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Abstract
Effectively exploiting the resources available on modern mul-
ticore and manycore processors for tasks such as large vocab-
ulary continuous speech recognition (LVCSR) is far from triv-
ial. While prior works have demonstrated the effectiveness of
manycore graphic processing units (GPU) for high-throughput,
limited vocabulary speech recognition, they are unsuitable for
recognition with large acoustic and language models due to the
limited 1-6GB of memory on GPUs. To overcome this limita-
tion, we introduce a novel architecture for WFST-based LVCSR
that jointly leverages manycore graphic processing units (GPU)
and multicore processors (CPU) to efficiently perform recogni-
tion even when large acoustic and language models are applied.
In the proposed approach, recognition is performed on the GPU
using an H-level WFST, composed using a unigram language
model. During decoding partial hypotheses generated over this
network are rescored on-the-fly using a large language model,
which resides on the CPU. By maintaining N -best hypotheses
during decoding our proposed architecture obtains comparable
accuracy to a standard CPU-based WFST decoder while im-
proving decoding speed by a factor of 11×.
Index Terms: Large Vocabulary Continuous Speech Recogni-
tion, WFST, On-The-Fly Rescoring, Graphics Processing Units

1. Introduction
Voice user interfaces are rising as a core technology for next
generation smart devices. To ensure a captivating user expe-
rience it is critical that the speech recognition engines used
within these systems are robust, fast, have low latency and pro-
vides sufficient coverage over the extremely large vocabular-
ies that the system may encounter. In order to obtain high
recognition accuracy, state-of-the-art speech recognition sys-
tems for tasks such as broadcast news transcription [1, 2] or
voice search [3, 4] may perform recognition with large vocab-
ularies (> 1 million words), large acoustic models (millions of
model parameters), and extremely large language models (bil-
lions of n-gram entries). While these models can be applied in
offline speech recognition tasks, they are impractical for real-
time speech recognition due to the large computational cost re-
quired during decoding.

The use of statically compiled WFST networks, where WF-
STs representing the HMM acoustic model H , context model
C, pronunciation lexicon L, and language model G composed
as one single network, commonly known as an H-level WFST,
makes it possible to perform speech recognition very efficiently
[5]. However, the composition and optimization of such search
networks becomes infeasible when large models are used.

On-the-fly composition is a practical alternative to perform-
ing speech recognition with a single fully composed WFST. On-

the-fly composition involves applying groups of two or more
sub-WFSTs in sequence, composing them as required during
decoding. One common approach is to precompose H◦C◦L
before decoding and then compose this with the grammar net-
work G on-the-fly. On-the fly composition has been shown to
be economical in terms of memory, but decoding is significantly
slower than a statically compiled WFST [6].

An alternative approach for efficient WFST decoding is to
perform hypothesis rescoring [3] rather then composition dur-
ing search. In this approach Viterbi search is performed us-
ing H◦C◦L◦Guni, and another WFST network Guni/tri is
used solely for rescoring hypotheses generated from the Viterbi
search process in an on-the-fly fashion. Since this algorithm al-
lows all knowledge sources are available from the beginning of
the search this is effective for both selecting correct paths and
pruning hypotheses.

With manycore graphic processing units (GPU) now a com-
modity resource, hybrid GPU/CPU computational architectures
are a practical solution for many computing tasks. By lever-
aging the most appropriate architecture for each computational
sub-task, significantly higher throughput can be achieved than
by using either platform alone. Prior works [7, 8] have demon-
strated the efficiency of using GPU processors for speech recog-
nition and obtained significant improvements in throughput for
limited vocabulary tasks [7]. The limited memory on these
architectures, however, becomes a significant bottleneck when
large acoustic and language models are applied during recogni-
tion. The most significant challenge is handling the extremely
large language models used in modern broad-domain speech
recognition systems [1, 2, 4]. These models can contain mil-
lions of unique vocabulary entries, billions of n-gram contexts,
and can easily require 20 GB or more to store in memory. Even
when significantly pruned these models cannot fit within the
limited memory available on GPU platforms. To efficiently per-
form speech recognition with large acoustic and language mod-
els we believe a hybrid GPU/CPU architecture which leverages
large memory and local-cache of the CPU with the computa-
tional throughput of GPU architectures is well suited.

In this paper we introduce a novel on-the-fly hypothesis
rescoring algorithm for Hybrid GPU/CPU LVCSR engines. An
overview of the proposed approach is shown in Figure 1. Viterbi
search is performed on the GPU using a fully composed H-
level WFST, composed with a unigram language model. For
each observation frame state-likelihoods are computed locally
on the GPU and when a word-boundary is encountered the par-
tial hypotheses (word sequence) is rescored on the CPU using
a large n-gram language model. State likelihoods are then up-
dated incorporating the likelihood from the higher order lan-
gauge model, while search is progressed on the GPU.

This paper is organized as follows. In Section 2 we review
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Figure 1: Detailed implementation structure.

prior works that invesitigated speech recognition decoding on
manycore GPU platforms. Section 3 introduces our proposed
hybrid GPU/CPU decoder and describes a novel on-the-fly hy-
pothesis rescoring method implemented within this framework.
In Section 4 we present the results of an experimental eval-
uation using the proposed framework, comparing the speech
recognition accuracy and decoding speed obtained using CPU
and GPU-based WFST decoders with our proposed GPU/CPU
framework. Conclusions are given in Section 5.

2. Previous Work: GPU-based WFST
Decoding

LVCSR is highly amenable for parallelization on GPUs. There
are 1,000s to 10,000s concurrent tasks that can be executed at
the same time in both the acoustic likelihood computation phase
(Phase 1) and as well as the WFST search phase (Phase 2). In
a sequential speech decoder, more than 80% of execution time
is spent in Phase 1[9]. The computation in Phase 1 is a Gaus-
sian mixture model evaluation to determine the likelihood of an
input feature matching specific acoustic symbols in the speech
model. The structure of the computation resembles a vector
dot product evaluation, where careful structuring of the operand
data structures can achieve 16-20× speedup on the GPU [7, 8].
With Phase 1 accelerated on the GPU, Phase 2 dominates the
execution time. Phase 2 uses the speech model to infer the most-
likely sequence seen so far.

The computation in Phase 2 involves traversal through a
large graph-based model guided by acoustic symbol likeli-
hoods. This computation has highly unpredictable control paths
and data access patterns and is therefore communication inten-
sive. Specifically, Phase 2 performs a complex graph traversal
over a large irregular graph representing the WFST recognition
network with millions of states and tens of millions of arcs. The
data working set is too large to be cached and access pattern is
determined by input available only at run time. Implementing
Phase 2 on the GPU is challenging, as operations on the GPU
are most efficient when performed over densely packed vectors
of data. Accessing data elements from irregular data structures
can cause an order of magnitude performance degradation. For

Table 1: Summary of fully composed WFST networks.
1 Gram 2 Gram States Arcs

Nbi 4,989 835,688 3,142,982 5,748,947
Nuni 4,989 0 46,305 94,205

this reason, many have attempted to use the CPU for this phase
of the algorithm with limited success [10, 11]. The sub-optimal
performance is mainly caused by the significant overhead of
communicating significant amount of intermediate results be-
tween phases 1 and 2 in every time step.

One can implement both phases of the inference engine
on the GPU, and maintain the intermediate data on the GPU.
This is achieved by using a technique we developed in [7, 8]
for dynamically constructing efficient vector data structures at
run time. This technique allows the intermediate results to
be efficiently handled within the GPU subsystem and elimi-
nates unnecessary data transfers between the CPU and the GPU.
By eliminating significant data transfer overhead between the
CPU and GPU, we speedup the decoding process by more than
an order of magnitude compared to an optimized sequential
implementation[7].

3. GPU/CPU-based on-the-fly Hypothesis
Rescoring

In this paper, we propose a new on-the-fly rescoring algo-
rithm for our Hybrid GPU/CPU based large vocabulary con-
tinuous speech recognition (LVCSR) engine. In the proposed
method, Viterbi search is performed on the GPU using an H-
level WFST network Nuni, composed using unigram language
model. Higher order language models are stored and accessed
via the CPU and are not composed into the H-level WFST net-
work applied during search.

In the frame-synchronous Viterbi search, partial word hy-
potheses are generated by the WFST network Nuni when a
transition outputs a word symbol. Each unique partial word hy-
pothesis g is rescored on-the-fly using a higher order language
model which resides on the CPU. Traditionally, when evaluat-
ing a transition e with an output word symbol in the WFST net-
work, a new word hypothesis g′ is generated with its likelihood,
α[g′], calculated as:

α[g′] = α[g] + β[e] + w[e]. (1)

where β[e] is the observation probability of the input symbol,
w[e] is the state transition probability, and α[g] is the likelihood
from the previous time-synchronous step.

With language model rescoring, a likelihood correction,
c[e], is applied:

α[g′] = α[g] + β[e] + w[e] + c[e, g] (2)

The value of c[e, g] is the difference in the language model
scores between the unigram language model Puni(o[e]) used
during WFST composition and a higher order language model,
Pngm(o[e]), applied during rescoring . For the word sequence,
h[g], that is specified in the word hypothesis:

c[e] = log (Puni(o[e]))− log (Pngm(o[e]|h[g])). (3)

The proposed rescoring process can effectively incorporate
information from higher order language models. Using a WFST
network based on only unigram likelihoodNuni is significantly



Best Path 
State likelihood α[.]  1

2

3 4

i[1]: ε / w[1] 

i[2]:ε / w[2] 

i[3]: o[3] / w[3] 

1

2

3 4

i[1]: ε / w[1] 

i[2]:ε / w[2] 

i[3]: o[3] / w[3] 

α[g1]+w[1] 

α[g2] 

α[g1] 

α[g1’]=α[g1]+w[1,3] 

α[g1] 
α[g3] 

α[g2] 
α[g4] 

α[g1]+w[1] 
α[g2]+w[2] 

α[g’2]=α[g2]+w[2,3]+c[g2] 
α[g’1]=α[g1]+w[1,3]+c[g1] 

(a) 

(b) 

Figure 2: Example of the standard and the proposed algorithm
(a) Standard algorithm (b) Proposed algorithm

smaller than a WFST network composed with a higher order
language model Nngm. Table 1 shows the comparative size
of the WFSTs composed with unigram and bigram language
model. The unigram model is approximately 1.5% the size of
the bigram model even with extremely large vocabularies (> 1
million words). It can easily reside in GPU memory, which is
not case for higher order model.

Using a unigram WFST Nuni during search, however, has
one major drawback. Compared to the large number of states
and arcs which remain active and a WFST composed with n-
gram language model (Nngm), the decoding paths in the uni-
gram case may be pruned before they reach an arc e with an
output symbol where a word hypothesis can be rescored. This
scenario is illustrated in Figure 2a, where the Path(2→3→4)
is pruned before rescoring can be performed when evaluating
the arc between states 3 and 4, even if Path(2→3→4) may be a
more likely choice than Path(1→3→4).

The resulting accuracy degradation from early pruning
when maintaining only the 1-best path can be observed in Fig-
ure 3. The dotted lines represents the reference accuracies when
using a fully composed WFST with unigram and bigram lan-
guage models. The curve with the diamond symbols shows that
rescoring based on Nuni with a bigram language model can
provide more than half of the accuracy difference, but performs
significantly worse than the standard bigram case.

To resolve the early pruning issue we investigated an ap-
proach in which we maintained N -best paths when decoding
theNuni. As illustrated in Figure 2b, maintainingN -best paths
effectively allows multiple word hypotheses to be kept until
rescoring can be applied. In Figure 3, the curve with x-symbol
shows that by maintaining just the 3-best paths, we obtain most
of the benefit of using a bigram language model. Further more,
doing rescoring by using a trigram language model for rescor-
ing, we comfortably exceed the accuracy of an H-level WFST
network composed using a bigram language model.

Maintaining N -best paths in a WFST network has many
challenges. The most important challenge is the merging of N -
best lists when on reconvergent paths. In Figure 2b for example,
the N -best lists from State 1 and State 2 converges at State 3,
and must produce an N -best list. We chose to maintain a sorted
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Figure 3: Relationship between word accuracy and beamwidth
for maintaing different number of N -best hypothesis.

N -best list with the best path on top. This simplifies the process
of mergingN -best lists into a process of merge sort. On a CPU,
this process can be performed quite efficiently.

On a GPU, however, there may be hundreds of arcs, each
with an N -best list, trying to write into the N -best list at the
destination state. We handled this challenge by developing a
new technique to merge the N -best list atomically on a highly
parallel platform using atomic Compare-And-Swap operations.
The GPU provides hardware-supported atomic operations that
are efficiently implemented and we leverage this capability to
implement our N -best “merge-and-sort” algorithm on this plat-
form.

4. Experimental Evaluation
We evaluated the effectiveness of our proposed on-the-fly hy-
pothesis rescoring algorithm on the Wall Street Journal (WSJ)
task. We evaluated the performance on the November 1992
ARPA WSJ test set which comprises of 330 sentences. The
acoustic model was trained using HTK and the Wall Street Jour-
nal SI-284 data set. The resulting acoustic model contains 3,000
16-mixture Gaussians, and 39 dimensional MFCCs are used as
feature vectors.

WFST networks were compiled and optimized offline.
Both unigram Nuni and bigram Nbi WFST networks were op-
timized to the one-level step [7]. As a result, final unigram
WFST network for the proposed algorithm has 98.6% smaller
number of states and 98.4% smaller number of arcs compared
to Nbi as shown in Table 1. We use the standard WSJ 5k
closed language models for both WFST composition as well
as the on-the-fly rescoring. For the on-the-fly rescoring, the
language model probabilities are calculated on CPU using the
open source toolkit KenLM [12].

We have evaluated the proposed algorithm using 2 differ-
ent NVIDIA GPUs, the GTX580 (Fermi architecture) and the
GTX680 (Keplar architecture) and Intel i7-2600k CPU plat-
form. The most recent NVIDIA GTX680 GPU consists of eight
new Streaming Multiprocessors (SMX) with 1536 CUDA cores.
The Keplar architecture increased L2 cache hit bandwidth by
73% compared to the Fermi architecture. As a result atomic
operation throughput has also been increased particularly for
the atomic operation to shared address 9× times faster and the
atomic operation for independent address 2.7× times faster than
the GTX580 [13] .

Figure 4 shows the relationship between the word accuracy
and the decoding time. We use the real time factor (RTF) as a
performance measure which indicates the rate of decoding time
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vs. utterance length. As shown in Figure 4, the proposed algo-
rithm achieves 11× speed-up compared to standard WFST de-
coding method using Nbi at word accuracy of 93.76%. Using
a trigram language model for rescoring improved word accu-
racy by 1.20% absolute to 94.96% while increasing the decod-
ing time 4% compared to bigram case. We can expect further
speed-up by adjusting the search beam width adaptively based
on the number of active sets as proposed [7, 8].

Figure 5 shows the ratio of processing time per phase of the
proposed algorithm for different size of N as well as different
GPU architectures. Comparing to 1-best case, the processing
time of the on-the-fly rescoring phase is increased 2× while the
other phases are increased 1-1.5× whenN is 3. Since language
model lookup is conducted on the CPU, the processing time
is increased rapidly compared to the other phases on the GPU.
In case of a large N , the on-the-fly rescoring phase could be
the bottleneck in our Hybrid GPU/CPU architecture. In future
work we intend to investigate the use of multi-core CPUs to
parallelize this phase.

Compared to the GTX580 the GTX680 performs decoding
7% faster. Major improvements are achieved from the graph
traversal phase and the data gathering phase which use the
atomic operation for merging and sorting theN -best hypotheses
and for gathering information of the active sets. But, the acous-
tic likelihood computation phase achieves almost same perfor-
mance with 3× more CUDA cores due to the unified clock do-
main an the reduced the frequency of the CUDA cores [13].

5. Conclusion
In this paper we introduced a novel architecture for a hybrid
GPU/CPU-based LVCSR and proposed an on-the-fly rescoring
to allow large language models to be handled at the same at as
leveraging the computation performance of the modern GPU ar-
chitectures. We obtain 11× speed up compared with a standard
WFST decoding algorithm running on CPU at a word accuracy
of 93.76%. We found that using a unigram H-level WFST net-
work on the GPU can achieve fast execution speed and com-
bined with on-the-fly rescoring can improve accuracy compared
to the fully composed bigram case. To achieve comparable per-
formance, however, one needs to maintain N -best hypotheses
during decoding.
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