

12

