15-312 Lecture on Inductive Proofs

Proving Properties of Judgments

- Typical format of a statement about judgments:

For every derivation \mathcal{D} of judgment J, there exists derivation \mathcal{D}^{\prime} of judgment J^{\prime}

We will abbreviate it as
For every $\mathcal{D}:: J$, there exists $\mathcal{D}^{\prime}:: J^{\prime}$

- Proof proceeds by induction on the construction of the given derivation \mathcal{D}.
- Called rule induction, structural induction, induction on the structure of derivations, ...
- One case for each rule defining J (generally all rules, but sometimes only a subset can have been applied)
- Induction hypothesis assumes that the property holds of the premises of each rule.
- Use IH and rules to build derivations \mathcal{D}^{\prime}
- Possible because deductive systems are assumed to be closed

Example

In the deductive system

$$
\begin{aligned}
& \text { z nat } \\
& \text { z_nat } \quad \frac{n \text { nat }}{\mathrm{s} n \text { nat }} \text { s_nat }
\end{aligned}
$$

Prove that if a nat, then $a=\mathrm{z}$, or $a=\mathrm{s} \mathrm{z}$, or $a=\mathrm{s}(\mathrm{s} b)$ for b nat
Let's rephrase it more formally:
Property 1 For every derivation $\mathcal{D}::$ a nat, either $a=\mathrm{z}$, or $a=\mathrm{s} \mathrm{z}$, or $a=\mathrm{s}(\mathrm{s} b)$ and there exists a derivation $\mathcal{E}:: b$ nat.

Proof: By induction on the structure of \mathcal{D}. Because there are two rules defining the judgment a nat, there are two inductive cases to examine:

1. Case

$$
\mathcal{D}=\frac{z}{\mathrm{z} \text { nat }}_{\mathrm{z} _ \text {nat }}
$$

Then, it must be the case that $a=\mathrm{z}$, which is one of the possible conclusions of this property.
2. Case

$$
\mathcal{D}=\frac{\mathcal{D}^{\prime}}{\mathrm{s}^{n} n \text { nat }} \mathrm{s}^{\text {nat }}
$$

Then it must be the case that $a=\mathrm{s} n$ and we know that \mathcal{D}^{\prime} is a derivation of n nat.
The induction hypothesis allows us to conclude that either $n=\mathbf{z}$, or $n=\mathbf{s} \mathbf{z}$, or $n=\mathrm{s}\left(\mathrm{s} n^{\prime}\right)$ such that there is a derivation \mathcal{E}^{\prime} of n^{\prime} nat. We need to examine each of these possibilities as a subcase of the proof.
(a) Subcase $n=\mathrm{z}$: then $a=\mathrm{s} \mathrm{z}$, which is one of the possible conclusions of this property.
(b) Subcase $n=\mathrm{s} z$: then $a=\mathrm{s}(\mathrm{s} z)$. This allows us to take b to be z , but we must construct a derivation \mathcal{E} of z nat. To do this, we simply use rule z_nat:

$$
\mathcal{E}=\overline{\mathrm{z}} \text { nat }_{\mathrm{z} _ \text {nat }}
$$

(c) Subcase $n=\mathrm{s}\left(\mathrm{s} n^{\prime}\right)$ and there is a derivation \mathcal{E}^{\prime} of n^{\prime} nat. Then $a=$ $\mathrm{s}\left(\mathrm{s}\left(\mathrm{s} n^{\prime}\right)\right)$ and we can take b to be $\mathrm{s} n^{\prime}$. To construct the required derivation \mathcal{E} of $\mathrm{s} n^{\prime}$, we simply take \mathcal{E}^{\prime} and extend it by applying rule s_nat:

$$
\mathcal{E}=\frac{\mathcal{E}^{\prime}}{\mathrm{s} n^{\prime} \text { nat }} \mathrm{s} \mathrm{_nat}
$$

Having obtained the desired conclusion for each subcase, we have completed the proof of the case in which \mathcal{D} ended with rule s_nat.

Having obtained the desired conclusion for every possible rule that could appear at the end of \mathcal{D}, we have proved the property.

Iterated and Simultaneous Judgments

- Deductive systems can (and often do) define several judgments
- Simultaneous definition if rules depend on each other
- Iterated definitions if rule dependency flows one way only
- Proof technique remains the same (but need evidence for dependent judgments)
- For simultaneous judgments, often simultaneous statement for each judgment form

Derivable and Admissible Rules

Rules that are consequences of the rules already present in a deductive system

Derivable Rules

- Shortcuts
- Obtained as a schematic derivation snippet. E.g.,

$$
\frac{n \text { nat }}{\mathrm{s}(\mathrm{~s} n) \text { nat }} \mathrm{ss} \text { _nat } \quad \text { is derivable since it is a shortcut for } \quad \frac{\frac{n \text { nat }}{\mathrm{s} n \text { nat }} \mathrm{s} _ \text {nat }}{\mathrm{s}(\mathrm{~s} n) \text { nat }} \mathrm{s} _ \text {nat }
$$

- Remain derivable if rule set is extended

Admissible Rules

- Cannot be expressed as shortcuts
- Verified by doing an inductive proof. E.g.,

$$
\frac{\mathrm{s} n \text { nat }}{n \text { nat }} \text { nat_s }
$$

checked to be admissible by proving that
For every derivation \mathcal{D} :: s n nat, there is a derivation $\mathcal{D}^{\prime}:: n$ nat.

- Rule may not be admissible in an extended rule set. E.g., with the addition of

rule nat_s no more admissible (but rule ss_nat remains derivable)

Exercises

- In a deductive system containing the rules for _ nat and sum(_ , _ _ $) ~-~ s e e ~_{\text {- }}$ Harper's book, prove that:

$$
\begin{aligned}
& \text { If } \mathcal{D}:: \operatorname{sum}(m, n, p) \text {, then there exists derivations } \mathcal{D}_{m}:: m \text { nat, } \\
& \mathcal{D}_{n}:: n \text { nat and } \mathcal{D}_{p}:: p \text { nat, }
\end{aligned}
$$

- In the standard deductive system for transition sequences (see Harper's book, Sec. 4.1 and 4.2), show that the following rule is admissible:

$$
\frac{s \mapsto^{*} s^{\prime} s^{\prime} \mapsto s^{\prime \prime}}{s \mapsto^{*} s^{\prime \prime}}
$$

Is it derivable?

