15-312 Lecture on Inductive Proofs

Proving Properties of Judgments

• Typical format of a statement about judgments:

For every derivation \mathcal{D} of judgment J, there exists derivation \mathcal{D}' of judgment J'

We will abbreviate it as

For every $\mathcal{D} :: J$, there exists $\mathcal{D}' :: J'$

- Proof proceeds by induction on the construction of the given derivation \mathcal{D} .
 - Called rule induction, structural induction, induction on the structure of derivations, ...
 - One case for each rule defining J (generally all rules, but sometimes only a subset can have been applied)
 - Induction hypothesis assumes that the property holds of the premises of each rule.
 - Use IH and rules to build derivations \mathcal{D}'
 - Possible because deductive systems are assumed to be closed

Example

In the deductive system

	n nat
$ \mathbf{z}_{-}$ nat	$ s_nat$
z nat	s n nat

Prove that if a nat, *then* a = z, *or* a = s z, *or* a = s(s b) *for* b nat

Let's rephrase it more formally:

Property 1 For every derivation \mathcal{D} :: a nat, either a = z, or a = s z, or a = s(s b) and there exists a derivation \mathcal{E} :: b nat.

January 19, 2008

Proof: By induction on the structure of \mathcal{D} . Because there are two rules defining the judgment a nat, there are two inductive cases to examine:

1. Case

$$\mathcal{D} = \underbrace{-}_{z \text{ nat}} \mathbf{z}_{-nat}$$

Then, it must be the case that a = z, which is one of the possible conclusions of this property.

2. Case

$$\mathcal{D} = \frac{n \text{ nat}}{\text{s } n \text{ nat}} \text{ } \text{s_nat}$$

 \mathcal{D}'

Then it must be the case that a = s n and we know that \mathcal{D}' is a derivation of n nat.

The induction hypothesis allows us to conclude that either n = z, or n = s z, or n = s(s n') such that there is a derivation \mathcal{E}' of n' nat. We need to examine each of these possibilities as a subcase of the proof.

- (a) Subcase n = z: then a = s z, which is one of the possible conclusions of this property.
- (b) Subcase n = s z: then a = s(s z). This allows us to take b to be z, but we must construct a derivation \mathcal{E} of z nat. To do this, we simply use rule z_nat :

$$\mathcal{E} = \frac{1}{z \operatorname{nat}} \mathbf{z}_{-\operatorname{nat}}$$

(c) Subcase n = s(s n') and there is a derivation \mathcal{E}' of n' nat. Then a = s(s(s n')) and we can take b to be s n'. To construct the required derivation \mathcal{E} of s n', we simply take \mathcal{E}' and extend it by applying rule s_nat:

$$\mathcal{E}' = \frac{n' \operatorname{nat}}{\operatorname{s} n' \operatorname{nat}} \operatorname{s_nat}$$

Having obtained the desired conclusion for each subcase, we have completed the proof of the case in which \mathcal{D} ended with rule s_nat.

Having obtained the desired conclusion for every possible rule that could appear at the end of \mathcal{D} , we have proved the property.

Iterated and Simultaneous Judgments

- Deductive systems can (and often do) define several judgments
- Simultaneous definition if rules depend on each other
- Iterated definitions if rule dependency flows one way only
- Proof technique remains the same (but need evidence for dependent judgments)
 - For simultaneous judgments, often simultaneous statement for each judgment form

Derivable and Admissible Rules

Rules that are consequences of the rules already present in a deductive system

Derivable Rules

- Shortcuts
- Obtained as a schematic derivation snippet. E.g.,

		nats_nat
n nat	is derivable since it is a shortcut for	s n nat
$\underline{\qquad}$ ss_nat s(s n) nat		$-$ s(s n) nat s_nat

• Remain derivable if rule set is extended

Admissible Rules

- Cannot be expressed as shortcuts
- Verified by doing an inductive proof. E.g.,

$$\frac{\mathsf{s}\,n\,\mathsf{nat}}{n\,\mathsf{nat}}\,\mathbf{nat_s}$$

checked to be admissible by proving that

For every derivation $\mathcal{D} :: s n$ nat, there is a derivation $\mathcal{D}' :: n$ nat.

• Rule may not be admissible in an extended rule set. E.g., with the addition of

rule nat_s no more admissible (but rule ss_nat remains derivable)

January 19, 2008

Exercises

• In a deductive system containing the rules for _ nat and sum(_, _, _) — see Harper's book, prove that:

If $\mathcal{D} :: sum(m, n, p)$, then there exists derivations $\mathcal{D}_m :: m$ nat, $\mathcal{D}_n :: n$ nat and $\mathcal{D}_p :: p$ nat,

• In the standard deductive system for transition sequences (see Harper's book, Sec. 4.1 and 4.2), show that the following rule is admissible:

$$\frac{s \mapsto^* s' \quad s' \mapsto s''}{s \mapsto^* s''}$$

Is it derivable?