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Abstract
Robust and accurate speech recognition systems can only be re-
alized with adequately trained acoustic models. For common
languages, state-of-the-art systems are now trained on thou-
sands of hours of speech data. Even with a large cluster of
machines the entire training process can take many weeks. To
overcome this development bottleneck we propose a new frame-
work for rapid training of acoustic models using highly parallel
graphics processing units (GPUs). In this paper we focus on
Viterbi training and describe the optimizations required for ef-
fective throughput on GPU processors. Using a single NVIDIA
GTX580 GPU our proposed approach is shown to be 51x faster
than a sequential CPU implementation, enabling a moderately
sized acoustic model to be trained on 1000 hours of speech data
in just over 9 hours. Moreover, we show that our implementa-
tion on a two-GPU system can perform 67% faster than a stan-
dard parallel reference implementation on a high-end 32-core
Xeon server. Our GPU-based training platform empowers re-
search groups to rapidly evaluate new ideas and build accurate
and robust acoustic models on very large training corpora.
Index Terms: Continuous Speech Recognition, Acoustic
Model Training, Graphics Processing Unit

1. Introduction
The availability of very large training corpora (1000 hours
and more) are empowering speech researchers to achieve ever
higher accuracy on challenging speech recognition tasks. How-
ever, training of acoustic models on these large corpora can take
weeks, even on large clusters of workstations. This limits the
number of new ideas and concepts that can be explored and val-
idated in a timely manner. In this paper we introduce a novel ap-
proach to rapidly train acoustic models using affordable ($500)
off-the-shelf graphics processing units (GPU)s. Our platform
can train an acoustic model at 220x the speed of an equivalent
implementation on a CPU (without pruning) and 51x faster than
standard Viterbi-based training with pruning. This platform is
ideal for accelerating the exploration and validation of ideas for
automatic speech recognition.

A common method for training Hidden Markov Model [1]
(HMM)-based acoustic models is Viterbi Training. Figure 1 il-
lustrates the main steps of this process, which include (0) load-
ing training data, (1) computing observation probabilities, (2)
assigning observations to specific states and Gaussian compo-
nents within the model (E-Step), and (3) collecting statistics
from the expectation step to reestimate model parameters (M-
step).

There has been a number of efforts over the past decades
to reduce the time required to train acoustic models for speech
recognition. In 1990, Pepper et al. experimented with perform-
ing training on a set of computers organized in a ring [2]. In
1992, Foote et al. introduced an approach to distribute HMM
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Figure 1: Training flow for one training iteration

training to a set of five loosely-coupled Armstrong II multi-
processor network computers. In 1997, Yun et al. mapped
the training algorithm to an FPGA infrastrcture [3] and in
2006 Poprescu et al. implemented acoustic model training on
a MPI-based cluster with three nodes [4]. These prior works
all achieved less than 3x speedup over sequential runs and thus
have not been widely used.

The availability of general-purpose programmable GPU
and data parallel programming models [5] has opened up new
opportunities to train speech models at orders of magnitude
faster than before. This is further empowered by new algorithms
and implementation techniques that focus on parallel scalabil-
ity [6], which expose the fine-grained concurrency in compute-
intensive applications and exploits the concurrency on highly
parallel manycore microprocessors.

In cuHMM [7], Liu implemented training of discrete
HMMs on GPUs. This generic training engine, although effec-
tive for applications such as biological sequence analysis, is not
appropriate for acoustic model training as it is unable to han-
dle continuous observation models and cannot take advantage
of the special left-right model structure used in speech recogni-
tion. In [8], Dixon et al. introduced techniques for fast acoustic
likelihood computation in the context of a speech recognition
decoder, but did not extended the work to the training process
and in [9] Pangborn constructed an efficient implementation on
the GPU for flow cytometry used in biology and immunology.
This approach, however, only trained a single Gaussian mixture
model (GMM) and is thus unsuitable for acoustic model train-
ing. In this paper we describe an optimized infrastructure for
training HMMs, where we leverage the special left-right HMM
model structure commonly used in speech recognition while
heavily optimizing the observation probability computation.

As the development platform we use the NVIDIA GTX580
GPU which contains 16 cores on-a-chip, two 16-wide SIMD
pipelines in a core, as well as hardware managed cache and soft-
ware managed memory scratch pad. The GPU is programmed
using CUDA [5], a representative data-parallel manycore pro-
gramming language where an application is organized into a se-
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quential host program that is run on a CPU, and one or more par-
allel kernels running on a GPU. Each kernel describes a scalar
sequential program that will be mapped across a set of parallel
threads, which are organized into groups called thread blocks.

The challenge is to effectively organize the training al-
gorithm into threads and thread-blocks and leverage avail-
able memory resources and synchronization capabilities to effi-
ciently execute on a manycore computation platform.

2. Viterbi Training of Acoustic Models

Viterbi training is a common method for maximum likelihood
re-estimate of parameters of an acoustic model. Given a set
of training observations Or, 1 ≤ r ≤ R and an HMM state
sequence 1 < j < N the observations sequence is aligned to
the state sequence via Viterbi alignment. This alignment results
from maximizing

φN (T ) = max
i

[φi(T )aiN ] (1)

for 1 < i < N where

φj(t) = bj(ot) max

{
φj(t− 1)ajj
φj−1(t− 1)aj−1j

(2)

with initial conditions, φ1(1) = 1 and φj(1) = a1jbj(o1), for
1 < j < N . When observation likelihoods are modeled as
mixture Gaussian densities the output probability bj(ot) is as
defined as:

bj(ot) =

Mj∑
m=1

cjmN (ot;µjm,Σjm) (3)

where Mj is the number of mixture components in state j, cjm
is the weight of the mth component and N (·; , µ,Σ) is a mul-
tivariate Gaussian with mean vector µ and covariance Σ. In
Viterbi training, model parameters are updated based on the
single-best alignment of individual observations to states and
Gaussian components within states. From this alignment, tran-
sition probabilities are estimated from the relative frequencies

âij =
Aij∑N

k=2Aik

(4)

where Aij it the total number of transitions from state i to state
j. The means and variances of the observation densities are
updated using an indicator function ψr

jm(t) which is 1 if ort
is associated with mixture component m of state j and is zero
otherwise.

µ̂jm =

∑R
r=1

∑Tr
t=1 ψ

r
jm(t)ort∑R

r=1

∑Tr
t=1 ψ

r
jm(t)

(5)

Σ̂jm =

∑R
r=1

∑Tr
t=1 ψ

r
jm(t)(ort − µ̂jm)(ort − µ̂jm)′∑R
r=1

∑Tr
t=1 ψ

r
jm(t)

(6)

and the mixture weights are computed based on the number of
observations allocated to each component

cjm =

∑R
r=1

∑Tr
t=1 ψ

r
jm(t)∑R

r=1

∑Tr
t=1

∑M
l=1 ψ

r
jl(t)

(7)

Viterbi training provides a fast method to perform maxi-
mum likelihood re-estimation of acoustic models and in most
cases is just as effective as the Baum-Welch method [10].

3. Viterbi Training on Manycore Processors
Training is a highly data-parallel operation involving the aggre-
gation of statistics from a large training data set possibly con-
taining millions of utterances. Concurrency exists both between
utterances and within an utterance, making the training pro-
cess highly amenable for parallelization. However, constructing
an efficient parallel implementation requires not only extensive
application concurrency, but also a deep understanding of the
available parallel computation resources.

3.1. Step 1: Observation Probability Computation
The observation probability computation step implements
Equation 3, and contains five levels of concurrency: among fea-
tures, among mixture components, among GMM, among input
observations, and among utterances, as illustrated in Table 1.

Table 1: Observation Probability Computation Analysis
Concurrency Parallelism Task Size (# IPT) Data Size (# values)
Features 39 2 2
Mixtures 32 100 80
GMMs 100 4000 2560
Observation 360 400K 250K
Utterance 1.1M 144M 250K

Parallelism: we use a model with 39 dimensional features,
32 mixture components per GMM, and a training set consisting
of, on average, 3.6 seconds long audio segments, transcripts of
5-10 words with 100 GMMs per utterance, and a total of 1.1M
utterances representing a conversational speech training corpus
of 1000 hours of audio.

Task Size: number of instructions that can execute in
a thread before a synchronization event or task completion.
For example, when a feature is assigned to a thread, each
thread can only perform a “weighted-difference” calculation (in
two instructions) before synchronizing to sum the “weighted-
differences” between threads; for mixture-level parallelism,
each thread sums the “weighted-differences” sequentially, and
synchronize to calculate the weighted-sum of mixtures.

Data Size: size of the data working set required to perform
the task within each thread. For feature-level parallelism, each
thread only require the mean and variance of a feature dimen-
sion. For mixture level parallelism, each thread requires 39
mean, 39 variance, as well as a likelihood constant and weight
of the mixture, for a total of 80 values for the computation. For
GMM-level computation, each thread requires access to all 32
mixtures for a total of 2560 values for the computation.

For efficient implementation on the GPU, we choose the
level of parallelism to maximize task granularity while allow the
data working size to be small enough to fit into fast hardware-
managed cache and software-managed memory scratch space.
In this case, it is GMM-level parallels with a data size of
2560 values represent 10KB of model data, which fits into the
shared memory scratch space on the GPU. We then organize
the threads to parallelize over the observation samples, and the
thread blocks to parallelize over the GMMs. This maximizes
the model data reuse from the on-chip shared memory in pre-
computing the observation probabilities to construct a code-
book for the next steps. The input observation data for each
utterance is transposed such that there are is one array for each
feature dimension over time steps. This allows each thread in a
thread block to work on all computations for one time step.

3.2. Step 2a: Alpha Computation
The Alpha computation is the forward pass of the Viterbi algo-
rithm that uses dynamic programming to arrive at an optimal
estimation of match likelihood between the transcript and the
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acoustic input (Equation 2). It is implemented as a time syn-
chronous operation where the computation for one acoustic in-
put sample is dependent on the results from the previous input
sample. We parallelize the computation by mapping utterances
over thread blocks. Each thread block then iterates sequentially
over the time steps, with each thread handling the computation
for one GMM state. This implementation allows model tran-
sition probabilities and partial results to be cached in shared
memory, enabling fast iteration of computation without incur-
ring excessive memory operations to off-chip memory.

3.3. Step 2b: Backtracking Computation
The backtrack computation traces the one-best path that demon-
strates the best alignment of GMM states to acoustic input ob-
servations. It starts from the end of the GMM state sequence
representing the transcript and the end of the acoustic input
sequence, and backtracks step by step to the beginning of the
GMM state sequence. Implemented naively, this is a severe
performance bottleneck. The pointer chasing operation will in-
volve two memory round trips per time step, which can taking
100,000s processor cycles to backtrack 400 steps.

We implemented this step use a prefetch optimization. By
prefetch 32 time steps of potentially accessible values as a batch
into the shared memory on the GPU and perform the backtrack
from shared memory, we fully utilize the load bandwidth and
minimized memory latency caused by the pointer chasing oper-
ations in the backtrack process1.
3.4. Step 3: Maximization Step
The maximization step takes the aligned and labeled input ob-
servations to update the aggregated statistics in the acoustic
model according to equations 4, 5, 6 and 7. The process is
an instance of histogram generation, where we compute the sta-
tistical distribution of the training data set. We use a hybrid
local-global accumulation method to efficiently aggregate the
statistics in the histogram generation process. A typical train-
ing data set for speech recognition set may involve thousands
of hours of audio, stored as segments of audio that represents
speech utterances separated by silences, taking tens to hundreds
of gigabytes of storage.

The histogram bins are the Gaussian mixtures in the GMMs
representing triphone states in the acoustic speech model. An
acoustic speech model typically contains 10,000 triphone states
in an acoustic codebook. For a 32 mixture Gaussian model,
there can be as many as 320,000 histogram bins to accumulate
to, each represented by a 39-dimensional mean and variance
value-pair. This number of bins would be too large to fit in the
last level cache of today’s microprocessors, making an efficient
histogram generation implementation challenging.

Given the training data set and histogram characteristic, we
map each utterance to a thread block on the GPU, and first ag-
gregate the histogram information within an utterance locally,
then merging the results from each thread block to the main his-
togram globally2. While this does not solve the uncacheably
large number of histogram bins, it does alleviate the poten-
tial sequentialization bottlenecks at some histogram bins when
thousands of thread context concurrently performing memory
operations on a popular triphone state. For the aggregation
of floating-point values, our implementation extensively lever-
age floating-point atomic additions to global memory in the
NVIDIA Fermi architecture.

1The prefetch optimization could also be applied to the CPU imple-
mentation but is not included in this comparison.

2Numerical issues that usually plague likelihood accumulations are
handled when merging local values with global values.
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Figure 2: Training time for one training iteration of 32-
component GMM models

4. Results
4.1. Experimental Evaluation
We evaluated the effectiveness of our proposed GPU-based
acoustic model training procedure by first comparing the time
required to perform one iteration of Viterbi training to a single-
thread CPU implementation. The speech corpora used in this
evaluation consisted of 122hrs and approximately 150k utter-
ances of speech collected from headset, lapel and far-field mi-
crophones from 168 sessions from the AMI Meeting Corpus3.
This data was replicated to generate the larger training sets up to
10,000 hours. An initial cross-word, context dependent triphone
model was trained on this corpora using HTK [11] and the re-
sulting model consisted of 8000 codebooks with a maximum of
32 Gaussian components per codebook. Each model consisted
of a three-state left-to-right hidden Markov model (HMM) with
two transitions per state, a local transition to the current state
and a transition to the neighboring state to the right. Models
were trained using 39-dimension acoustic features, which com-
bined 13-dimension MFCCs with its delta and delta-delta com-
ponents.

For evaluation we used the NVIDIA GTX580 GPU in an
Intel Core i7-2600k CPU-based host platform. The GPU has 16
cores each with dual issue 16-way vector arithmetic units run-
ning at 1.54GHz. Its processor architecture allows a theoretical
maximum of two single-precision floating point operations (SP
FLOP) per cycle, resulting in a maximum of 1.58 TeraFLOP
of peak performance per second. The GPU device has 1.5GB
of GDDR5 memory. For CPU runs, we used a 4-socket Intel
Xeon X7550 Server running at 2.00GHz with an aggregate of
32 cores and 128GB of memory. For compilation, we used g++
4.5.0 and NVCC 3.2 targeting GPU Compute Capability 2.0.

4.2. Performance Analysis
Figure 2 illustrates the training time used for various training set
sizes. As expected, training time scales linearly with increase
in training set size. The CPU run-times were measured with
and without pruning using Viterbi training. Using one hour of
training time, we can process 7.2 hours of training data with no
pruning, and 31.3 hours of data with pruning. With GPU-based
implementation, we can process 1582.3 hours of data with no
pruning using an eqivalent manycore Viterbi training routine.
That is a 220x faster than the same algorithm and 50.6x faster
than a more advanced algorithm with pruning running sequen-
tially on the Xeon server CPU. Given a 10,000-hour training
corpus, a single GPU is able to perform one iteration of viterbi
training in just 6.3 hours this compares with 1400 hours, for
the CPU implementation without pruning and 320 hours for the

3http://corpus.amiproject.org
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Figure 3: Training time for one iteration with 32 component
Gaussian on a 1000-hour AMI corpus

CPU case when pruning is enabled. With a multi-GPU setup,
our platform enables training on very large corpora even with
limited computational resources.

One approach to train a full acoustic model involves iter-
atively increasing the number of Gaussian components from
a single Gaussian to a much large number via mixture split-
ting. This process is computationally expensive and involves
performing 3-5 EM training iterations for acoustic models with
increasingly large observation models (GMMs). For example,
to train a 32-component GMM the training time required on a
single GPU for a 1000-hour training set is illustrated in Table 2.
We assume an average of four EM iterations are used per mix-
ture count, and accumulate the measured execution time for our
Viterbi training routine on the GPU. Taking into account the
time necessary for performing mixture splitting, we expect to
be able to train an acoustic model with 1000-hour of data over
night in less than 9.25 hours, with 0.37 hours accounted for mix-
ture splitting and cluster tying overhead. Our rapid training sys-
tem allows new ideas and concepts to be tested on a 100-hour
training set in less than one hour.

Table 2: Training time for a 1000-hour training set for models
with different numbers of Gaussian mixtures

# components in GMM 1 2 4 8 16 32
One Iteration (hours) 0.26 0.27 0.29 0.34 0.43 0.63
Four Iterations (hours) 1.02 1.06 1.17 1.36 1.74 2.53
Total (hours) 9.25 = 8.88 + 0.37 (overhead)

Figure 3 illustrates the training time achievable with a four-
socket 32-core Xeon server costing over $30,000. Given a
1000-hour training set, the utterances are dynamically sched-
uled onto a varying number of CPU threads. We see that the 32-
core Xeon server only has 7.5% performance advantage com-
pared to a single GPU system, and that a two-GTX580 desk-
top system that cost less than $2,000 can be 67% faster than a
32-core Xeon server for performing one EM iteration with 32-
component GMMs on a 1000-hour training set.

Figure 4 illustrates the step-wise timing break down for
1000-hour training set. The runs are separated into batches to
allow the data working set within a batch to fit on the GPU
global memory. The most compute-intensive observation prob-
ability computation uses 68.4% of the total execution time. We
have achieved 1.23 instructions per cycle (IPC) on the Fermi
GPU architecture, which is 61.5% of the peak execution effi-
ciency. The E-Step includes the highly sequential backtracking
process, with the various technique described in section 3.2 and
3.3, only 12.9% of the time is spent here. By using the local-
global reduction technique and leveraging efficient floating-
point atomic-add capability supported by the hardware, the M-
Step takes only 6.6% of total execution time. The utterance load
step is taking up a quite significant 12% of the total executing
time. This step is expected to be significantly faster after an
re-factoring the code base and is on the list of future work.

(0) Load Utterance (12.0%) 6.636128 7.569856 274,167.14
(1) ObsProbCalc (68.4%) 65.693825 94.3032 1,557,373.00
(2) E-Step (12.9%) 12.966528 16.137407 293,218.00
(3) M-Step ( 6.6%) 4.589152 5.739424 151,008.04

2,275,766.18
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Figure 4: Component-wise timing breakdown (GPU)
4.3. Discussion
The AMI Meeting Corpus consists of relatively short conver-
sational utterances that are on average only 3.6 seconds long.
69% of the utterances are less than 2 seconds long. With short
utterances, performing force-alignment without pruning incurs
little overhead. We are working on implementing some pruning
techniques for corpora with longer average utterance length.

5. Conclusion
We presented a new framework for rapid training of acoustic
models using the GPU. We focus on Viterbi training and shown
that using a single GPU, our proposed approach is 51x faster
than a sequential CPU implementation. Training an acoustic
model with 8000 codebook of 32-component Gaussian mix-
tures on 1000 hours of speech would take just over 9 hours.
Our GPU-based training platform empowers research groups to
rapidly evaluate new ideas and build accurate and robust acous-
tic models on very large training corpora. In future work we in-
tend to also investigate Balm-Welch training and MMIE-based
discriminative training on this platform.
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