A Parallel Implementation of Viterbi Training for Acoustic
Models using Graphics Processing Units

ABSTRACT

Robust and accurate speech recognition systems can only
be realized with adequately trained acoustic models. For
common languages, state-of-the-art systems are trained on
many thousands of hours of speech data and even with large
clusters of machines the entire training process can take
many weeks. To overcome this development bottleneck, we
propose a parallel implementation of Viterbi training op-
timized for training Hidden-Markov-Model (HMM)-based
acoustic models using highly parallel graphics processing
units (GPUs). In this paper, we introduce Viterbi training,
illustrate its application concurrency characteristics, data
working set sizes, and describe the optimizations required for
effective throughput on GPU processors. We demonstrate
that the acoustic model training process is well-suited for
GPUs. Using a single NVIDIA GTX580 GPU our proposed
approach is shown to be 94.8x faster than a sequential CPU
implementation, enabling a moderately sized acoustic model
to be trained on 1000 hours of speech data in under 7 hours.
Moreover, we show that our implementation on a two-GPU
system can perform 3.3x faster than a standard parallel ref-
erence implementation on a high-end 32-core Xeon server at
1/15th the cost. Our GPU-based training platform empow-
ers research groups to rapidly evaluate new ideas and build
accurate and robust acoustic models on very large training
corpora at nominal cost.

Index Terms: Continuous Speech Recognition, Acoustic
Model Training, Graphics Processing Unit

1. INTRODUCTION

The availability of very large training corpora (1000 hours
and more) are empowering speech researchers to achieve
ever higher accuracy on challenging speech recognition tasks.
However, training acoustic models on these large corpora can
take weeks, even on large clusters of workstations. This lim-
its the number of methods and ideas that can be explored
and validated in a timely manner. To overcome this bottle-
neck, in this paper we introduce a novel approach to rapidly
train acoustic models using affordable ($500) off-the-shelf
graphics processing units (GPU)s. Our platform can train
an acoustic model at 94.8x faster than an off-the-shelf se-
quential CPU implementation. This platform is ideal for
accelerating the exploration and validation of ideas for au-
tomatic speech recognition.

In state-of-the-art speech recognition systems, Hidden
Markov Models (HMM) are used to model acoustic events.
Each word within a speech recognition system is represented
as a sequence of acoustic events, each state representing a
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Figure 1: The acoustic model training application

specific phone-like unit as illustrated in Figure 1. During
training, each segment of the acoustic signal, or more specifi-
cally, Mel-Frequency Cepstral Coefficients (MFCC) features
extracted from the acoustic signal, are mapped to an acous-
tic state and the parameters of each model are updated to
better model the acoustic signal observed during training.
To further improve speech recognition accuracy, separate
models are trained for each phonetic-context in which an
acoustic event occurs. The acoustic context is defined by
the neighboring phone models. This significantly increases
the size of the model and the number of free parameters
that must be estimated during training. A moderately-sized
speech recognition system for English, for example, gener-
ally models 5000 to 10,000 phonetic events and contains tens
of millions of free parameters.

To effectively train such models large amounts of training
examples (speech samples) are required. Training of these
models is highly data-parallel involving the aggregation of
statistics from a large training data set possibly contain-
ing millions of utterances. Concurrency exists both between
utterances and within an utterance, making the training
process highly amenable for parallelization. However, con-
structing an efficient parallel implementation requires not
only extensive application concurrency, but also a deep un-
derstanding of the available parallel computation resources.

As the development platform in this work we use the
NVIDIA GTX580 GPU which contains 16 cores on-a-chip,
two 16-wide single-precision SIMD pipelines in a core, as well
as hardware managed cache and software managed memory
scratch pad. The GPU is programmed using CUDA [1],
a representative data-parallel manycore programming lan-
guage where an application is organized into a sequential
host program that is run on a CPU, and one or more paral-
lel kernels running on a GPU. Each kernel describes a scalar
sequential program that will be mapped across a set of par-
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Figure 2: Acoustic representation of a word

allel threads, which are organized into groups called thread
blocks. The challenge is to effectively organize the training
algorithm into threads and thread-blocks and leverage avail-
able memory resources and synchronization capabilities to
efficiently execute on a manycore computation platform.

2. ACOUSTIC MODEL TRAINING

For any given word, the corresponding acoustic model is
synthesised by concatenating phone models to make words
as defined by a pronunciation dictionary. The parameters
of these phone models are estimated from training data
consisting of speech waveforms and their orthographic tran-
scriptions. Each phone is represented by a continuous den-
sity HMM of the form illustrated in Figure 2 with transi-
tion probability parameters and output observation distri-
butions.

Estimation of HMM parameters is commonly performed
according to the the Maximum Likelihood Estimation
(MLE) criterion, which maximizes the probability of the
training samples with regard to the model. This is done by
applying the Expectation-Maximization (EM) algorithm [2],
which relies on maximizing the log-likelihood from incom-
plete data, by iteratively maximizing the expectation of log-
likelihood from complete data. As shown in [3], this leads to
the Baum-Welch reestimation formulas. The MLE criterion
can be approximated by maximizing the probability of the
best HMM state sequence for each training sample, given the
model, which is known as segmental k-means [4] or Viterbi
training. Viterbi training involves much less computational
effort than Baum-Welch and in recent work has been shown
to be just as effective as the Baum-Welch method [5] for
training acoustic models for speech recognition.

2.1 Viterbi Training of Acoustic Models

Figure 3 illustrates the main steps of the Viterbi Training
process, which include (0) loading training data, (1) com-
puting observation probabilities, (2) assigning observations
to specific states and Gaussian components within the model
(E-Step), and (3) collecting statistics from the expectation
step to reestimate model parameters (M-step).

Given a set of training observations O",1 < r < R and an
HMM state sequence 1 < j < N the observations sequence
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Figure 3: Training flow for one training iteration

is aligned to the state sequence via Viterbi alignment. This
alignment results from maximizing

¢n(T) = max [¢i(T)ain] (1)

for 1 < i < N where
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with initial conditions, ¢1(1) = 1 and ¢;(1) = a1;b;(01), for
1 < j < N. When observation likelihoods are modeled as
mixture Gaussian densities the output probability b;(o;) is
as defined as:

M
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where Mj is the number of mixture components in state j,
Cjm is the weight of the m'™ component and N(-;, u, ¥) is
a multivariate Gaussian with mean vector p and covariance
3. In Viterbi training, model parameters are updated based
on the single-best alignment of individual observations to
states and Gaussian components within states. From this
alignment, transition probabilities are estimated from the
relative frequencies
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where A;; it the total number of transitions from state ¢ to
state j. The means and variances of the observation densi-
ties are updated using an indicator function 1}, (t) which
is 1 if oy is associated with mixture component m of state j
and is zero otherwise.
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and the mixture weights are computed based on the number




of observations allocated to each component
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2.2 Prior Works

There has been a number of efforts over the past decades
to reduce the time required to train acoustic models for
speech recognition. In 1990, Pepper et al. experimented
with performing training on a set of computers organized
in a ring [6]. In 1992, Foote et al. introduced an approach
to distribute HMM training to a set of five loosely-coupled
Armstrong II multi-processor network computers. In 1997,
Yun et al. mapped the training algorithm to an FPGA in-
frastrcture [7] and in 2006 Poprescu et al. implemented
acoustic model training on a MPI-based cluster with three
nodes [8]. These prior works all achieved less than 3x
speedup over sequential runs and thus have not been widely
used.

The availability of general-purpose programmable GPU
and data parallel programming models [1] has opened up
new opportunities to train speech models at orders of mag-
nitude faster than before. This is further empowered by
new algorithms and implementation techniques that focus
on parallel scalability [9], which expose the fine-grained con-
currency in compute-intensive applications and exploits the
concurrency on highly parallel manycore microprocessors.

In culMM [10], Liu implemented training of discrete
HMMs on GPUs. This generic training engine, although
effective for applications such as biological sequence analy-
sis, is not appropriate for acoustic model training as it is
unable to handle continuous observation models and can-
not take advantage of the special left-right model structure
used in speech recognition. In [11], Dixon et al. introduced
techniques for fast acoustic likelihood computation in the
context of a speech recognition decoder, but did not ex-
tended the work to the training process and in [12] Pang-
born constructed an efficient implementation on the GPU
for flow cytometry used in biology and immunology. This
approach, however, only trained a single Gaussian mixture
model (GMM) and is thus unsuitable for acoustic model
training. In this paper we describe an optimized infrastruc-
ture for training HMMs, where we leverage the special left-
right HMM model structure commonly used in speech recog-
nition while heavily optimizing the observation probability
computation.

(7)

Cim =

3. VITERBI TRAINING ON MANYCORE
PROCESSORS

Training is a highly data-parallel operation involving the
aggregation of statistics from a large training data set possi-
bly containing millions of utterances. Concurrency exists
both between utterances and within an utterance, mak-
ing the training process highly amenable for parallelization.
However, constructing an efficient parallel implementation
requires not only extensive knowledge in application concur-
rency, but also a deep understanding of the available parallel
computation resources.

3.1 Step 1: Observation Probability Compu-
tation

The observation probability computation step implements

Equation 3, and contains five levels of concurrency: among
features, among mixture components, among phone states,
among input observations, and among utterances. Table 1
illustrates the amount of concurrency available, the implied
task size and data working set size (data size) if only one
level of concurrency is exploited.

Table 1: Observation Probability Concurrency
Analysis
Concurrency Degree of Task Size Data Size
Opportunity | Concurrency | (# IPT!) | (# values)
Features 39 2 2
Mixtures 32 100 80
Phone State 100 4000 2560
Observation 360 400K 256K
Utterance 1.1M 144M 270K

3.1.1 Concurrency

Concurrency measures how many threads can be working
concurrently working on a piece of workload and make mean-
ingful progress in completing the application. The acous-
tic models we are training are a standard Gaussian mix-
ture acoustic model with 39-dimensions per mixture, with
32 mixtures components. Hence, there is a 39-way concur-
rency among the 39-dimensional features when computing
the likelihood of an observation matching one Gaussian mix-
ture component, and there is a 32-way concurrency when
computing the likelihood of an observation, which is a pro-
cess of comparing an input sample to each of the 32 com-
ponents of a Gaussian mixture model representing a phone
state in an acoustic model.

The input data set we use here transcribed audio seg-
ments from the AMI Meeting Corpus?, which represents nat-
ural conversational speech in human interactions recorded in
meetings. The audio segments are 3.6 seconds long on aver-
age, which consists of transcripts of 5-10 words. The training
of one utterance is a process of matching a transcript of 5-10
words, which translates to an average of 30 phones or aprox-
imately 100 phone states. Among the phone states in one
utterance, there is a 100-way concurrency in comparing an
input sample to the phone states.

Each input sample is a 25ms-window of observation. The
observation windows overlap, and there are 100 overlapping
window of observations taken each second. With an average
of 3.6 seconds long utterances in the corpus we used, there is
an average of 360 observations taken per utterance. Hence,
we have a 360-way concurrency in computing the processing
all the observations at the same time.

One training iteration can utilize as many as 1.1M utter-
ances in a corpus of 1000 hours of audio. The observation
probability of all the utterances can be computed concur-
rently, hence, the 1.1 million way concurrency that could be
exploited.

3.1.2 Task Size

Task size is measured by the number of instructions that
can execute in a thread before a synchronization event or
task completion (Instructions per task or IPT) . For ex-
ample, when a feature is assigned to a thread, each thread
can only perform a “weighted-difference” calculation (in two

92http://corpus.amiproject.org
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Figure 4: Observation probability

instructions) before synchronizing to sum the “weighted-
differences” between threads; for mixture-level parallelism,
each thread sums the “weighted-differences” sequentially,
and synchronize to calculate the weighted-sum of mixtures.

Alternatively, if each thread is responsible for computing
the observation probability of one input sample with one
phone state, it will be a 4000-instruction task.

Since there are on average 100 phone states per utterance,
if one thread is responsible for computing the observation
probability of all phone state for an utterance for one input
sample, it be executing a 400k-instruction task.

If a thread is assigned to handle all obervation probabil-
ity calculation for one utterance, it will be executing 144M
instructions.

3.1.3 Data Size

Data size is the number of values the data working set
contains in order to perform the task at each concurrency
level within each thread. It is the number of values rather
than bytes to make the metrics agnostic to the precision of
the value used in a particular implementation.

For feature-level concurrency, each thread only require the
mean and variance of a feature dimension, and thus only has
a data size of two values before synchronization.

For mixture level concurrency, each thread requires 39
mean, 39 variance, as well as a likelihood constant and
weight of the mixture, for a total of 80 values for the com-
putation.

For phone state level concurrency, each thread requires
access to all 32 mixtures in the existing acoustic model to
compute the obervation probability between one observation
and one phone state. This sums up to a total of 2560 values
for the computation.

For observation level concurrency, each thread is respon-
sible to compare one imput sample to all phone states in a
training utterance. The data working set would involve an
average of 100 phone states per utterance, which adds up to
256000 values representing 100 phone states.

For utterance level concurrency, each thread is responsible
for all computations corresponding to one utterance, which
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calculation over time and phone states

include the phone state models as well as an average of 360
(39-value) input samples for utterances with an average of
3.6-second long. This set of data totals to 270 thousand
values.

3.1.4 Design Decisions

For efficient implementation on the GPU, we choose the
level of concurrency to maximize task granularity while al-
low the data working size to be small enough to fit into
fast hardware-managed cache and software-managed mem-
ory scratch space.

Figure 4 illustrates the parallelization of the observation
probability calculation. The goal is to select a level of con-
currency that can be efficienty implemented on a GPU with
a memory hierarchy similar to that of the NVIDIA Fermi
architecture.

In Figure 4, we have the transcript represented as a se-
quence of phone states on the y-axis, and input acoustic sam-
ples represented as a sequence of extracted acoustic features
over time on the x-axis. This creates a matrix of results that
are computed to determine the best alignment between the
transcript and the input utterance, so that the correspond-
ing input samples can be used to improve the characteristics
of the phone state.

We utilizd the phone state level concurrency with a data
size of 2560 values represent 10KB of data working set of
acoustic models per thread block. 10KB of shared data al-
lows multiple thread blocks to execute on a multiprocessor
with limited shared memory size of less than 50kB. The
threads are organized to compute the observation samples
for one phone state. This maximizes the phone state model
data reuse from the on-chip shared memory in the calcula-
tion of the observation probabilities to construct a code-book
for the E-step.

The input sample data for each utterance is transposed
such that there are is one array for each feature dimension
over time steps. This allows each thread in a thread block
to have coalesced memory accesses when accessing the input
sample features.



3.1.5 Applying Pruning

Pruning is an implementation optimization that focus on
computing the observation probability only for the more
likely candidate cells in the matrix of result illustrated in
Figure 4. We studied two approaches to computing the ob-
servation probability: with or without pruning.

One approach is to compute the observation probabilities
without pruning for all input samples, which corresponds
to computing a result for all cells in each row in Figure 4.
This is the most straight-forward implementation and is il-
lustrated for the “ch2” phone state with the row enclosed in
the dotted line. There is significate redundancies in this pro-
cess, as the white cells in the rows have very low likelihoods
of being part of the path through result matrix that repre-
sent an alignment between the transcript and the utterance,
as illustrated with the cells in black.

The other approach is to only compute the obseration
probability for the more likely candidate cells, which is of-
ten referred to an implementation “with pruning”. Prun-
ing in alignment is often performed by exploring the input
samples sequentially over time. With our parallel approach,
exploring input samples sequentially introduces sequential
dependencies that requires expensive synchronizations be-
tween threads and thread blocks.

We propose an alternative approach for pruning. We ob-
serve that the acoustic model training flow involves the con-
sideration of a transcript-input utterance pair more than
20 times. As the acoustic model improves in accuracy, we
expect only small flunctuations in transcript to input utter-
ance alignment. As a result, we compute only a margin of
cells around the best alignment from the previous training
iteration, illustrated in the shaded cells in Figure 4. Our
alternative pruning approach is able to preserve all bene-
fits of the parallelization design decisions, and has achieved
more than 10x improvements for the observation probabil-
ity computation step for utterances greater than 10 seconds
long.

3.2 Step 2a: Alpha Computation

The Alpha computation is the forward pass of the Viterbi
algorithm that uses dynamic programming to arrive at an
optimal estimation of match likelihood between the tran-
script and the acoustic input (Equation 2). Computation
is performed over each phone state and each time step as
illustrated in Figure 5, and keeps track of the path of best
alignment between the transcript and the acoustic input seen
before that phone state and time step.

This computation contains two levels of concurrency:
among phone states and among utterances. There exist data
dependency between input observations over time, along the
x-axis in Figure 5, which is illustrated with the white arrows
for one time step. We observe that the computation of state
likelihood at each time step depends on the results of the
result from the previous observation. Table 2 illustrates the
amount of concurrency available, the implied task size and
data working set size (data size) if only one level of concur-
rency is exploited.

Table 2: Alpha Calculation Concurrency Analysis

Concurrency Degree of Task Size Data Size
Opportunity | Concurrency | (# IPT?) | (# values)
Phone State 100 12 5
Utterance 1.1M 432k 36.5K

3.2.1 Concurrency

The audio segments are on average 3.6 seconds long in the
conversational audio corpus we use, with each audio segment
transcribing to 5-10 words utterances. This translates to an
average of 30 phones or approximately 100 phone states.
The alpha calculation, compute the values at the current
time step based on the values in the previous time step.
The application concurrency at the phone state level is ap-
proximately a 100-way concurrency.

As with the observation probability calculations, one
training iteration can utilize as many as 1.1M utterances
in a corpus of 1000 hours of audio. The alpha values for
multiple utterances can be computed concurrently, hence,
the 1.1 million way concurrency can be exploited.

3.2.2 Task Size

If each thread is responsible for computing the alpha value
of one input sample with one phone state, it will be a 12-
instruction task, which involves the computation illustrated
with the white arrows in Figure 5, and described in Equa-
tion 2.

If a thread is assigned to handle all alpha calculations for
one utterance, it will be executing 432K ( 12 instructions
per state-observation x 100 phone states x 360 input ob-
servations ) instructions before a thread synchronization is
required.

3.2.3 Data Size

For phone state level concurrency, each thread requires
access to five values. The model we consider (y-axis in
Figure 5) allows the alignment between the transcript and
acoustic input to stay in one phone state or move forward in
time by one phone step. Each phone state only have states
that only connect to themselves and to their next states.
This limit the data working set of each thread to: two alpha
values of the previous time step, two transition probabilities,
and one observation probability (computed in Step 1).

For utterance level concurrency, each a thread is respon-
sible for all computations corresponding to one utterance.
The data working set involve keeping track of the data work-
ing set of iterating through the time steps, as well as retain-
ing the backtrack information for extracting the optimal
alignment. For iterating through the time steps, we have
100 alpha values from the previous time step, 200 transi-
tion probabilities (white arrows in Figure 5), 100 observa-
tion probability (computed in Step 1), and 100 computed
alpha values from the current time step, which adds up to
500 values.

For retaining the backtrack information, we must store the
back pointer for each phone state and each time step, which
is 36k values ( 100 phone states x 360 input observations ).

For utterance level concurrency, we have a data working
set of 37k values (500 frequently accessed values + 36k back-
track log).

3.2.4 Design Decisions

As with the observation probability calculations, we
choose the level of concurrency to maximize task granular-
ity while allow the data working size to be small enough to
fit into fast hardware-managed cache and software-managed
memory scratch space. Thus the goal is to select a level of
concurrency that can be efficiently implemented on a GPU
with a memory hierarchy similar to that of the NVIDIA
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Figure 5: Alpha calculation over time and phone
states

Fermi architecture.

In Figure 5, we have the transcript represented as a se-
quence of phone states on the y-axis, and input acoustic
samples represented as a sequence of extracted acoustic fea-
tures over time on the x-axis. This creates a matrix of results
which represent the best alignment between the transcript
and the input utterance upto that point in time.

The computation is implemented as a time synchronous
operation, utilizing phone state concurrency, where the com-
putation for one acoustic input sample is dependent on the
results from the previous input sample. Each thread block
then iterates sequentially over the time steps, with each
thread handling the computation for one phone state.

We implement double buffering of the intermediate results
(100 previous alpha values and 100 current alpha values) in
shared memory, cache model transition probabilities (200
values) in shared memory, and stream in the observation
probabilities (100 values) to enable fast iteration of com-
putation without incurring excessive memory operations to
off-chip memory. The backtrack information is streamed out
as output to global memory, as it is required by Step 2b.

The time synchronous steps are implemented with a lo-
cal _syncthreads() at the thread block level to minimize the
overhead of synchrization for each time step.

3.3 Step 2b: Backtracking Computation

The backtrack computation traces the one-best path that
demonstrates the best alignment of transcript to the in-
put utterance. Backtrack starts from the end of the phone
state sequence representing the transcript and the end of
the acoustic input utterance, and backtracks step by step
to the beginning of the phone state sequence. Backtrack is
a highly sequential process over the input observations and
phone states, and is identical to pointer chasing. Utterance
level concurrency is often considered the only level of concur-
rency in the application. Table 3 illustrates the amount of
concurrency available, the implied task size and data work-
ing set size (data size) if only one level of concurrency is
exploited.

Table 3: Backtrace Calculation Concurrency Anal-
ysis

Concurrency Degree of Task Size Data Size
Opportunity | Concurrency | (# IPT?*) | (# values)
Utterance 1.1M 720 36k

3.3.1 Concurrency

As with the observation probability calculations and the
alpha computation, one training iteration can utilize as
many as 1.1M utterances in a corpus of 1000 hours of au-
dio. Backtracking for multiple utterances can be computed
concurrently, hence, the 1.1 million way concurrency can be
exploited.

3.3.2 Task Size

Calculating the backtrace through a single phone state
and input observation pair requires just 2 instructions. If
single thread is responsible for computing the backtrace
for an utterance with an average of 360 input observa-
tions and diagonal backtrace, would have approximately
720-instruction task.

3.3.3 Data Size

Data size is the number of values the data working set con-
tains in order to perform the task at each concurrency level
within each thread. Althrough the backtrack only touchs a
small percentage of the grid of back pointer values produced
in Step 2a, the entire grid back pointers could be touched
depending on the pointers. Since the entire grid must be
available to a single thread, the average data size is 36K
( 100 phone states x 360 input observations ).

3.3.4 Design Decisions

From Table 3 it is clear that the only feasible currency is at
the utterance level. Implementing an utterance level paral-
lelism naively causes a severe performance bottleneck. The
pointer chasing operation will involve two memory round
trips per time step, which can take 100,000s processor cy-
cles to backtrack 360 steps.

Figure 6 illustrate a prefetch-based implementation opti-
mization we implemented for this step. The shaded block of
data illustrates the blocks of backtrack information that is
being prefetched in to shared memory. By pre-fetching 32
time steps for 4 phone states of potentially accessible values
as a batch into the shared memory on the GPU and per-
form the backtrack from shared memory, we fully utilize the
load bandwidth and minimized memory latency caused by
the pointer chasing operations in the backtrack process to
global memory®.

3.4 Step 3: Maximization Step

The maximization step takes the aligned and labeled in-
put observations to update the aggregated statistics in the
acoustic model according to equations 4, 5, 6 and 7. The
process is an instance of histogram generation, where we
compute the statistical distribution of the training data set.

The histogram bins are the Gaussian mixtures in the
GMDMs representing triphone states in the acoustic speech
model. An acoustic speech model typically contains 10,000
triphone states in an acoustic codebook. For a 32 mixture
Gaussian model, there can be as many as 320,000 histogram

95The prefetch optimization could also be applied to the CPU
implementation but is not included in this comparison.
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Figure 6: Backtrace calculation over time and phone states

bins to accumulate to, each represented by a 39-dimensional
mean and variance value-pair. This number of bins would
be too large to fit in the last level cache of today’s micro-
processors, making an efficient histogram generation imple-
mentation challenging.

To further compound the issue, a typical training data set
for speech recognition set may involve thousands of hours
of audio, stored as segments of audio that represents speech
utterances separated by silences, taking tens to hundreds of
gigabytes of storage. With such a large amount of train-
ing data, the histogram counts run into issues of overflow.
The issue of overflow can be avoided by continuously re-
calculating transition probabilities of the HMMs and the
means and variances of each of the Gaussians in the final
acoustic model. Unfortunately this solutions run into issues
of underflow once large amounts of data has been processed.

To counter these deficiencies we use a hybrid local-global
accumulation method to efficiently aggregate the statistics in
the histogram generation process. In the local accumulation
step, batches of utterances are processed in parallel, and the
histogram counts for each batch are accumulated. The batch
sizes, ranging from 50 - 200 utterances, prevent histogram
counts from overflowing. Once the histograms from a batch
are accumulated they are merged into a global model.

Given the training data set and histogram characteristic,
we map each utterance to a thread block on the GPU, and
first aggregate the histogram information within an utter-
ance locally, then merging the results from each thread block
to the main histogram globally®. While this does not solve
the unchangeably large number of histogram bins, it does
alleviate the potential sequentialization bottlenecks at some
histogram bins when thousands of thread context concur-
rently performing memory operations on a popular triphone
state. For the aggregation of floating-point values, our im-
plementation extensively leverages floating-point atomic ad-
ditions to global memory in the NVIDIA Fermi architecture.

4. RESULTS

9%Numerical issues that usually plague likelihood accumulations
are handled when merging local values with global values.

4.1 Experimental Evaluation

We evaluated the effectiveness of our proposed GPU-based
acoustic model training procedure by first comparing the
time required to perform one iteration of Viterbi training
to a single-thread CPU implementation. The speech cor-
pora used in this evaluation consisted of 122hrs and approx-
imately 150k utterances of speech collected from headset,
lapel and far-field microphones from 168 sessions from the
AMI Meeting Corpus’. This data was replicated to gener-
ate the larger training sets up to 10,000 hours. An initial
cross-word, context dependent triphone model was trained
on this corpora using HTK [13] and the resulting model
consisted of 8000 codebooks with a maximum of 32 Gaus-
sian components per codebook. Each model consisted of a
three-state left-to-right hidden Markov model (HMM) with
two transitions per state, a local transition to the current
state and a transition to the neighboring state to the right.
Models were trained using 39-dimension acoustic features,
which combined 13-dimension MFCCs with its delta and
delta-delta components.

For evaluation we used the NVIDIA GTX580 GPU in an
Intel Core i7-2600k CPU-based host platform. The GPU
has 16 cores each with dual issue 16-way vector arithmetic
units running at 1.54GHz. Its processor architecture allows
a theoretical maximum of two single-precision floating point
operations (SP FLOP) per cycle, resulting in a maximum of
1.58 TeraFLOP of peak performance per second. The GPU
device has 1.5GB of GDDR5 memory. For CPU runs, we
used a 4-socket Intel Xeon X7550 Server running at 2.00GHz
with an aggregate of 32 cores and 128GB of memory. For
compilation, we used g++ 4.5.0 and NVCC 3.2 targeting
GPU Compute Capability 2.0.

4.2 Performance Analysis

Figure 7 illustrates the training time used for various
training set sizes. As expected, training time scales linearly
with increase in training set size. The CPU run-times were
measured with and without pruning using Viterbi training.
Using one hour of training time, we can process 7.2 hours of
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Figure 8: Training time for one iteration with 32
component Gaussian on a 1000-hour AMI corpus

training data with no pruning, and 31.3 hours of data with
pruning. With GPU-based implementation, we can process
1582.3 hours of data with no pruning and 2966.2 hours with
pruning using an equivalent manycore Viterbi training rou-
tine. The GPU-based implementation with pruning is 94.8x
faster a similar algorithm with pruning running sequentially
on the Xeon server CPU. Given a 10,000-hour training cor-
pus, a single GPU is able to perform one iteration of Viterbi
training in just 3.4 hours. The same 10,000-hour training
corpus would take 1393 hours without pruning and 320 hours
for the CPU case when pruning is enabled. With a multi-
GPU setup, our platform enables training on very large cor-
pora even with limited computational resources.

One approach to train a full acoustic model in-
volves iteratively increasing the number of Gaussian
components from a single Gaussian to a much large
number via mixture splitting. This process is com-
putationally expensive and involves performing 3-5
EM training iterations for acoustic models with in-
creasingly large observation models (GMMs). For
example, to train a 32-component GMM the train-
ing time required on a single GPU for a 1000-hour
training set is illustrated in Table 4. We assume an
average of four EM iterations are used per mixture
count, and accumulate the measured execution time
for our Viterbi training routine on the GPU. Tak-
ing into account the time necessary for performing
mixture splitting, we expect to be able to train an
acoustic model with 1000-hour of data over night in
less than 6.85 hours, with 0.37 hours accounted for
mixture splitting and cluster tying overhead. Our
rapid training system can also allow new ideas and
concepts to be tested on a 100-hour training set in
less than one hour.

Figure 8 illustrates the training time achievable with a

four-socket 32-core Xeon server costing over $30,000. Given
a 1000-hour training set, the utterances are dynamically
scheduled onto a varying number of CPU threads. We see
that a single GPU system out performs the 32-core Xeon
server by 82%, and that a two-GTX580 desktop system that
cost less than $2,000 can be 3.3x faster in performing one EM
iteration with 32-component GMMs on a 1000-hour training
set.

Figure 10 illustrates benefit of pruning with the obser-
vation probability computation time measured for the im-
plementations without pruning and with various degrees of
pruning. We see a fixed 0.2ms overhead for performing
the observation probability computation, with include setup
processes such as copying the acoustic models of the phone
states into the shared memory. The computation time with-
out pruning increases quadratically with respect to the input
utterance length, and computation time with pruning scales
linearly with respect to the input utterance length. While
the actual computation times fluctuates for different utter-
ance over the range of utterance length, the line of best fit
and the quadratic and linear relationships can be clearly
observed as the slop of log-log plot. The benefit of pruning
increases to more than a order of magnitude speedup for
utterances longer than 10 seconds long.

Figure 10 also illustrates that having pruning sample mar-
gins of less than 64 samples does not result in significantly
more speedup. A margin of 64 samples means that we an-
ticipate shifts of alignment of more than half a second long,
we consider wide enough to accommodate small variations
created by updates to the acoustic models in their training
process.

Figure 9 illustrates the step-wise timing break down of one
training iteration of a 1000-hour training set. The runs are
separated into batches to allow the data working set within
a batch to fit on the GPU global memory.

Without pruning, as shown in the top pie chart in Fig-
ure 9, the most compute-intensive observation probability
computation uses 68.4% of the total execution time. We
have achieved 1.23 instructions per cycle (IPC) on the Fermi
GPU architecture, which is 61.5% of the peak execution ef-
ficiency. The E-Step includes the highly sequential back-
tracking process, with the various technique described in
section 3.2 and 3.3, only 12.9% of the time is spent here.
By using the local-global reduction technique and leverag-
ing efficient floating-point atomic-add capability supported
by the hardware, the M-Step takes only 6.6% of total exe-
cution time. The utterance load step is taking up a quite
significant 12% of the total executing time.

With pruning, as shown in the bottom pie chart in Fig-
ure 9, the most compute-intensive observation probability
computation uses 32.1% of the total execution time. The
E-Step includes the highly sequential backtracking process,
with the various technique described in section 3.2 and 3.3,
27.8% of the time is spent here. By using the local-global
reduction technique and leveraging efficient floating-point
atomic-add capability supported by the hardware, the M-
Step takes only 14.0% of total execution time. The utter-
ance load step is taking up a quite significant 26.1% of the
total executing time. This step is expected to be signifi-
cantly faster after an re-factoring the code base and is on
the list of future work.

4.3 Discussion



Table 4: Training time for a 1000-hour training set for models with different numbers of Gaussian mixtures

# components in GMM 1 2 4 8 16 32
One Iteration (hours) 0.247 | 0.248 | 0.252 | 0.267 | 0.282 | 0.323
Four Iterations (hours) 0.987 | 0.994 | 1.010 | 1.067 | 1.130 | 1.293
Total (hours) 6.850 = 6.480 + 0.370(overhead)
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Figure 9: GPU implementation component-wise
timing breakdown (1000-hour AMI corpus)

The AMI Meeting Corpus consists of relatively short con-
versational utterances that are on average only 3.6 seconds
long. 69% of the utterances are less than 2 seconds long.
With short utterances, performing force-alignment without
pruning incurs little overhead.

S. CONCLUSION

We presented a new framework for rapid training of acous-
tic models using the GPU. We focus on Viterbi training and
shown that using a single GPU, our proposed approach is
94.8x faster than a sequential CPU implementation. Train-
ing an acoustic model with 8000 codebook of 32-component
Gaussian mixtures on 1000 hours of speech would take just
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time for various utterance lengths

under 7 hours. Using a scalable pruning algorithm, a single
GPU system can perform 82% faster and a two-GPU sys-
tem can be 3.3x faster when compared to an off-the-shelf
acoustic model training engine running on a high-end 32-
core Xeon server. Our GPU-based training platform empow-
ers research groups to rapidly evaluate new ideas and build
accurate and robust acoustic models on very large training
corpora.
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