HYDRA A Hybrid CPU/GPU-based Speech Recognition Engine for Real-Time LVCSR Jungsuk Kim, Jike Chong, Ian Lane

A Hybrid GPU+CPU Speech Recognition Engine

For intuitive Voice and Interactive Multimodal systems robust and responsive speech recognition is crucial

How can we decode with large models in real-time?

Carnegie

University

- Use hybrid GPU/CPU architectures
- Perform "On-The-Fly Partial Hypothesis Rescoring"

Robust

- Acoustic robustness \rightarrow Large Acoustic Models
- Linguistic robustness **→** Large Vocabulary (1M+ words)

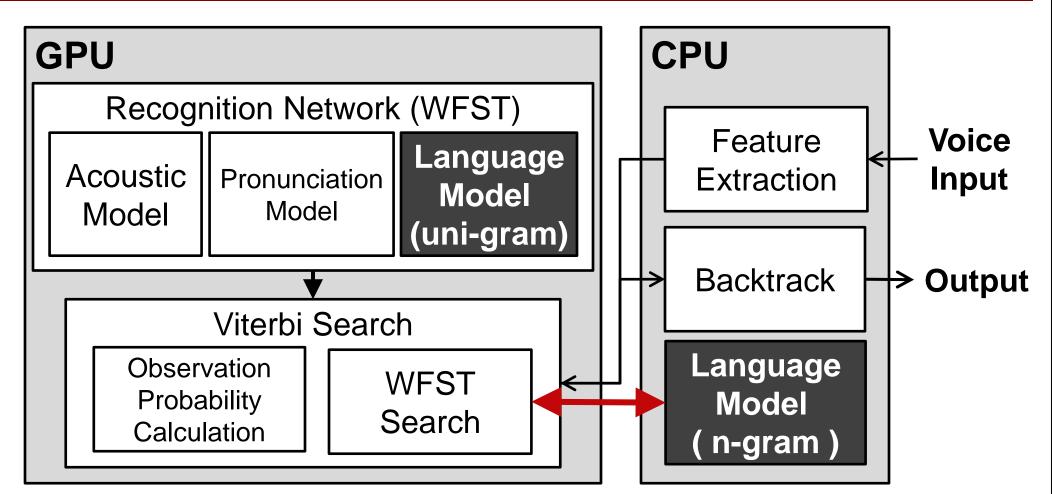
→ Large Language

Models (>20GB)

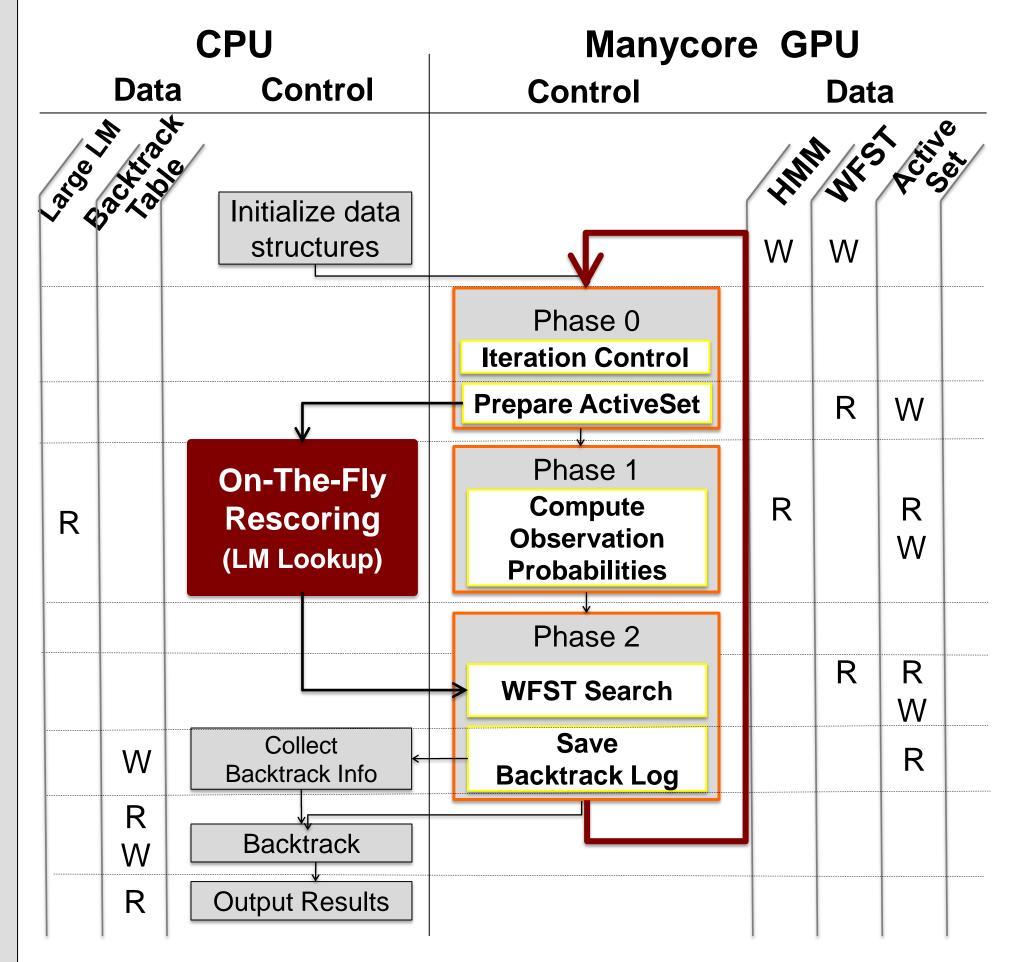
- Responsive
- Low latency
 Faster than real-time search
 Current state-of-the-art speech recognition systems are

optimized for either robustness or responsiveness

- 5-10 x real-time >95% accuracy Robustness:
- Responsiveness: real-time 85% accuracy



On-The-Fly Partial Hypothesis Rescoring



Decoding Process

Prepare Active Hypotheses Set

• Gather active speech recognition hypotheses (word and phone) sequences) from previous frame.

Compute Observation Probabilities

• Compute likelihood of phonetic models (Gaussian Mixture Model) for current input feature.

On-The-Fly Partial Hypothesis Rescoring

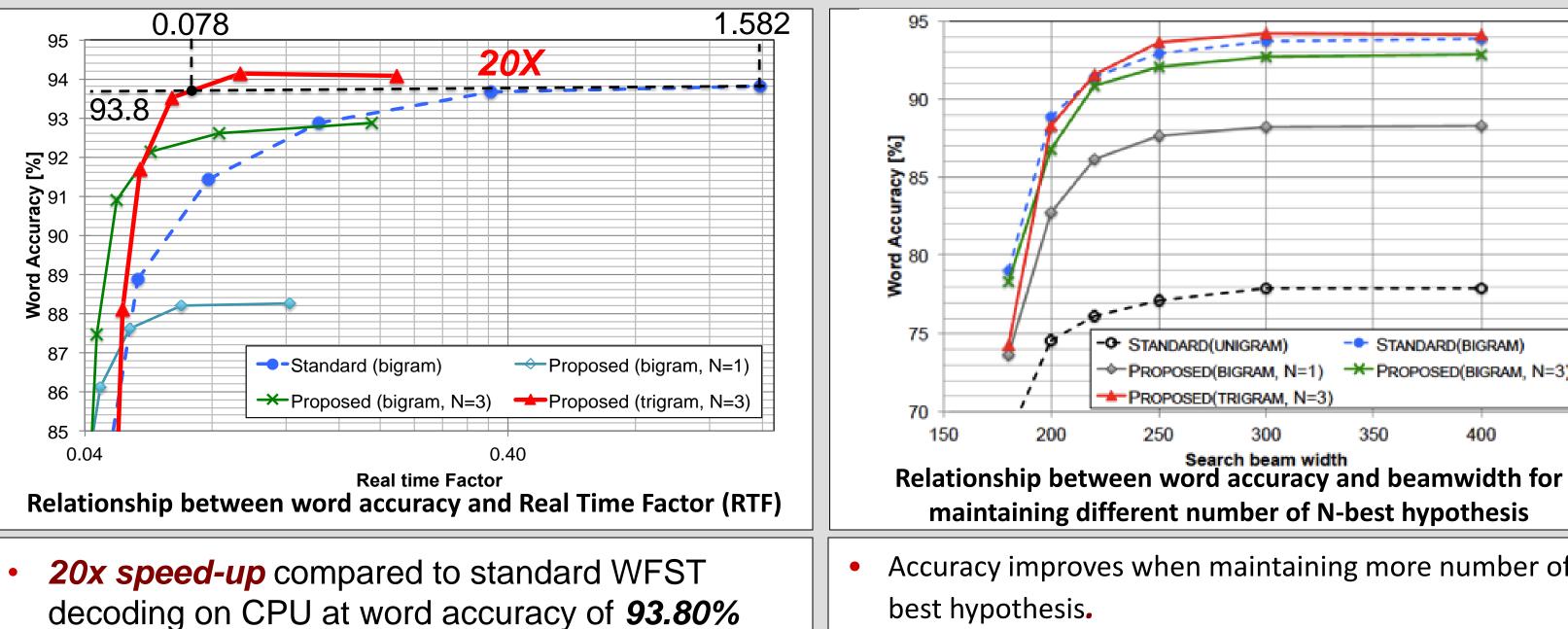
- On the CPU, rescore likelihoods of partial hypotheses using a higher order N-gram language model stored in main memory.
- Partial Hypothesis rescoring and the observation probability computation can be performed concurrently.

WFST Search

- Frame synchronous *Viterbi search* is performed on the GPU using WFST network composed using *unigram language model*.
- Maintaining *N-best paths* during decoding to ensure good hypotheses are not pruned early.

Experimental Evaluation

- Acoustic Model
- SI-284 Data Set
- 3000 tied state
- 16 mixture Gaussians
- 39th MFCCs features
- Language Model
- Wall Street Journal 5k
- 1-gram: 5k entries
- 2-gram: 1.6M entries
- 3-gram: 2.7M entries
- **Evaluation Set**
- Nov. 92 ARPA WSJ test set
- 330 sentences
- NVIDIA GTX 680
- Keplar architecture
- 1536 CUDA cores



95.40% maximum accuracy is achieved.

Accuracy improves when maintaining more number of Nbest hypothesis.

• STANDARD(UNIGRAM)

PROPOSED(TRIGRAM, N=3)

300

Search beam width

STANDARD(BIGRAM)

350

PROPOSED(BIGRAM, N=3)

400

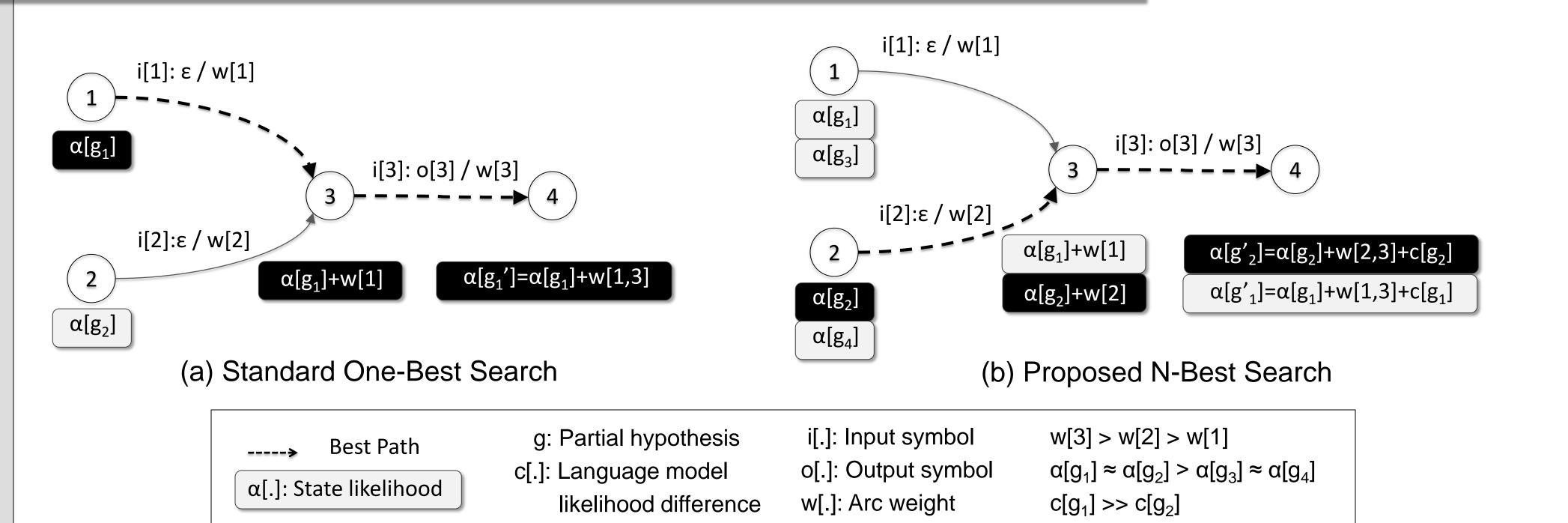
450

Accuracy improvement converges with large N.

250

Carnegie University

N-Best On-The-Fly Partial Hypothesis Rescoring



Standard One-Best Search

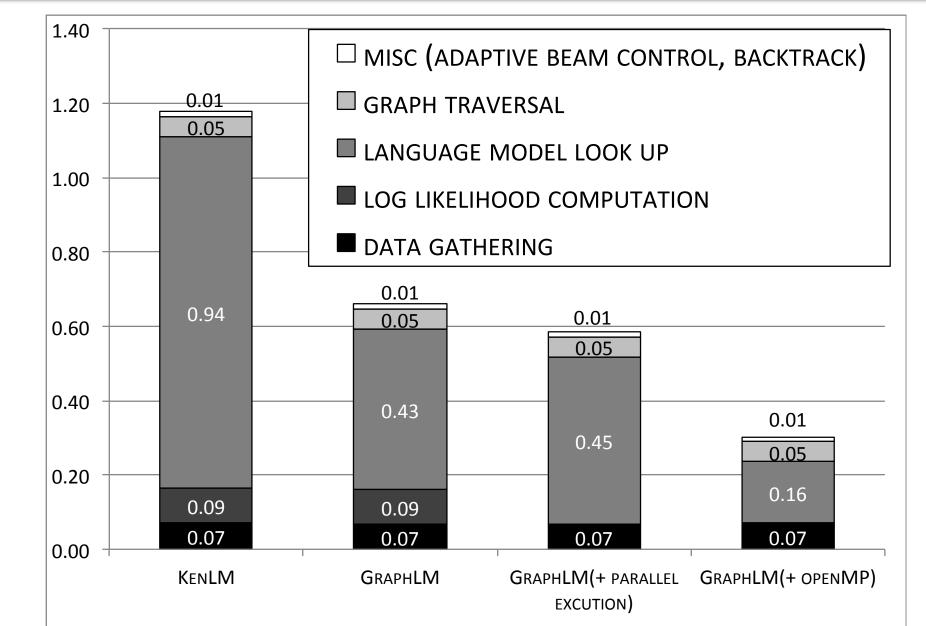
Choose only best hypothesis when multiple arcs meet in the same destination state.

Why "N-Best"? -> Early pruning: Best hypothesis g₂ is pruned before the rescoring.

Proposed N-Best Search with Rescoring

- Rescore the partial hypothesis using likelihood difference between larger N-gram and unigram (c[.]) when hypothesis outputs word symbol.
- Maintaining N-best paths effectively allows multiple word hypotheses to be kept until rescoring can be applied

Load Balancing Between GPU and CPU using OpenMP



GPU and CPU Parallel Execution

- Language model look up has no data dependency between Acoustic likelihood computation.
- CPU function and GPU kernel can be conducted in parallel
- Language model runtime can be hided behind GPU run time.

GPU and CPU load Balancing using OpenMP

- Language model look up is longer than Acoustic likelihood computation time with small acoustic model
- Language model lookup for each hypothesis is independent.
- Language model lookup phase is parallelized using

Ratio of the processing time per phase

OpenMP on the CPU to achieve better load balance.

Experimental Evaluation

- **Acoustic Model**
- All WSJ corpus
- 10,000 tied state
- 32 mixture Gaussians
- 39th MFCCs features
- Language Model
- 1M vocab.
- 3-gram: 497.6M entries
- 4-gram: 767.8M entries
- 5-gram: 977.1M entries
- **Evaluation Set**
- WSJ test set
- 543 sentences

