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These notes provide a brief introduction to continuations as a programming technique. Con-
tinuations have a rich history and have made important contributions to the understanding of
functional programming and compilation. One can distinguish first-class continuations (which are
not available in Standard ML, although the SML of New Jersey implementation provides them)
and functions as continuations. In these notes, we talk only about the latter; thus we do not refer
to an extension of the language, but to a particular higher-order programming technique.

1 A Tail-Recursive Append Function

Recall the definition of function @ that appends two lists

(* @ : ’a list * ’a list -> ’a list *)
fun @ (nil, k) = k

| @ (x::l, k) = x :: @(l,k);
infixr @;

Note that this function is not tail-recursive, since it applies the list constructor :: to the result
of the recursive call. Nonetheless, this function is quite efficient and the definition above is fully
satisfactory from a pragmatic point of view.

But one may still ask if there is any way to write an append function in tail-recursive form.
The answer is “yes”, although it will be less efficient than the direct version above. In fact, it is a
deep property of ML that every function can be rewritten in tail-recursive form!

Suppose that we have a function f : t -> s and would like to rewrite it as a function f ′ in
tail-recursive form. The basic idea is to give f ′ an additional argument, called the continuation,
which represents the computation that should be done on the result of f . In the base case, instead
of returning a result, we call the continuation. This means that f ′ should have type

f ′ : t -> (s -> ’b) -> ’b.

In the recursive case we add whatever computation should be done on the result to the continuation.
So a continuation is like a functional accumulator argument.

When we use this function to compute f we give it the initial continuation which is often the
identity function, indicating no further computation is done on the result.

∗Modified from a draft by Frank Pfenning, 1998.
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Applying this basic idea to append yields the following definition:

local
(* @’ : ’a list * ’a list * (’a list -> ’b) -> ’b *)
fun @’ (nil, k, cont) = cont k

| @’ (x::l, k, cont) = @’ (l, k, fn r => cont (x::r))
in

fun @ (l, k) = @’ (l, k, fn r => r)
end

This first line of @’ implements the idea that instead of returning the result k, we apply the
continuation to k.

The second line of @’ implements the idea that instead of constructing

x :: @ (l, k)

we call @’ recursively on l and k, adding the task of prepending x to the argument r of the
continuation cont.

Consider the following sample computation, where we have renamed some instances of the
variables bound in the continuation to make them easier to read.

@ ([1,2], [3,4])
=⇒ @’ ([1,2], [3,4], fn r => r)
=⇒ @’ ([2], [3,4], fn r1 => (fn r => r) (1::r1))
=⇒ @’ ([ ], [3,4], fn r2 => (fn r1 => (fn r => r) (1::r1)) (2::r2))
=⇒ (fn r2 => (fn r1 => (fn r => r) (1::r1)) (2::r2)) [3,4]
=⇒ (fn r1 => (fn r => r) (1::r1)) (2::[3,4])
=⇒ (fn r1 => (fn r => r) (1::r1)) [2,3,4]
=⇒ (fn r => r) (1::[2,3,4])
=⇒ (fn r => r) [1,2,3,4]
=⇒ [1,2,3,4]

It should be obvious that, even though the function is now tail-recursive, we haven’t saved
anything since we have to build up and then call the continuation. Compare the above with the
direct computation:

@ ([1,2], [3,4])
=⇒ 1 :: @ ([2], [3,4])
=⇒ 1 :: (2 :: @ ([ ], [3,4]))
=⇒ 1 :: (2 :: [3,4])
=⇒ 1 :: [2,3,4]
=⇒ [1,2,3,4]

Continuations are useful not because of efficiency gains but because they provide a direct handle
on future computation.
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2 Proving Correctness

The correctness statement for the continuation-passing tail-recursive version of append expresses,
formally, the informal explanation above.

Theorem 1 For any lists l and k and continuations c of appropriate type we have

@’ (l, k, c) ∼= c (@ (l, k))

Proof: By structural induction on l.

Base: l = nil. Then

@’ (nil, k, c) =⇒ c (k)

and

c (@ (nil, k)) =⇒ c (k),

so both sides reduce to the same expression.

Step: l′ = x::l. Assume inductively that

@’ (l, k, c) ∼= c (@ (l, k))

We have to show that

@’ (x::l, k, c) ∼= c (@ (x::l, k))

As usual we calculate both sides. First the left:

@’ (x::l, k, c)
=⇒ @’ (l, k, fn r => c (x::r))
∼= (fn r => c (x::r)) (@ (l, k)) by ind. hyp.
=⇒ (fn r => c (x::r)) lk
=⇒ c (x::lk)

where @ (l, k) =⇒ lk always exists. For the right-hand side we obtain:

c (@ (x::l, k))
=⇒ c (x::@(l, k))
=⇒ c (x::lk)

So the left and right hand side are equivalent; that is, they reduce to the same expression
(and from there to the same value, if the expression has a value, or both sides have no value).

�
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3 Control with Continuations

In the function that appends two lists, continuations can be applied, but they do not help in writing
simpler or more efficient code. But in functions with more complex control flow, they can often be
used to advantage. In a future lecture, we will see a major application, namely the implementation
of backtracking in an acceptor for regular expressions.

Here, we consider a simpler example, namely a function that traverses a list and returns the
shortest prefix of the list such that a predicate p is false on the next element. If p holds on all
elements, we return NONE to indicate no such prefix exists. The implementation takes advantage of
the type ’a option, which is pre-declared in ML with

datatype ’a option = NONE | SOME of ’a;

That is, the values of type τ option are either NONE or SOME v for any value v of type τ .
First, a direct implementation, using a helper function that conses an element onto an optional

list.

(* consOpt : ’a * (’a list) option -> (’a list) option *)
fun consOpt (y, NONE) = NONE

| consOpt (y, SOME (k)) = SOME (y::k)

(* prefix : (’a -> bool) -> ’a list -> (’a list) option *)
fun prefix p nil = NONE

| prefix p (y::l) =
if p(y) then consOpt (y, prefix p l)
else SOME (nil);

Note an inefficiency in this function: if p is is true for every element in the list, consOpt is
called on every element after the end of the list has been reached, passing along NONE all the way
up to be returned as the overall result.

Instead, we would like to return NONE immediately once we have reached the end of the list and
found no element on which p is false. Using continuations we can achieve this easily, simply by
ignoring the continuation in this case.

local
(* prefix’ : (’a -> bool)

-> ’a list * (’a list -> ’b option)
-> ’b option *)

(* Used as : (’a -> bool)
-> (’a list * (’a list -> (’a list) option))
-> (’a list) option *)

fun prefix’ p (nil, cont) = NONE
| prefix’ p (y::l, cont) =
if p(y) then prefix’ p (l, fn r => cont (y::r))
else cont (nil)

in
(* prefix2 : (’a -> bool) -> ’a list -> (’a list) option *)
fun prefix2 p l = prefix’ p (l, fn r => SOME r)

end;
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Note that in the “success” case (we find an element where p is false) we call the continuation
cont on the expected answer (nil in this program). In the case of a “failure” (we do not find a
place where p is false) we discard the continuation and return directly (with NONE in this program).
In this pattern of use we refer to the continuation cont as a success continuation.

It is instructive to construct a correctness proof for prefix’ in a manner analogous to the
tail-recursive append. We leave this an an exercise to the reader.

4 Further Examples

The pattern of control required for the prefix function can also be achieved by using exceptions,
which we will discuss in more detail in a future lecture. However, for more complicated control
patterns, continuations are often the most natural and simplest way to program a solution. Many
backtracking algorithms (such as the regular expression matcher in an upcoming lecture) are of
this nature.

Another class of examples includes co-routines, which are functions that call each other in an
egalitarian way (as distinct from subroutines, where one is subordinate to the other). Applications
of continuations also arise when the call pattern is at cross-purposes with the natural modularization
of the code. In this case we pass a continuation to the function in another module that can then
“return” control by invoking the continuation. In the language of operating systems this is often
referred to as an up-call.

To summarize the important principles that guide the implementation of a function passing a
continuation:

• In base cases, we apply the continuation instead of directly returning a value.

• In recursive cases, the continuation acts as a functional accumulator.

• In exceptional cases, we may discard (or duplicate) the continuation to circumvent the normal
control flow.
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