
15-312: Binding and Scope I. Cervesato

15-312 Lecture on
Binding and Scope

Binders

One of the motives of studying programming languages as mathematical objects is
to identify notions and structures that occur, maybe with a different syntax, over and
over across languages. We will see many throughout the course. One of the most
fundamental and universal is the concept ofbinder, the ability to define a symbolic
name so that every occurrence within a certain area of the program (its scope) share the
same meaning (unless this name is redefined). Binders are found in every non trivial
language, not only in Computer Science, but also in Logic, in Mathematics and in many
other fields. Within a programming language binders are everywhere:

• defining a function introduces a binder for its name,

• its formal parameters are binders,

• a type declaration binds one and often more identifiers,

• declaring an object creates all kinds of binders,

• a module specification introduces even more binders, . . .

Binding is one truly fundamental concept in Computer Science.
As an example throughout this notes, let’s take a standard ML-like “let ” con-

struct:
let x = E1 in E2 end

which binds the namex to the expressionE1 within the bodyE2. Intuitively (and this
will be made precise later),x is a shortcut forE1 anywhere it appears insideE2.

Characteristics of Binders

The objects bound by a binder are callednamesor identifiers, sometimesvariable. In
the above “let ” construct,x is a name. The portion of code where this name is bound
is called thescopeof the binder. Here it is the subexpressionE2. This means that
every occurrence ofx within E2 refers to thex bound by this “let ” and therefore to
the expressionE1 (unless there is another “let ” inside E2 that binds this samex —
we will see this later).

January 19, 2008 1

15-312: Binding and Scope I. Cervesato

α-equivalence

Of course, the actual string that constitutes the namex in let x = E1 in E2 end
has no importance: the only thing that matters is that all the places inE2 where we
want to have this shortcut toE1 are identified by this same string. Indeed, (almost) any
other string would do: we can change the name of our variables in a program to our
preference. Indeed,

let x = 3 in 4*x + 4 end

and
let three = 3 in 4*three + 4 end

are essentially the same expression. This is calledα-renamingand the two expressions
are said to beα-equivalent.

The only thing to be careful of is that the name we choose does not clash with
other names introduced before. For example, consider the following expression, which
differs from the above only by the fact that we have factored out the “4” as the let-
bound name “y ”:

let x = 3 in let y = 4 in y*x + y end end

We can change the name “y ” to anything we want, except for “x ”, without altering the
meaning of this expression. If we were to choose “x ”, we would obtain

let x = 3 in let x = 4 in x*x + x end end

and that would change the binding of the occurrence of “x ” that was there before from
“3” to “ 4”. These two expressions are notα-equivalent because they do not have the
same meaning (and not even the same value). That occurrence of “x ” is said to have
beencapturedduring the renaming. Note that the second expression is legal: the value
of x bound by the secondlet shadows the value associated to it by the first — the
problem is that it does not have the same meaning as expression above it.

In summary, the actual string used for a bound name does not matter as long as
we can distinguish it from any other name in use within the scope of the binder. Two
expressions areα-equivalent if they differ at most by the name of their bound variable
and no names that are distinct in one are identified in the other.

α-renaming is a very common operation, and we will assume it implicitly at the
level of abstract syntax whenever convenient.

Substitution

Another fundamental operation on names is thesubstitutionof a name with an expres-
sion wherever it occurs in another expression. Indeed, evaluating

let x = 3 in let y = 4 in y*x + y end end

proceeds by substituting every occurrence of the name “x ” with “ 3” in the subexpres-
sion let y = 4 in y*x + y end , yielding:

let y = 4 in y*3 + y end

January 19, 2008 2

15-312: Binding and Scope I. Cervesato

which will itself be evaluated by substituting “y ” with “ 4” in y*3 + y obtaining
4*3 + 4 .

There is the danger of variable capture also when performing substitution. Assume
that deep inside an expression there is the subexpression

let y = 1 in x + y end

(with “x ” bound by some outer “let ”). Say now that during evaluation “x ” gets
substituted with “y*y ” (with this “y ” coming from a “let ” even further out). A näıve
substitution would result in

let y = 1 in y*y + y end

which has changed the meaning of the original sub-expression by having the outer
occurrence of “y ” in “ y*y ” captured by the inner binder.

The proper way to do so is toα-rename the inner bound name to something else,
for example

let z = 1 in x + z end

and then perform the substitution, which will produce

let z = 1 in y*y + z end

This is calledcapture-avoiding substitution. Every substitution can be made capture-
avoiding by appropriately renaming the expression where the substitution occurs.

Substitution will be a pervasive operation at the level of abstract syntax and we will
introduce a specific notation to denote it.

Abstract Binding Trees

Assume we have updated the arithmetic expression lexer from previous lectures to also
tokenizelet expressions. The token stream grammar is updated to

Expressions E ::= num[n] | E + E | E ∗ E
| id[x] | let[x] E in E end

Note that lexing now shall recognize names (denotedx here) according to whatever
syntax defines them. It also defines four new tokens:id[x] represents namex within
an expression,let[x] collects thelet keyword and the identifier it introduces,in and
end are just delimiters.

The validity of a token stream as an expression is best described by the general
judgment

`Σ t exp

where the parameter setΣ collects names as they are introduced through thelet token.
A namex found in an expression is accepted only if a note of it has previously been
made inΣ (i.e., if it was introduced by alet). Here, we shall assume that identifiers

January 19, 2008 3

15-312: Binding and Scope I. Cervesato

have already been renamed apart so that no clashes occur (or alternatively thatΣ is
ordered and the rightmost occurrence of a name is used).

This grammar is then transliterated to the following deductive system:

num[n]

`Σ num[n] exp

`Σ t1 exp `Σ t2 exp
plus

`Σ t1ˆ+ t̂2 exp

`Σ t1 exp `Σ t2 exp
times

`Σ t1ˆ∗ t̂2 exp

id[x]

`Σ,x x exp

`Σ t1 exp `Σ,x t2 exp
let[x]

`Σ let[x] t̂1ˆ in t̂2ˆ end exp

In rule id[x], a namex is accepted only if it occurs in the parameter set (which we
expressed as the standard abbreviationΣ, x). Rule let[x] describes how a name ends
up in the parameter setΣ: when parsing a token stringlet[x] t̂1ˆ in t̂2ˆ end, the
subexpressiont1, to whichx is meant to be bound, is parsed as usual. If this expression
is well-formed, it is expected, or at least likely, thatx occurs int2. We describe the
fact thatx can legally occur int2 by parsing it relative to a parameter set that extends
Σ with x.

In a binder-free language, we could read the abstract syntax of a grammar off the
parsing derivation: we simply used the rule names as operators. This will still be pos-
sible in the presence of names and binders, but we need to introduce some machinery
first. This machinery is a universal binder called anabstractor: it has the form

x.E

wherex is a name andE is a term in abstract syntax that may mentionx.1 Any time
we encounter a construct that binds a name in one of its subexpressions, its abstract
syntax will have an abstractor in the corresponding argument. For example, the token
streamlet[x] t̂1ˆ in t̂2ˆ end will yield the term let(E1, x.E2), whereE1 andE2 are
the terms corresponding tot1 andt2 respectively.

With this new tool, we are again in a position to read the abstract syntax of a gram-
mar directly from the inference rules that correspond to each production: we continue
to use the rule names as operators and we continue to take each premise as an argu-
ment. Now however, every time a premise extends the parameter set, we record this fact
by making the corresponding argument into an abstractor. Applying this idea to rule
let[x], we obtain the operatorlet(, x.). Altogether we have the following grammar
our expressions.:

Abstract Expressions: E ::= num[n] | plus(E,E) | times(E,E)
| id[x] | let(E, x.E)

The resulting terms are calledabstract binding treesand this form of syntax is known
ashigher-order abstract syntax. As usual, we will generally omit the tagsnum andid.

Abstract α-equivalence and substitution

If we take an abstractor as a universal binder, we need to defineα-renaming,α-
equivalence and capture-avoiding substitution for it. Chapter 6 of Harper’s book con-
tains an excellent account of all these concepts: it very precisely defines these notions

1A more common syntax for an abstractor isλx.E.

January 19, 2008 4

15-312: Binding and Scope I. Cervesato

as a series of deductive systems. What follows are some notes on syntax and assump-
tions.

At this abstract level, names are usually taken to be symbolic objects rather than
strings of characters: we will often use the meta-variablesx, y, z for names, but we
can think that they come from an infinite set. This also means that, differently from
concrete names which are just strings, abstract names are not inductively defined. In
a judgment, we can easily indicate that two names should be the same (we write two
occurrences ofx, say), but how do we say that two names, sayx andy, should be
different? To do so, we rely on the judgmentx#y name. Because abstract names are
not inductively defined, we shall assume that this judgment is given to us not by rules
but as a generally infinite set of instances. This is one of the very few judgments we
will encounter that are not inductively defined, maybe the only one.

Given a termE that may contain namesx andy free (i.e., outside the scope of a
binder for them), expressionE′ being obtained by swappingx for y within E is defined
by the judgment[x ↔ y]E = E′ abt in Harper’s book.2 If x or y do not occur (free) in
E, the rules given by Harper safely implementsα-renaming. Given this judgment it is
easy to defineα-equivalence as another judgment, writtenE =α E′ abt. Given a term
E which may contain the namex free, the capture-avoiding substitution of some other
termE′ for x in E is then denoted[E′/x]E as a meta-operation, and implemented by
the judgment[E′/x]E = E′′ abt. .

In what follows, we will implicitly rely onα-renaming to avoid capture and rename
variables to whatever will be most convenient as we go along. This means that every
term and even judgment will be considered moduloα-equivalence.

Inductive Definitions over Abstract Binding Trees

Abstract binding trees can participate in inductive definitions in the same way as the
abstract syntax trees we have seen so far. The presence of abstractors has however the
effect that these inductive definitions typically rely on general judgments (judgments
that are both hypothetical and parametric — see Harper’s book, Chapters 7–8). Let’s
build on our example and define what it means for two (abstract) expressions to be
equal. We will do so by means of the judgment

Γ `Σ E1 = E2 exp

whereΣ records the names that have been encountered so far in abstractors, andΓ
lists assumptions of the formx = y exp regarding the equality of namesx andy

2Where Harper uses the tokenabt — for “abstract binding tree” in a judgment, we have usedexp — for
expression. In general, we use some mnemonic string for the non-terminal in the grammatical production
corresponding to a rule rather than a catch-all form such asabt.

January 19, 2008 5

15-312: Binding and Scope I. Cervesato

encountered before. This judgment is defined by the following set of rules:3

=num

Γ `Σ n = n exp
=id

Γ, x = y exp `Σ,x,y x = y exp

Γ `Σ E1 = E2 exp Γ `Σ E′
1 = E′

2 exp
=+

Γ `Σ plus(E1, E
′
1) = plus(E2, E

′
2) exp

Γ `Σ E1 = E2 exp Γ `Σ E′
1 = E′

2 exp
=∗

Γ `Σ times(E1, E
′
1) = times(E2, E

′
2) exp

Γ `Σ E1 = E2 exp Γ, x = y exp `Σ,x,y E′
1 = E′

2 exp
=let

Γ `Σ let(E1, x.E′
1) = let(E2, y.E′

2) exp

We prove properties of general judgments in pretty much the same way as we did
for categorical judgments: a typical proof proceeds by cases on the last rule that has
been applied in one or more given derivations and derives an induction hypothesis from
its premises. The main difference is that we now have to consider objects that consist
not only of a simple judgment form (like sayE exp), but also of hypotheses (Γ) and
parameters (Σ) and that we make sure that whatever a rule does to these is taken into
account when applying the induction hypothesis.

Concretely, let’s prove that equality over expressions is associative:

Given derivationsD :: Γ `Σ E1 = E2 exp andE :: Γ `Σ E2 = E3 exp,
there exists a derivation ofF :: Γ `Σ E1 = E3 exp.4

Proof: Because of the extreme regularity of the rules for equality (there is actually a
deep principle here), this proof can proceed by induction on any ofE1, E2, E3, D or
F . Let’s conduct it by induction onE1. We distinguish cases based on the productions
for abstract expressions — there are 5 possibilities:

1. CaseE1 = n (recall that we are omitting the tags for conciseness). There is
exactly one rule forΓ `Σ E1 = E2 exp that mentions a numeral between “`Σ ”
and “=”: it is = num. ThereforeD must have the form

D = =num

Γ `Σ n = n exp

3This example is admittedly artificial for several reasons: first, we are simply specifying theα-
equivalence of two expression, and so, since we are operating moduloα-equivalence, it could be defined
more succinctly by the single rule

E = E

Second, even if we wanted to traverse the terms,α-equivalence, which we are using in rule= let to make
sure names are different, could be used more economically to make them the same, which would allow us to
avoid introducing the contextΓ altogether.

4To be fully precise, we should conclude this statement with the phrase “for everyΓ, Σ, E1, E2, and
E3”. Qualifiers such as these, that can easily be inferred from the context, are often omitted.

January 19, 2008 6

15-312: Binding and Scope I. Cervesato

(this technique, of identifying which rule must have been applied in a derivation
based on the knowledge of a piece of the judgment it derives, is calledinversion
— it is a very general tools when doing proofs over derivations.)

The form ofD entails thatE2 = n. Knowing this, we apply the exact same
technique again and obtain thatE is again an application of= num (indeed,
E = D) and thatE3 = n.

Then, we trivially build a derivation ofΓ `Σ E1 = E3 exp (where again
E1 = E3 = n) by settingF = D.

2. CaseE1 = x. By inversion, we obtain that

D = =id

Γ, x = y exp `Σ,x,y x = y exp
E2 = y

E = =id

Γ, y = z exp `Σ,y,z y = z exp
E3 = z,

Then, we can defineF to be yet another instance of rule= id that refers to names
x andz:

E = =id

Γ, x = z exp `Σ,x,z x = z exp

3. CaseE1 = plus(E′
1, E

′′
1). Then, by inversion

D =

D′

Γ `Σ E′
1 = E′

2 exp

D′′

Γ `Σ E′′
1 = E′′

2 exp
=+

Γ `Σ plus(E′
1, E

′′
1) = plus(E′

2, E
′′
2) exp

E2 = plus(E′
2, E

′′
2)

E =

E ′

Γ `Σ E′
2 = E′

3 exp

E ′′

Γ `Σ E′′
2 = E′′

3 exp
=+

Γ `Σ plus(E′
2, E

′′
2) = plus(E′

3, E
′′
3) exp

E3 = plus(E′
3, E

′′
3)

By two applications of the induction hypothesis onD′ andE ′, and onD′′ and
E ′′ respectively, there are derivationsF ′ :: Γ `Σ E′

1 = E′
3 exp andF ′′ ::

Γ `Σ E′′
1 = E′′

3 exp. Then, we can obtain the desired derivationF by simply
combiningF ′ andF ′′ using rule= +:

F =

F ′

Γ `Σ E′
1 = E′

3 exp

F ′′

Γ `Σ E′′
1 = E′′

3 exp
=+

Γ `Σ plus(E′
1, E

′′
1) = plus(E′

3, E
′′
3) exp

4. CaseE1 = times(E′
1, E

′′
1). Done in the exact same way.

January 19, 2008 7

15-312: Binding and Scope I. Cervesato

5. CaseE1 = let(E′
1, x.E′′

1). By inversion, we obtain

D =

D′

Γ `Σ E′
1 = E′

2 exp

D′′

Γ, x = y exp `Σ,x,y E′′
1 = E′′

2 exp
=let

Γ `Σ let(E′
1, x.E′′

1) = let(E′
2, y.E′′

2) exp

E2 = let(E′
2, y.E′′

2) E3 = let(E′
3, z.E′′

3)

E =

E ′

Γ `Σ E′
2 = E′

3 exp

E ′′

Γ, y = z exp `Σ,y,z E′′
2 = E′′

3 exp
=let

Γ `Σ let(E′
2, y.E′′

2) = let(E′
3, z.E′′

3) exp

Then, by induction hypothesis onD′ andE ′, we obtain that there exists a deriva-
tion F ′ of Γ `Σ E′

1 = E′
3 exp, and similarly, by induction hypothesis onD′′

andE ′′ we obtain a derivationF ′′ of Γ, x = z exp `Σ,x,z E′′
1 = E′′

3 exp. We
now simply apply rule= let once more:

F =

F ′

Γ `Σ E′
1 = E′

3 exp

F ′′

Γ, x = z exp `Σ,x,z E′′
1 = E′′

3 exp
=let

Γ `Σ let(E′
1, x.E′′

1) = let(E′
3, z.E′′

3) exp

which proves our result.

2

January 19, 2008 8

