
15-312: Recursive Types I. Cervesato

15-312 Lecture on
Recursive Types

Recursive Types
Give a man a fish and he will eat one day; teach a man to fish and he will
eat every day.

Recursive types can be understood in the light of this proverb. When studying Gödel’s
T, we introduced all the tools we need to work with natural numbers: the basic con-
structors (z and s) and the universal destructor (natrec). In an homework, we saw that
lists of natural numbers and binary trees could be defined in a similar way. We could
use the same mold to define strings, lists of lists, etc. This becomes rather tedious af-
ter a while, though: we keep on defining operators that are mostly identical over and
over. Even worse, each of these types is hardwired in the language: if we have de-
signed and implemented a language with lists, adding trees amounts to designing and
implementing a new language.

Recursive types capture what all these special-purpose types have in common, and
provides a single construction to define them all: once we design a language with re-
cursive types, we automatically have a language where we can define natural numbers,
lists, trees, etc., whatever type of this sort we can think about.

A recursive type is a type whose definition refers to itself. With the exception
of pure enumeration types (e.g., bool), ML datatypes are recursive1. Because the
definition of a recursive type refers to itself, there are infinitely many terms of this type
(again, think about natural numbers, lists, trees, etc.).

Syntax

Types τ ::= t | arrow(τ1, τ2) | rec(t.τ)
Expressions e ::= x | lam[τ](x.e) | app(e1, e2)

| fold[t.τ](e) | unfold(e)

We include functions in this definition because they provide a starting point for expres-
sions (unit would perform this task equally well), and also because several interesting
behaviors involve functions. They are not an essential component of recursive types,
although they make using them interesting.

1ML datatypes also make use of other primitives, namely polymorphism (e.g., ’a list) and type def-
initions (the possibility of giving a name to a type, in the same way as let allows us to give a name to an
expression).

February 12, 2009 1

15-312: Recursive Types I. Cervesato

Recursive types introduce a notion of type variable, written t above. The recursive
type rec(t.τ) binds t within the type τ , which could now refer to t.

Intuition

Consider the following ML definition for lists of natural numbers:

datatype natList = Nil | Cons of int * natList

Intuitively, a list of integers such as Cons(3,Cons(2,Cons(1,Nil))) has two
types: if we consider it as a whole, it is an expression of type natList; if look more
closely, it is a pair consisting of the integer 3 (the head of the list) and the list of integers
Cons(2,Cons(1,Nil)) (its tail). The job of fold and unfold is to mediate these
two types:

Cons(3, Cons(2, Cons(1, Nil))) : natList

unfold

y
x fold

Cons(3 , Cons(2, Cons(1, Nil))) : int ∗ natList

Every time we build a list from a head and a tail, we are implicitly doing a fold operation
to convert the two parts into a list. Similarly, every time we look at what is inside a list,
by means of pattern matching or a case construct, we are unfolding it into its definition.

We will now see what this means formally.

Typing Semantics

Because recursive types rely on binders, it is worth using a judgment to formalize when
they are well formed. This judgment is ∆ ` t type, with ∆ a set of hypotheses of the
form t1 type, . . . , tn type. It is defined as follows:

tp id

∆, t type ` t type

∆ ` τ1 type ∆ ` τ2 type
tp arrow

∆ ` arrow(τ1, τ2) type

∆, t type ` τ type
tp rec

∆ ` rec(t.τ) type

The typing judgment for expressions assumes the form Γ ` e : τ , where Γ is a
typing context for expression names. The typing rules for expressions is as follows.
The rules for functions are as usual.

t type ` τ type Γ ` e : [rec(t.τ)/t]τ
tp fold

Γ ` fold[t.τ](e) : rec(t.τ)

Γ ` e : rec(t.τ)
tp unfold

Γ ` unfold(e) : [rec(t.τ)/t]τ

February 12, 2009 2

15-312: Recursive Types I. Cervesato

Note that a bottom up typechecker recovers the type of e and can use it to compute the
type of unfold(e). This is the reason why unfold does not need to be annotated with a
type.

Transition Semantics

fold is the constructor of expressions of a recursive type and therefore form the basis
for values of this type. unfold is the destructor and the two annihilate each other when
they meet.

v val
val fold

fold[t.τ](v) val

e 7→ e′
step fold

fold[t.τ](e) 7→ fold[t.τ](e′)

e 7→ e′
step unfold

unfold(e) 7→ unfold(e′)

v val
step unfold fold

unfold(fold[t.τ](v)) 7→ v

Type Safety Theorem

The type safety results are as usual and they are proved using the techniques we have
seen.

1. Type Preservation: If T :: Γ ` e : τ and E :: e 7→ e′, then T ′ :: Γ ` e′ : τ .

2. Progress: If T :: · ` e : τ , then either V :: e val or S :: e 7→ e′.

Deconstructing ML Datatypes
Consider again the above ML definition for lists of natural numbers:

datatype natList = Nil | Cons of int * natList

This definition provides us with a type (natList), two constructors (Nil and Cons),
and a destructor (in ML it is the case statement

case e of Nil => eNil | Cons(n,l) => eCons

but this is really just the iterator listrec(e, eNil, n.l.eCons)).
Let’s see what is going on under the hood now that we know about recursive types.

First of all, let’s model the type natList itself. We are going to have a variant record
containing one of two things: something that we will understand as Nil and something
else that will stand for Cons:

• Nil by itself is just a marker, an entity that carries no other information besides
the fact that it is there. This suggests using unit, the nullary product type, to
represent it.

February 12, 2009 3

15-312: Recursive Types I. Cervesato

• Cons is a pair consisting of a number and a recursive element of type natList.

We will use the names nil and cons as labels in a labeled variant (to distinguish them
from the constructors, we use all-lowercase words). Then, in the concrete syntax,
natList is defined as

µ natList .[nil : unit; cons : int× natList]

If we want to use the abstract syntax, we have instead

rec(natList .var[nil, cons](unit, prod(unit,natList)))

Note that natList is just a bound name here (we could have used “t”) — making it
available as a name in a program requires other linguistic features, type definitions. We
will abbreviate either of these two type expressions as “natList” (including the quotes).
In particular, when we write “natList” in an expression, we mean the above recursive
type, not the type variable.

Let’s now define the operations that have to do with natList, namely the con-
structors Nil and Cons and an example of the case statement. To make things more
readable, we will write the types appearing in an expression in gray. We start with the
constructors Nil and Cons.

• How do we build an empty list? Well, there is only one object of type unit, that
is (). Next we need to package it as the nil-labeled entry of a variant of type
[nil : unit; cons : int× “natList”], that is

[nil = ()][nil:unit;cons:int×“natList”]

and finally we fold it into an object of type “natList”:

fold[natList .[nil : unit; cons : int× natList]]
([nil = ()][nil:unit;cons:int×natList])

Let us rewrite this using the abstract syntax:

fold[natList .var[nil, cons](unit, prod(unit,natList))]
(inj[var[nil, cons](unit, prod(unit,natList)); nil](unit))

• Cons is defined exactly in the same way, except that we need to pass it two
arguments: the natural number and the list that we want to cons together. The
concrete syntax is

λn: int.λl: “natList”.fold[natList .[nil : unit; cons : int× natList]]
([cons = (n, l)][nil:unit;cons:int×“natList”])

and the abstract syntax is

lam[int](n.
lam[“natList”](l.
fold[natList .var[nil, cons](unit, prod(unit,natList))]

(inj[var[nil, cons](unit, prod(unit, “natList”)); nil](pair(n, l)))))

February 12, 2009 4

15-312: Recursive Types I. Cervesato

• We are left with the case statement. We will not be able to define listrec until
we study polymorphism. Instead, we will look at a sample instance.

As an example, let’s define the function head (a destructor), which returns the
element at the head of a list of integers l, in ML:

case l of Nil => 0 | Cons(n,l) => n

where we are returning 0 if the list is empty (we will take more interesting actions
once we work with languages with exceptions).

By definition, l will be given to us as an expression of type “natList”. Therefore,
we need to unfold it to access the inner variant and then discriminate on the tag.
The overall code is as follows:

λl: “natList”.case (unfold l)
of [nil = ()] => 0
| [cons = p] => fst(p)

The corresponding abstract syntax is

lam[“natList”](l.
case[int, int; nil, cons](unfold l,

u.0,
p.fst(p))

Other typical functions on lists, for example the tail function, or the function that
checks whether a list is empty, are defined similarly.

Recursive Functions Revisited
For a moment, let’s step to an untyped functional language, the simplest of them all,
containing only functions and applications:

Untyped expressions e ::= x | λx. e | e1 e2

For convenience, we are showing only the concrete syntax. Note that there is no type
decoration for λ. Assume a call-by-name semantics for this language.

Now, consider the expression Y defined as follows:

Y = λf. (λx. f (x x)) (λx. f (x x))

(This weird expression goes by the name of call-by-name Y combinator).2 Call Y ′ the
subexpression bound by λf so that Y = λf. Y ′. Now, let’s partially evaluate starting

2There is also a slightly more complicated call-by-value Y combinator — see Pierce’s book.

February 12, 2009 5

15-312: Recursive Types I. Cervesato

it from a function λg. e, where e is any expression, possibly containing g:

Y (λg. e) = (λf. (λx. f (x x)) (λx. f (x x))︸ ︷︷ ︸
Y ′

) (λg. e)

7→ (λx. (λg. e) (x x)) (λx. (λg. e) (x x))︸ ︷︷ ︸
[λg. e/f]Y ′

7→ (λg. e) ((λx. (λg. e) (x x)) (λx. (λg. e) (x x))))︸ ︷︷ ︸
[λg. e/f]Y ′

7→ [(λx. (λg. e) (x x)) (λx. (λg. e) (x x))︸ ︷︷ ︸
[λg. e/f]Y ′

/g]e

We get therefore that
[λg. e/f]Y ′ 7→∗ [[λg. e/f]Y ′/g]e

If we define the function recursor3 fix(g.e) to be [λg. e/f]Y ′, this corresponds to the
familiar step in the semantics of fix: i.e., fix(g.e) 7→ [fix(g.e)/g]e.

With Y ′ in hand, there is no need to have an explicit recursion operator since it
behaves in the desired way. The problem is that Y , and therefore Y ′, is not typable in
a functional language without recursive types.4 Try it!

Recursive types change this picture dramatically. Consider the function recursor
fix[τ](g.e) for a specific type τ (again, we haven’t yet examined polymorphism). Then,
we can give a type to the Y combinator that operates on functions of type τ = τ ′ → τ ′

(which is also the type of the bound variable g). Call it Yτ :

Yτ = λf : τ → τ. (λx : µt.t→ τ. f ((unfold x) x))
(fold[µt.t→ τ](λx : µt.t→ τ. f ((unfold x) x)))

Let’s check if the types work:

λf : τ → τ.

(µt.t→τ)→τ︷ ︸︸ ︷

(λx : µt.t→ τ.

τ︷ ︸︸ ︷
f

τ︷ ︸︸ ︷
(

(µt.t→τ)→τ︷ ︸︸ ︷
(unfold x)

µt.t→τ︷︸︸︷
x))

(fold[µt.t→ τ] (λx : µt.t→ τ. f ((unfold x) x))︸ ︷︷ ︸
(µt.t→τ)→τ (see above)

)

︸ ︷︷ ︸
µt.t→τ

Now, by applying the right part of the top line to the second, we obtain a term of type
τ . Finally, by abstracting over f , we obtain (τ → τ)→ τ as the type of Yτ .

The type of our makeshift recursor,[λg. e/f]Y ′, would then be τ . Clearly, this is
also the type of Y (λg. e).

3In earlier lectures, we wrote this operator as rec. We now switch to fix to avoid confusion with the
recursive type constructor.

4In general, there is no simple type τ such that (x x) : τ

February 12, 2009 6

15-312: Recursive Types I. Cervesato

Objects Revisited
When talking about product types, we saw that objects are a form of recursive prod-
uct: a standard record was extended with one extra binder in each field which stood
for the entire object. Now that we have recursive types, we do not need this special
construction. We can instead assemble an object directly from product types using rec.

Consider as an example the counter object adapted from Pierce’s book: this counter
contains one field, val, corresponding to the value of the counter itself, and two meth-
ods, inc and dec, to increment and decrement it, respectively. The type of this counter
object is given by the following recursive type:

µC. {val : int, inc : unit→ C, dec : unit→ C}

Let’s refer to this type as “counter” (again with quotes). Given an object c of type
“counter”, we obtain its value by unfolding it to a record and then projecting on the
label val:

prj[val](unfold(c))

To increment the counter, we similarly project on label inc and apply the resulting
function to the unit value:

(prj[inc](unfold(c))) ()

The value returned by this application is a new counter.
How do we create an object? We will define a function new that when applied to

some number n creates an object with initial value of n. It is easiest to start with an
ML-like concrete syntax extended with labeled records:

fun new(n: int) =
(val = n,

inc = λu: unit. new(n+ 1),
dec = λu: unit. new(n− 1))

The corresponding concrete syntax is as follows:

fix[int→ “counter”](new .
lam[int](n.{val = x,

inc = lam[unit](new (n+ 1))
dec = lam[unit](new (n− 1))}))

Note that all recursion is encapsulated in the use of fix.

February 12, 2009 7

