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A Hybrid GPU+CPU Speech Recognition Engine  

• For intuitive Voice and Interactive Multimodal systems 
robust and responsive speech recognition is crucial 
 
• Robust 

• Acoustic robustness    Large Acoustic Models 
• Linguistic robustness  Large Vocabulary (1M+ words) 
       Large Language 
Models (>20GB) 

• Responsive 
• Low latency                  Faster than real-time search 

• Current state-of-the-art speech recognition systems are 
optimized for either robustness or responsiveness 
• Robustness:           5-10 x real-time     >95% accuracy 
• Responsiveness:   real-time                 85% accuracy 

How can we decode with large models in real-time? 
 Use hybrid GPU/CPU architectures  
 Perform “On-The-Fly Partial Hypothesis Rescoring” 
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GPU/CPU Hybrid LVCSR Engine architecture 
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On-The-Fly Partial Hypothesis Rescoring  

Control and data flow for the proposed approach 

Prepare Active Hypotheses Set 
• Gather active speech recognition hypotheses (word and phone 

sequences) from previous frame. 
 

Compute Observation Probabilities 
• Compute likelihood of phonetic models (Gaussian Mixture Model) for 

current input feature. 
 

On-The-Fly Partial Hypothesis Rescoring  
• On the CPU, rescore likelihoods of partial hypotheses using a higher 

order N-gram language model stored in main memory. 
• Partial Hypothesis rescoring and the observation probability 

computation can be performed concurrently. 
 

WFST Search 
• Frame synchronous Viterbi search is performed on the GPU using 

WFST network composed using unigram language model. 
• Maintaining N-best paths during decoding to ensure good hypotheses 

are not pruned early. 

Experimental Evaluation 
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• Accuracy improves when maintaining more number of N-

best hypothesis. 

• Accuracy improvement converges with large N. 

• 20x speed-up compared to standard WFST 

decoding on CPU at word accuracy of 93.80% 

• 95.40% maximum accuracy is achieved. 
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20X 
• Acoustic Model 

• SI-284 Data Set 
• 3000 tied state  
• 16 mixture Gaussians 
• 39th MFCCs features 

 

• Language Model 
• Wall Street Journal 5k  
• 1-gram: 5k entries 
• 2-gram: 1.6M entries 
• 3-gram: 2.7M entries 

 

• Evaluation Set 
• Nov. 92 ARPA WSJ test set 
• 330 sentences 

 

• NVIDIA GTX 680 
• Keplar architecture 
• 1536 CUDA cores 

 

 

Relationship between word accuracy and Real Time Factor (RTF) 

Decoding Process 

Relationship between word accuracy and beamwidth for 
maintaining different number of N-best hypothesis 



Experimental Evaluation 

Relationship between vocab. Size and Real Time Factor (RTF) 

0.10	
0.13	 0.14	

0.15	 0.17	 0.17	

	-		

	0.1		

	0.2		

	0.3		

	0.4		

	0.5		

	-		

	200.0		

	400.0		

	600.0		

	800.0		

	1,000.0		

	1,200.0		

100k	200k	300k	400k	500k	600k	700k	800k	900k	 1M	

R
e
a
l	T
im

e
	F
a
ct
o
r	

S
iz
e
	(
M
B
)	

Vocab.	size	

SIZE(MB)	

RTF	

15.94	

9.61	 9.15	

15.9	

9.35	 8.77	

16.26	

9.38	 8.82	

0	

5	

10	

15	

20	

25	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

W
o
rd
	E
rr
o
r	
R
at
e
	(
%
)	

Real	Time	Factor	(RTF)	

UGM/3GM	 UGM/4GM	 UGM/5GM	

Relationship between vocab. Size and Real Time Factor (RTF) 

• Acoustic Model 
• All WSJ corpus 
• 10,000 tied state  
• 32 mixture Gaussians 
• 39th MFCCs features 

 

• Language Model 
• 1M vocab.   
• 3-gram: 497.6M entries 
• 4-gram: 767.8M entries 
• 5-gram: 977.1M entries 

 

• Evaluation Set 
• WSJ test set 
• 543 sentences 

 

N-Best On-The-Fly Partial Hypothesis Rescoring  
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Standard One-Best Search 
• Choose only best hypothesis when multiple arcs meet in 

the same destination state. 

Proposed N-Best Search with Rescoring 
• Rescore the partial hypothesis using likelihood difference 

between larger N-gram and unigram (c[.]) when hypothesis 
outputs word symbol. 

• Maintaining N-best paths effectively allows multiple word 
hypotheses to be kept until rescoring can be applied 

• 1M vocab. network can be decoded on a modern GPU. 

• Network size does not significantly affect decoding 

speed. 

• 2.74x faster than realtime when the WER is 

9.35%. 

• 91.23% maximum accuracy is achieved. 

Why “N-Best”? 
 Early pruning: Best hypothesis g2 is pruned 
before the rescoring. 

Best Path 

α[.]: State likelihood 

    g: Partial hypothesis 

 c[.]: Language model 

        likelihood difference 

w[3] > w[2] > w[1] 

α[g1] ≈ α[g2] > α[g3] ≈ α[g4] 

c[g1] >> c[g2] 

 i[.]: Input symbol 

o[.]: Output symbol 

w[.]: Arc weight 

(a) Standard One-Best Search (b) Proposed N-Best Search 

Load Balancing Between GPU and CPU using OpenMP 

GPU and CPU Parallel Execution  
• Language model look up has no data dependency between 

Acoustic likelihood computation. 
• CPU function and GPU kernel can be conducted in parallel 
• Language model runtime can be hided behind GPU run 

time. 

GPU and CPU load Balancing using OpenMP 
• Language model look up is longer than Acoustic likelihood 

computation time with small acoustic model 
• Language model lookup for each hypothesis is 

independent. 
• Language model lookup phase is parallelized using 

OpenMP on the CPU to achieve better load balance. Ratio of the processing time per phase 
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