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Abstract

We have made signi�cant progress in automatic speech recognition (ASR) for well-de�ned

applications like dictation and medium vocabulary transaction processing tasks in relatively

controlled environments. However, for ASR to approach human levels of performance and for

speech to become a truly pervasive user interface, we need novel, nontraditional approaches

that have the potential of yielding dramatic ASR improvements. Visual speech is one such

source for making large improvements in high noise environments with the potential of chan-

nel and task independence. It is not e�ected by the acoustic environment and noise, and it

possibly contains the greatest amount of complementary information to the acoustic signal.

In this workshop, our goal was to advance the state-of-the-art in ASR by demonstrating the

use of visual information in addition to the traditional audio for large vocabulary continuous

speech recognition (LVCSR). Starting with an appropriate audio-visual database, collected

and provided by IBM, we demonstrated for the �rst time that LVCSR performance can be

improved by the use of visual information in the clean audio case. Speci�cally, by conduct-

ing audio lattice rescoring experiments, we showed a 7% relative word error rate (WER)

reduction in that condition. Furthermore, for the harder problem of speech contaminated

by speech \babble" noise at 10 dB SNR, we demonstrated that recognition performance can

be improved by 27% in relative WER reduction, compared to an equivalent audio-only rec-

ognizer matched to the noise environment. We believe that this paves the way to seriously

address the challenge of speech recognition in high noise environments and to potentially

achieve human levels of performance. In this report, we detail a number of approaches

and experiments conducted during the summer workshop in the areas of visual feature ex-

traction, hidden Markov model based visual-only recognition, and audio-visual information

fusion. The later was our main concentration: In the workshop, a number of feature fusion

as well as decision fusion techniques for audio-visual ASR were explored and compared.
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Chapter 1

Introduction

We have made signi�cant progress in automatic speech recognition (ASR) for well-de�ned

applications like dictation and medium vocabulary transaction processing tasks in relatively

controlled environments. However, for speech to be a pervasive user interface in the same

league as, for example, graphical user interfaces, it is necessary to make ASR far more robust

to variations in the environment and channel. Recent studies [55] have shown that ASR

performance is far from the human performance in a variety of tasks and conditions. Indeed,

ASR to date is very sensitive to variations in the channel (desktop microphone, telephone

handset, speakerphone, cellular, etc.), environment (non-stationary noise sources such as

speech babble, reverberation in closed spaces such as a car, multi-speaker environments,

etc.), and style of speech (whispered, Lombard speech, etc.) [24].

At present, the most e�ective approach for achieving robustness of environment focuses

on obtaining a clean signal through a head-mounted or hand-held directional microphone.

However, this is neither tether-free nor hands-free, and it makes speech-based interfaces very

unnatural. Moving the speech source away from the microphone can degrade the speech

recognition performance due to the contamination of the speech signal by other extraneous

sound sources. For example, using monitor microphones for far-�eld input can severely

degrade performance in the presence of noise, but on the other hand using directional desktop

microphones constrains the extent of movement of the speaker, thus making the interaction

unnatural.

The research work in robust ASR in noise may be classi�ed into three broad areas:

� Filtering of the noisy speech prior to classi�cation [50]. In this class of techniques, rep-

resented by spectral subtraction, an estimate of the clean speech spectrum is obtained

by subtracting an average noise spectrum from the noisy speech [6]. A disadvantage of
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such techniques is that crucial speech information may be removed during the �ltering

process.

� Adaptation of the speech models to include the e�ects of noise [36,68]. In this class of

techniques, speech models are adapted to include the e�ects of noise in an attempt to

obtain models that would have been obtained in matched conditions.

� Use of features that are robust to noise [38,46,70]. In this class of techniques, an attempt

has been made to incorporate temporal and cross-spectral correlation between speech

features modeled after the mammalian auditory processing [38, 70].

These signal-based and model-based techniques to make speech recognition independent

of channel and environment have been attempted with limited success [35,50]. Most of these

methods make strict assumptions on the environment characteristics and require a sizable

sample of the environment to get small improvements in speech recognition performance.

Furthermore, modeling reverberation is a hard problem. In summary, current techniques are

not designed to work well in severely degraded conditions.

We need novel, nontraditional approaches that use other orthogonal sources of informa-

tion to the acoustic input that not only signi�cantly improve the performance in severely

degraded conditions, but also are independent to the type of noise and reverberation. Visual

speech is one such source, obviously not perturbed by the acoustic environment and noise.

It is well known that humans have the ability to lipread: We combine audio and visual

information in deciding what has been spoken, especially in noisy environments [92]. A dra-

matic example is the so-called McGurk e�ect, where a spoken sound /ga/ is superimposed on

the video of a person uttering /ba/. Most people perceive the speaker as uttering the sound

/da/ [65]. In addition, the visual modality is well known to contain some complementary

information to the audio modality [62]. For example, using visual cues to decide whether a

person said /ba/ rather than /ga/ can be easier than making the decision based on audio

cues, which can sometimes be confusing. On the other hand, deciding between /ka/ and

/ga/ is more reliably done from the audio than from the video channel.

The above facts have recently motivated signi�cant interest in the area of audio-visual

speech recognition (AVSR), also known as automatic lipreading, or speechreading [45]. Work

in this �eld aims at improving automatic speech recognition by exploring the visual modality

of the speaker's mouth region, in addition to the traditional audio modality. Not surprisingly,

automatic speechreading has been shown to outperform audio-only ASR over a wide range

of conditions [1, 29, 76, 86, 93]. Such performance gains are particularly impressive in noisy
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environments, where traditional ASR performs poorly. Coupled with the diminishing cost

of quality video capturing systems, this fact makes automatic speechreading tractable for

achieving robust ASR in certain scenarios [45].

However, to date, all automatic speechreading studies have been limited to small vocab-

ulary tasks and, in most cases, to a very small number of speakers [15, 45]. In addition,

the number of diverse algorithms suggested in the literature for automatic speechreading

are very di�cult to compare, as they are hardly ever tested on any common audio-visual

database. Furthermore, most such databases are of very small duration, thus placing doubts

about the generalizability of reported results to larger populations and tasks. As a result,

to date, no de�nite answers exist on the two issues that are of paramount importance to

the design of speaker independent audio-visual large vocabulary continuous speech recogni-

tion (LVCSR) systems: (a) The choice of appropriate visual features that are informative

about unconstrained, continuous visual speech; and (b) The design of audio-visual informa-

tion fusion algorithms that demonstrate signi�cant gains over traditional audio-only LVCSR

systems, under all possible audio-visual channel conditions.

In the summer 2000 workshop, our goal was to advance the state of the art in audio-visual

ASR by seriously tackling the problem of speaker independent LVCSR for the �rst time. To

achieve this goal, we have gathered a team of senior researchers in the area of automatic

speechreading with expertise in both visual feature extraction and information fusion [29,63,

71, 76], assisted by a number of graduate and undergraduate students [39, 97]. In addition,

the IBM participants have provided a one-of-a-kind audio-visual database appropriate for

LVCSR experiments that has been recently collected at the IBM Thomas J. Watson Research

Center [2, 80]. The major concentration of the summer workshop team was on audio-visual

fusion strategies, however visual feature extraction and certain aspects of visual modeling,

as well as visual model adaptation have also been investigated.

In more detail, two algorithms for visual feature extraction have been considered by our

workshop team: The �rst technique belongs to the so called low-level, video pixel based

category of visual features [45]. It consists of a cascade of linear transformations of the video

pixels representing the speaker's mouth region [80], and it requires successful face and mouth

region tracking as a �rst step [89]. The second technique considered uses a combination of

low-level and higher-level, shape based face information [45]. In this approach, both face

tracking and feature extraction are based on an active appearance model face representa-

tion [19, 30, 63]. High-level shape features have not been considered by themselves in this

work, as it is in general agreed that they result in lower speechreading performance [16,29,78].
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Both feature sets have been used to train hidden Markov model (HMM) based statistical clas-

si�ers for recognizing visual-only speech. It is worth mentioning that the visual front end

design is not only limited to automatic speechreading: Lip region visual features can readily

be used in multimodal biometric systems [33, 49, 100], as well as to detect speech activity

and intent to speak [23], among others.

In addition to visual feature extraction, we have investigated various aspects relevant to

visual-only HMM training. One important aspect in any LVCSR HMM based system is the

issue of clustering of (typically) triphone context dependent units (state or phone models) [82,

103]. Since not all phones are visually distinguishable, but rather they cluster in so-called

viseme classes [45, 62], it is of interest to investigate whether clustering on basis of visemic

instead of phonetic context is advantageous. The design of appropriate visemic questions

for tree based HMM state clustering has been addressed in the summer workshop. Another

visual modeling issue studied was the problem of visual-only HMM adaptation to unseen

subjects. Although visual HMM adaptation has been considered before in small vocabulary

tasks [79], this constitutes the �rst time that successful visual-only model adaptation has

been demonstrated in the LVCSR domain.

As stated above, the main concentration of our team has been the audio-visual inte-

gration problem. As with visual modeling, HMM only based fusion techniques have been

considered in the workshop, although alternative statistical classi�cation methods, such as

neural networks, can also be used to address both the speech classi�cation and fusion prob-

lems [8, 45, 47].

Two simple feature fusion approaches have been tried �rst. The �rst one uses the concate-

nation of synchronous audio and visual feature vectors as the joint audio-visual feature vec-

tor, whereas an improved algorithm uses a hierarchical linear discriminant analysis (HiLDA)

technique to discriminatively project the audio-visual feature vector to a lower dimension.

Subsequently, a number of decision fusion algorithms have been investigated. Such al-

gorithms combine the class conditional likelihoods of the audio and visual feature vector

streams using an appropriate scoring function at various possible stages of integration. The

main model investigated in this approach has been the multi-stream HMM. Its class condi-

tional observation likelihood is the product of the observation likelihoods of its audio-only

and visual-only stream components, raised to appropriate stream exponents that capture

the reliability of each modality. Such model has been considered in multi-band audio-only

ASR, among others [7, 39, 73]. Although extensively used in small-vocabulary audio-visual

ASR tasks [28, 29, 48, 76, 86], this work constitutes its �rst application to the LVCSR do-
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main. Furthermore, to our knowledge, our joint audio-visual multi-stream HMM training

by means of maximum likelihood estimation has not been considered before. Notice that

the multi-stream HMM corresponds in its simplest form to a state level integration strategy.

By considering the likelihood combination at the HMM phone level, we obtain the asyn-

chronous multi-stream (composite, or product ) HMM [10, 29, 96], also implemented during

the workshop.

In both state and phone level integration strategies, the estimation of appropriate HMM

stream exponents is of paramount importance to the resulting model performance. We �rst

considered modality-only based exponents, constant over the entire database. Such expo-

nents were estimated by directly minimizing the word error rate on a held-out data set, since

maximum likelihood approaches are inappropriate for training them [76, 103]. Alternative

discriminative training techniques can also be used for that task [17,18,48,76]. Motivated by

the fact that the audio of various speakers and utterances is characterized by varying signal

to noise ratio (and thus audio channel reliability), we subsequently re�ned the stream expo-

nents by making them utterance dependent as well. We used a harmonicity index [4,39,105]

to estimate the average voicing per utterance, and we estimated exponents based on this

index.

Finally, a late integration, decision fusion technique has been explored based on rescoring

N-best recognition hypotheses using the general framework of multiple knowledge source

integration for ASR developed in [97]. Global, viseme-, and phone-dependent audio-visual

weights were explored in this approach, all estimated by means of minimum error training

on a held-out data set.

In this report, we discuss in detail our summer work. Speci�cally, in chapter 2, we present

the audio-visual database, our general experiment framework, as well as our audio-only

baseline system and its training procedure. In chapter 3, we discuss the two visual feature

extraction techniques considered at the workshop, and we present visual-only LVCSR results.

In chapter 4, we concentrate on two issues relevant to visual modeling, namely visual-only

clustering and visual model adaptation. In chapter 5, we report our work on HMM based

audio-visual fusion. We �rst present two feature fusion algorithms, followed by a number of

decision fusion techniques at the state, phone, and utterance level. Finally, in chapter 6, we

summarize our most important results, and we discuss plans for future work.
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Chapter 2

Database, Experimental Framework,

and Baseline System

In this chapter, we �rst present the audio-visual database used in all our summer workshop

experiments (section 2.1). In section 2.2, we give an overview of our experimental paradigm.

We include information about the database partitioning, the set of audio and visual features

used in the experiments, the clean and noisy audio conditions considered, and, �nally, the

sets of lattices generated pre-workshop at IBM. Such lattices, were rescored by appropriate

models, trained using the HTK software toolkit [103] as described in section 2.3.

2.1 The Audio-Visual Database

To allow experiments on continuous, large vocabulary, speaker independent audio-visual

speech recognition, a suitable database has been collected at the IBM Thomas J. Wat-

son Research Center, preceding the summer workshop. The database consists of full-face

frontal video and audio of 290 subjects (see also Figure 2.1), uttering ViaVoiceTM training

scripts, i.e., continuous read speech with mostly verbalized punctuation (dictation style),

and a vocabulary size of approximately 10,500 words. Transcriptions of all 24,325 database

utterances, as well as a pronunciation dictionary are provided. The database video is of

size 704 � 480 pixels, interlaced, captured in color at a rate of 30 Hz (i.e., 60 �elds per

second are available at a resolution of 240 lines), and it is MPEG2 encoded at the rela-

tively high compression ratio of about 50:1. High quality wideband audio is synchronously

collected with the video at a rate of 16 kHz and at a relatively clean audio environment

(quiet o�ce, with some background computer noise). The duration of the entire database
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Figure 2.1: Example video frames of the IBM ViaVoiceTM audio-visual database.

is approximately 50 hours. It is worth mentioning that, to date, this is the largest audio-

visual database collected, and it constitutes the only one suitable for the task of continuous,

large vocabulary, speaker independent audio-visual speech recognition, as all other exist-

ing audio-visual databases are limited to small number of subjects and/or small vocabulary

tasks [1, 8, 13, 15, 45, 64, 66, 67, 75, 93].

In addition to the IBM ViaVoiceTM audio-visual database, a much smaller broadcast

news dataset has also been obtained both at the IBM Thomas J. Watson Research Center

and at the Johns Hopkins University, preceding the workshop. This database contains audio-

visual sequences of frontal anchor speech, and it has been digitized from CNN and CSPAN

broadcast news tapes, kindly provided by the Linguistic Data Consortium (LDC). The entire

duration of the database is approximately 5 hours, and it has been collected with the intent

of performing audio-visual speaker adaptation experiments, using HMMs trained on the

ViaVoiceTM data. However, the short duration of the summer workshop did not allow us to

complete visual feature extraction for this data. We hope to perform such experiments in

the future.

2.2 Experiment Framework

The audio-visual database has been partitioned into a number of disjoint sets in order to train

and evaluate models for audio-visual ASR (see also Table 2.1). The training set contains

35 hours of data from 239 subjects, and it is used to train all HMMs reported in this work.

Two more sets are provided for conducting speaker-independent (SI) HMM re�nement and
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Scenario Set Utter. Duration Subj.

SI/MS Training 17111 34.9 hrs 239
Held-out 2277 4.8 hrs 25

SI Adaptation 855 2.1 hrs 26
Test 1038 2.5 hrs 26
Held-out 1944 4.0 hrs 239

MS Test 1100 2.3 hrs 239

Total 24325 50.6 hrs 290

Table 2.1: Database partitioning for speaker independent (SI) and multi-speaker
(MS) experiments. Number of utterances, duration, and number of subjects are
depicted for each set. A single training set is used in both SI and MS scenarios
(SI only experiments are reported in this work).

testing: A held-out data set of close to 5 hours of data from 25 subjects and a test set of

2.5 hours from 26 subjects. The �rst is used to train HMM parameters relevant to audio-

visual decision fusion (see section 5), while the second is used for testing (evaluation) of

the trained models. Of course, all three sets comprise of disjoint subjects. Furthermore, an

adaptation set is provided to allow speaker adaptation experiments (see section 4.2). This

set contains an additional 2 hours of data from the 26 test set subjects. In addition to the

above mentioned sets, two more sets are available for multi-speaker (MS) HMM re�nement

and testing, namely a 4 hour held-out data set and a 2.3 hour test set, both containing

data from all 239 training set subjects. The later were created in case speaker-independent

visual models provided poor generalization to unseen subjects. Our results during the initial

weeks of the workshop indicated that this was not the case, therefore, in this report, only

speaker-independent experiments are reported.

To assess the bene�ts of the visual modality to LVCSR for both clean and noisy audio,

two audio conditions have been considered: The original database clean wideband audio, and

a degraded one, where the database audio is arti�cially corrupted by additive \babble" noise1

at a 10 db SNR level. Sixty-dimensional acoustic feature vectors are extracted for both con-

ditions at a rate of 100 Hz [2]. These features are obtained by a linear discriminant analysis

(LDA) data projection, applied on a concatenation of nine consecutive feature frames con-

sisting of a 24-dimensional discrete cosine transform (DCT) of mel-scale �lter bank energies.

LDA is followed by a maximum likelihood linear transform (MLLT) based data rotation (see

section 3.1 for details on these transforms). Cepstral mean subtraction (CMS) and energy

1This noise consists of simultaneous speech by multiple subjects, recorded at IBM.
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normalization [56, 103] are applied to the DCT features at the utterance level, prior to the

LDA/MLLT feature projection. It is worth mentioning, that, for both clean and noisy audio,

the LDA and MLLT matrices are estimated using the training set data in the matched con-

dition. Similarly, all audio-only test set results are reported for HMMs trained on matched

audio. For the noisy audio-only system, this is clearly an ideal scenario, which results in

improved audio-only performance over systems that use noise compensation techniques when

trained on unmatched data.

In addition to the audio features, visual features need to be extracted in order to per-

form audio-visual speech recognition experiments. As mentioned in the Introduction and

discussed in detail in chapter 3, two types of visual features have been considered in this

work. The baseline ones consist of a discrete cosine image transform of the subject's mouth

region, followed by an LDA projection and an MLLT feature rotation [80]. They have been

provided by the IBM participants for the entire database, are of dimension 41, and are

synchronous to the audio features at a rate of 100 Hz (see section 3.1). These baseline fea-

tures are exclusively used in our audio-visual ASR experiments. Alternative visual features

based on active appearance models are presented in section 3.2, and preliminary visual-only

recognition results are reported there. Notice that, in contrast to the audio, no noise has

been added to the video channel or features. Many such cases of \visual noise" could have

been considered, for example additive white noise on the video frames, blurring, frame rate

reduction, and extremely high compression factors, among others. Some preliminary studies

on the e�ects of video degradation to speechreading can be found in [22, 78, 101].

Given the training set utterance transcriptions, the corresponding appropriate features,

and the pronunciation dictionary, we can train an HMM based ASR system [82, 103]. How-

ever, due to the HTK large memory and speed requirements for LVCSR decoding, and in

order to allow fast experimentation, we have decided to follow a lattice rescoring based de-

coding strategy. Namely, using a well trained HMM system, we �rst generate appropriate

ASR lattices o� line, that contain the \most probable" decoding paths. Subsequently, we

rescore these lattices using various HTK-trained HMM systems of interest based on a num-

ber of feature sets, fusion strategies, etc. Baseline HTK systems are trained as discussed in

section 2.3. For rescoring, we employ the HTK decoder (HVite) that runs e�ciently, since

the search is constrained by the lattice (grammar) [103]. Notice that the generated lattices

are trigram lattices [82], and that, on every lattice arc, the log-likelihood value of the tri-

gram language model used to generate them has been provided by IBM. During rescoring,

the language model weight and the word insertion penalty are roughly optimized by seeking
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Lattices Best Oracle Anti-oracle LM-only Depth

\Lat" 14.24 5.53 46.83 29.57 64.7
\NLat" 45.43 26.81 96.12 58.31 164.5

\NAVLat" 37.15 16.84 103.69 52.02 271.2

Table 2.2: Word error rate (WER %) of the IBM generated lattices on the SI
test set. WER for best path, oracle, anti-oracle, and best path based on language
model information alone (LM-only) are depicted. Average lattice depth in words
per reference transcription length is also shown.

minimum word error rate (WER) on the held-out set. Test set results are reported based on

the NIST scoring standard [103].

For the summer workshop experiments, we have generated three sets of lattices for all

database utterances not belonging to the training set, using the IBM LVCSR recognizer and

appropriately trained HMM systems at IBM (cross-word pentaphone systems, with about

50,000 Gaussian mixtures each). The three sets of lattices are:

� Lat: Lattices based on the IBM system with clean audio features.

� NLat: Lattices based on the IBM system with noisy audio features (matched training).

� NAVLat: Lattices based on the IBM system with noisy audio-visual features, using

the HiLDA feature fusion technique reported in section 5.1.2.

Table 2.2 depicts the lattice word error rates, as well as other useful lattice information.

Lattices \Lat" and \NLat" are rescored by HTK trained systems on clean and noisy audio

features, respectively, to provide the baseline clean and noisy audio-only ASR performance.

For visual-only recognition experiments, lattices \NLat" are used, because they have the

worst accuracy (see Table 2.2). Such experiments are used to investigate the relative perfor-

mance of the visual features of sections 3.1 and 3.2 and of the various visual modeling and

adaptation techniques in chapter 4. The absolute visual-only recognition numbers reported

there are clearly meaningless, as they are based on rescoring lattices that contain audio infor-

mation! Finally, audio-visual fusion experiments are reported by rescoring the \Lat" lattices

in the clean audio case. However, the \NAVLat" lattices are used in the noisy audio-visual

fusion experiments, because, in this case, performance improves signi�cantly by adding the

visual modality (see Table 2.2).
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Perform 2 training iteration
of embedded reestimation

Initialise monophone HMMs
with single Gaussian densities.
Set all means and variances to
global mean and variance of 
training data.
41 phonemes + silence model,
each with 3 states

Monophone models r00/hmm0

Monophone Models r00/hmm2

Monophone Models r01/hmm2

Perform 2 training iterations
of embedded reestimation

Monophone Models r01/hmm4

Initial phone transcription

Pick the first pronunciation
for every word in the 
training transcription.

Transcriptions + Pronunciation Dictionary

Perform forced alignment to find optimal

pronunciation variant.

Training Data

Final phone transcription

Create one−state "short pause model"
Add skip states to "silence model"
Tie "short pause model" to middle
state of "silence model"
Perform 2 training iterations
of embedded reestimation

Figure 2.2: Training procedure for monophone HMMs.

2.3 Baseline ASR System Training Using HTK

This section describes the baseline speech recognition system that has been developed. The

aim of this system is to represent a state-of-the-art ASR reference system that has similar

performance characteristics to the IBM ViaVoiceTM system that generated the lattices, and,

in addition, it represents a baseline system to which the performance of the developed audio-

visual ASR systems can be compared to. The baseline system can be trained with one set of

feature vectors that can be audio-only, visual-only, or audio-visual ones (section 5.1). Context

dependent phoneme models are used as speech units, and they are modeled with HMMs

with Gaussian mixture class-conditional observation probabilities. These are trained based
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  embedded reestimation

Final Mixture models r03/hmm122

Final phone transcriptions

Triphone transcriptions

Figure 2.3: Additional training steps for context dependent HMMs.

on maximum likelihood estimation using embedded training by means of the Expectation-

Maximization (EM) algorithm [25, 82].

The baseline system was developed using the HTK toolkit version 2.2 [103]. The training

procedure is illustrated in Figures 2.2 and 2.3. This training procedure is similar to the one

described in the HTK reference manual [103] and also to baseline systems developed during

previous summer workshops at the Johns Hopkins University. All HMMs had 3 states except

the short pause /sp/ model that had only one state. We have used a set of 41 phonemes.

The phoneme /el/ has been replaced by the phoneme sequence /eh l/ due to the very small

number of occurrences of /el/ in our data. The �rst training step initializes the monophone

models with single Gaussian densities. All means and variances are set to the global means
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Condition / Lattices HTK IBM

Clean-audio / Lat 14.44 14.24
Noisy-audio / NLat 48.10 45.43

Table 2.3: HTK baseline audio-only WER (%) obtained by rescoring the IBM
generated lattices on the SI test set. Performance of the IBM system lattices is
also depicted.

and variances of the training data. Monophones are trained by embedded reestimation using

the �rst pronunciation variant in the pronunciation dictionary. A short pause model /sp/

is subsequently added and tied to the center state of the silence model /sil/, followed by

another 2 iterations of embedded reestimation. Forced alignment is then performed to �nd

the optimal pronunciation in case of multiple pronunciation variants in the dictionary. The

resulting transcriptions are used from now on for further training steps. Another 2 iterations

of embedded reestimation lead to the trained monophone models.

Context dependent phone models are obtained by �rst cloning the monophone models

into context dependent phone models, followed by 2 training iterations using triphone based

transcriptions. Decision tree based clustering is then performed to cluster phonemes with

similar context and to obtain a smaller set of context dependent phonemes. This is followed

by 2 training iterations. Finally, Gaussian mixture models are obtained by iteratively split-

ting the number of mixtures to 2, 4, 8, and 12, and by performing two training iterations

after each splitting.

The training procedure has been the same for all parameter sets, whether audio-only,

visual-only, or audio-visual. The resulting baseline clean and noisy audio-only system per-

formance, obtained by rescoring lattices \Lat" and \NLat", respectively, was 14.44% and

48.10% WER (see also Table 2.3). These numbers are quite close to the ones obtained by

the IBM system, therefore our goal of obtaining comparable baseline performance between

the IBM and HTK systems has been achieved.
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Chapter 3

Visual Feature Extraction

As discussed in the Introduction, the �rst main problem in the area of speechreading is the

question of appropriate visual speech representation in terms of a small number of informative

features. Various sets of visual features have been proposed for this purpose in the literature

over the last 20 years. In general, they can be grouped into three categories: High-level lip

contour based features, low-level video pixel based ones, and features that are a combination

of both [45].

In the �rst approach, the speaker's inner and (or) outer lip contours are extracted from

the image sequence. A parametric, or statistical lip contour model is then obtained [3,16,45,

51,52,60,84,87,90,104], and the model parameters are used as visual features. Alternatively,

lip contour geometric features are used, such as mouth height and width [1,13,74,78,85,86].

In the second approach, the entire image containing the speaker's mouth is considered as

informative for lipreading (region of interest - ROI), and appropriate transformations of its

pixel values are used as visual features. For example, in [44] video frame ROI di�erences are

used, whereas in [64] a nonlinear image decomposition for feature extraction is suggested.

The most popular low-level feature representation is a principal component analysis (PCA)

based ROI projection [2,9{11,16,28,29,61,78]. Alternative image transforms of the ROI such

as the discrete cosine transform (DCT) [27, 80] and the discrete wavelet transform [75, 78]

have also been used for feature extraction. A DCT based feature extraction scheme was used

in the summer workshop, as described in section 3.1.

Often, the high- and low-level feature extraction approaches are combined to give rise to

joint shape and appearance visual features [16, 28, 29, 57, 61, 63]. Such is the case with the

active appearance model (AAM) based features [19, 30, 64] that are presented in section 3.2.

A number of techniques can be used to post-process the extracted visual features in or-
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der to improve visual-only discrimination among the speech classes of interest, or to provide

better visual data maximum likelihood modeling. Such techniques considered in this work

are the linear discriminant analysis (LDA) [83], as well as a maximum likelihood linear trans-

formation (MLLT) of the data, which is aimed at optimizing the observed data likelihood

under the assumption of class conditional multi-variate normal distribution with diagonal

covariance [42]. For visual speech extraction, LDA has been used as a stand-alone visual

front end in [27, 77], and as the second and �nal visual front end stage (following the ap-

plication of PCA) in [2, 100]. The visual front end used in the workshop is a cascade of a

DCT of the mouth ROI, followed by LDA and MLLT, as in [80]. The three stages of this

visual front end are described in the following section. Note that both LDA and MLLT are

general pattern recognition and modeling techniques, and, as such, they have also been used

in the AAM feature visual-only recognition experiments (see section 3.2.7), as well as in our

audio-visual feature fusion work (section 5.1.2).

3.1 Discriminant DCT Based Visual Features

The DCT based visual feature extraction algorithm used in the summer workshop constitutes

a pure video pixel, appearance based feature representation of the visual speech activity

region, i.e., the immediate face area including and surrounding the subject's mouth. The

algorithm comprises of the following �ve steps, which include three stages of a cascade of

linear transformations applied to an appropriate visual data region of interest:

� Face detection and mouth location estimation, discussed in section 3.1.1;

� Region of interest (ROI) extraction, as presented in section 3.1.2;

� Stage I: Discrete cosine transform of the ROI (see section 3.1.3);

� Stage II: Linear discriminant (LDA) based DCT feature projection (section 3.1.4); and

� Stage III: Maximum likelihood feature rotation (MLLT), discussed in section 3.1.5.

The schematic of the algorithm is depicted in Figure 3.1. Implementation details, including

some DCT feature post-processing following Stage I, are presented in section 3.1.6. Visual-

only recognition experiments are reported in section 3.1.7.

The algorithm requires the use of a highly accurate face and mouth region detection

system (e.g., [43, 89]) as its �rst step. Subsequently, for every video frame fVt(m ;n ) g, at
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Figure 3.1: The DCT based cascade algorithm block diagram of the visual front
end used in our audio-visual ASR experiments.

time t , the two-dimensional ROI centered around the speaker's mouth center (mt ; nt), is

extracted, as discussed in the following sections. The ROI video pixel values are then placed

into the vector1

x
(I)

t  fVt(m ;n ) : mt � bM=2c � m < mt + dM=2e ;

nt � bN=2c � n < nt + dN=2e g ; (3.1)

of length d(I) = MN . The proposed three-stage cascade algorithm seeks three matrices, P(I),

P(II), and P(III), that when applied to the data vector x(I)

t , in a cascade fashion, they result in a

compact visual feature vector y(III)

t of dimensionD(III) � d(I) (see also Figure 3.1). Such vector

should contain most discriminant and relevant to visual speech information, according to

criteria de�ned in sections 3.1.3, 3.1.4, and 3.1.5. Each matrix P(�) is of dimension D(�)�d(�),
where � = I; II; III . To obtain matrices P(�), L training examples are given, denoted by x(I)

l ,

1Throughout this work, boldface lowercase symbols denote column vectors, and boldface capital symbols
denote matrices.
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Figure 3.2: Region of interest extraction examples. Upper rows: Example
video frames from 8 database subjects, with detected facial features superimposed.
Lower row: Corresponding extracted mouth regions of interest.

for l = 1;:::;L .

3.1.1 Face Detection and Mouth Location Estimation

We use the face detection and facial feature localization method described in [89]. Given a

video frame, face detection is �rst performed by employing a combination of methods, some

of which are also used for subsequent face feature �nding. A face template size is �rst chosen

(11 � 11 pixels, here), and an image pyramid over the permissible scales (given the frame

size and the face template) is used to search the image space for the possible face candidates.

Since the video signal is in color, skin-tone segmentation is �rst used to narrow this search to

candidates that contain a signi�cantly high proportion of skin-tone pixels. Every remaining

face candidate is given a score based on both a two-class Fisher linear discriminant [83] and

its distance from face space (DFFS). All candidate regions exceeding a threshold score are

considered as faces.

Once a face has been found, an ensemble of facial feature detectors are used to extract

and verify the locations of 26 facial features, including the lip corners and centers (ten
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such facial features are marked on the frames of Figure 3.2). The search for these features

occurs hierarchically. First, a few \high"-level features are located, and, subsequently, the

26 \low"-level features are located relative to the \high"-level feature locations. The feature

locations at both stages are determined using a score combination of prior statistics, linear

discriminant and DFFS [89].

The algorithm requires a training step to estimate the Fisher discriminant, face space

eigenvectors, and prior statistics for face detection and facial feature estimation. Such train-

ing uses a number of frames labeled with the faces and their visible features (see also sec-

tion 3.1.6).

3.1.2 Region of Interest Extraction

Given the output of the face detection and facial feature �nding algorithm described above,

�ve located lip contour points are used to estimate the mouth center and its size at every

video frame (four such points are marked on the frames of Figure 3.2). The mouth center

estimate is smoothed over twenty neighboring frames using median �ltering to obtain the

ROI center (mt ; nt), whereas the mouth size estimate is averaged over each utterance. A

size normalized ROI is then extracted as in (3.1), with M = N = 64 , in order to allow for

fast DCT implementation (see also Figure 3.2). ROI greyscale only pixel values are placed

in x
(I)

t . Furthermore, in our current implementation, no rotation normalization, general

three-dimensional pose compensation, or lighting normalization is directly applied to the

ROI.

3.1.3 Stage I: DCT Based Data Compression

At the �rst algorithm stage, we seek a D(I) � d(I)-dimensional linear transform matrix

P(I) = [p1;:::;pD(I)]>, such that the transformed data vector y
(I)

t = P(I)x
(I)

t contains most

speechreading information in its D(I) � d(I) elements, thus achieving signi�cant data com-

pression. This can be quanti�ed by seeking such elements to maximize the total energy of

the transformed training feature vectors y
(I)

l = P(I)x
(I)

l , for l = 1;:::;L , given the desired

output vector length D(I) (see (3.2), below). Alternatively, one could seek to minimize the

mean square error between the training data vectors x(I)

l and their reconstruction based on

y
(I)

l , for l = 1;:::;L , as in PCA [14].

A number of linear, separable image transforms can be used in place of P(I). In this

work, we consider the DCT. Let square matrix B= [b1;:::;bd(I) ]
> denote the DCT matrix,
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where �
> denotes vector or matrix transpose. Then, matrix P(I) contains as its rows the rows

of B that maximize the transformed data energy

D(I)X
d=1

LX
l=1

< x
(I)

l ;bjd>
2; (3.2)

where jd 2 f1;:::;d(I)g are disjoint, and <� ; �> denotes vector inner product. Obtaining the

optimal values of jd , for d = 1;:::;D(I), that maximize (3.2) is straightforward. It is important

to note that DCT allows fast implementations [81] when M and N are powers of 2. It is

therefore advantageous to choose such values in (3.1).

3.1.4 Stage II: Linear Discriminant Data Projection

In the proposed cascade algorithm, and in order to capture important dynamic visual speech

information, linear discriminant analysis (LDA) is applied to the concatenation of J consec-

utive image transformed feature vectors

x
(II)

t = [ y (I)>
t�bJ=2c;:::;y

(I)>
t ;:::;y (I)>

t+dJ=2e�1 ]
>; (3.3)

of length d(II) = D(I)J (see also Figure 3.1).

In general, LDA [83] assumes that a set of classes C is a-priori given, as well as that the
training set data vectors x(II)

l , l = 1 ;:::; L , are labeled as c(l) 2 C . LDA seeks a projection

P(II), such that the projected training sample fP(II) x
(II)

l ; l = 1 ;:::; L g is \well separated" into
the set of classes C . Formally, P(II) maximizes

Q(P(II)) =
det (P(II)> SB P

(II))

det (P(II)> SW P(II))
; (3.4)

where det(�) denotes matrix determinant. In (3.4), SW , SB denote the within-class scatter

and between-class scatter matrices of the training sample. These matrices are given by

SW =
X
c2C

Pr(c) �(c); and SB =
X
c2C

Pr(c) (m(c)�m ) (m(c)�m )>; (3.5)

respectively. In (3.5), Pr(c)=Lc=L , c 2 C , is the class empirical probability mass function,

where Lc=�L
l=1�

c

c (l) , and � ji =1 , if i= j ; 0 , otherwise. In addition, each class sample mean
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is

m(c) = [m(c)
1 ;:::; m

(c)

d(II)
]>; where m(c)

d =
1

Lc

LX
l=1

� c

c (l) x
(II)

l;d ; for d = 1;:::; d(II) ;

and each class sample covariance is �(c), with elements given by

�
(c)
d;d0 =

1

Lc

LX
l=1

� c

c (l)( x
(II)

l;d �m
(c)
d ) ( x(II)l;d0 �m

(c)
d0 ) ; for d ; d0 = 1;:::; d(II) :

Finally, m = � c2C Pr(c)m
(c), denotes the total sample mean.

To maximize (3.4), we subsequently compute the generalized eigenvalues and right eigen-

vectors of the matrix pair (SB,SW ) that satisfy SBF = SWFD [41, 83]. Matrix F =

[ f1;:::; fd(II) ] has as columns the generalized eigenvectors. Let the D(II) largest eigenvalues be

located at the j1;:::; jD(II) diagonal positions of D. Then, given data vector x(II)

t , we extract

its feature vector of length D(II) as y
(II)

t = P(II)x
(II)

t , where P(II) = [ fj1;:::; fjD(II)
]>. Vectors

f jd, for d = 1;:::;D(II), are the linear discriminant \eigensequences" that correspond to the

directions where the data vector projection yields high discrimination among the classes of

interest.

We should note that the rank of SB is at most jCj � 1, hence we consider D(II) � jCj� 1 .

In addition, the rank of SW cannot exceed L � jCj , therefore insu�cient training data is a

potential problem. In our case, however, �rst, the input data dimensionality is signi�cantly

reduced by using Stage I of the proposed algorithm, and, second, the available training

data are of the order L = O(106) . Therefore, in our experiments, L � jCj � d(II) (see also

section 3.1.6).

3.1.5 Stage III: Maximum Likelihood Data Rotation

In di�cult classi�cation problems such as large vocabulary continuous speech recognition,

many high dimensional multi-variate normal densities are used to model the observation class

conditional probability distribution. Due to lack of su�cient data, diagonal covariances are

typically assumed, although the data class observation vector covariance matrices �(c), c 2 C ,
are not diagonal. To alleviate this, we employ the maximum likelihood linear transform

(MLLT) algorithm. MLLT provides a non-singularmatrix P(III) that \rotates" feature vector

x
(III)

t = y
(II)

t , of dimension d(III)= D(II), obtained by the �rst two stages of the proposed cascade

algorithm as discussed in sections 3.1.3 and 3.1.4. The �nal feature vector is of length
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D(III) = d(III), and it is derived as y(III)

t = P(III)x
(III)

t .

MLLT considers the observation data likelihood in the original feature space, under the

assumption of diagonal data covariance in the transformed space. The desired matrix P(III)

is obtained by maximizing the original data likelihood, namely [42]

P(III)= argmax
P
fdet(P)L

Y
c2C

(det(diag(P�(c)P>)))�Lc=2 g ;

where diag(�) denotes matrix diagonal. Di�erentiating the logarithm of the objective function

with respect to P and setting it to zero, we obtain [42]

X
c2C

Lc(diag(P
(III)�(c)P(III)>))�1P(III)�(c) = L(P(III)>)�1 :

The latter can be solved numerically [81].

3.1.6 Cascade Algorithm Implementation

Stage I (image transform) of the feature extraction algorithm is applied to each ROI vector

x
(I)

t of length d(I)= 4096 at the video rate of 60 Hz. To simplify subsequent LDA and MLLT

training, as well as bimodal (audio-visual) fusion, we interpolate the resulting features y(I)

t

to the audio feature rate, 100 Hz. Furthermore, and in order to account for lighting and

other variations, we apply feature mean normalization (FMN) by simply subtracting the

feature mean computed over the entire utterance length T (cepstral mean subtraction), i.e.,

y
(I)

t  y
(I)

t � �T
t0=1y

(I)

t0 =T . This is akin to the audio front end processing [56, 82], and it is

known to help visual speech recognition [78, 95].

At Stage II (LDA) and Stage III (MLLT), and in order to train matrices P(II) and P(III),

respectively, we consider jCj � 3400 context dependent sub-phonetic classes. We label vectors

x
(II)

t , x(III)

t , by forced alignment of the audio channel using an audio-only HMM. In the current

front end implementation, we use D(I)= 24 , D(II)= D(III)= 41 , and J=15 .

3.1.7 DCT-Feature Visual-Only Recognition Results

Based on the algorithm presented above, visual features have been extracted for the en-

tire database preceding the workshop, and provided by the IBM participants. Using these

features, visual-only HMMs were trained during the workshop as discussed in section 2.3,

and subsequently used to rescore lattices \NLat" on the SI test set (see Tables 2.1 and 2.2).
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Condition WER (%)

Visual-only (with LM) 51.08
LM-only (no features) 58.31

Visual-only, with no LM 61.06
Random lattice path 78.14

Noisy audio-only 48.10

Table 3.1: \NLat" lattice rescoring results in WER (%), obtained with or without
the use of visual-only trained HMM scores and language model (LM) scores. The
baseline noisy audio-only performance is also depicted.

Recognition results are reported in Table 3.1. Recall that lattices \NLat" were obtained using

noisy audio-only HMMs (section 2.2), therefore the absolute visual-only recognition results

reported here are meaningless. Instead, these experiments were carried out to demonstrate

that DCT features do provide useful speech information, and, in addition, to allow a pre-

liminary comparison to the AAM features presented next. Indeed, as depicted in Table 3.1,

the visual-only WER of 51.08% is signi�cantly lower than the 58.31% WER of the best path

through the \NLat" lattices using the language model information alone. Similarly, if we

do not use any lattice language model information, the visual-only WER becomes 61.06%,

which is much lower than the 78.14% WER of the random path through the \NLat" lattices,

obtained when no HMM or language model scores are used. Clearly therefore, the DCT

visual features do provide useful speech information.

3.2 Active Appearance Model Visual Features

An active appearance model (AAM) is a statistical model that combines shape and appear-

ance information to derive a 
exible model, coupled with an iterative scheme to �t the model

to an example image. The AAM algorithm was �rst described by Cootes, et. al, in [19], and

it was directly applied to tracking face images in [30]. In the lipreading context this ap-

proach may be viewed as a combination of both the low-level, data-driven approach with

the high-level, model-based one, as mentioned in the introduction of this chapter.

Examples of using both appearance and shape to extract features for automatic recog-

nition of visual speech include [16, 58, 59, 61]. However, never before have appearance and

shape been combined in a singlemodel. An active appearance model provides a framework to

statistically combine both of these techniques. Building an AAM requires three applications
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Figure 3.3: Example landmark points: Each of the 68 landmarks is hand-labeled
on the training images. Red indicates a primary landmark and green a secondary
one.

of principal component analysis (PCA):

� Shape eigenspace calculation to model shape deformations;

� Appearance eigenspace calculation to model appearance changes; and

� Using these, calculation of a combined shape and appearance eigenspace.

As the shape and appearance of, for example faces or lips, are often correlated, the aim of the

�nal PCA is to remove this redundancy and create a single model that compactly describes

shape and corresponding appearance deformation. Each of these steps is described in more

detail in the following sections.

3.2.1 Shape Modeling

Shape deformations of the region being modeled (e.g., the face or lips) can be described

compactly using the eigenspace of a set of landmark points [20]. In this implementation,

landmark points are identi�ed on the set of training images by hand. These points are

chosen to approximate the shape of interest as a polygonal (dot-to-dot) model.

The number of landmarks used is a trade-o� between the signi�cant manual labor required

annotating training images and the error in the polygonal approximation to a real, generally

smooth shape. An example image is shown in Figure 3.3 with 68 landmark points labeled

on the eyebrows, eye lids, nose bridge, under nose, lip inner and outer contour, and jaw line.
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It is useful to introduce the concept of primary and secondary landmarks when manually

labeling data. A primary landmark (shown in red) is one that should correspond to an easily

identi�able image feature, such as the mouth corner. The secondary landmarks (shown

in green) are equally spaced between primary landmarks to describe the shape. In this

implementation, all landmarks are hand located, and all secondary landmarks are smoothed

spatially along a spline. These can then be edited to accurately describe the shape and

minimize the introduction of variance due to point mislocation along each curve.

The notion of primary and secondary landmarks exists only to aid the labeling process.

For all video data processing, shape is described simply by the (x ; y) coordinates of all the

landmark points. Any shape s , is represented in two dimensions by the 2N -dimensional

vector of N concatenated coordinates

s = [ x1; y1; x2; y2 ;:::; xN ; yN ]>:

Given a set of labeled landmark points, PCA [14,34] can be used to identify the optimal

orthogonal linear transform (rotation of the axes) in terms of the variance described along

each dimension. To identify only axes of genuine shape variation, each shape in the training

set must be aligned. In this application, shapes are aligned using a similarity transform

(translation, rotation and scaling). This is achieved using an iterative procrustes analysis [21,

26].

The main modes of shape variation, i.e., axes of greatest variance, are then found using

PCA (discrete Karhunen-Lo�eve expansion). This simply requires computing the eigenvectors

and eigenvalues of the covariance matrix2 of the aligned shapes. Shape can then be modeled

as a projection into this eigenspace,

s = s +Pb ;

where s is the mean aligned shape, P = [p1;p2;:::;p2N ] is the matrix of eigenvectors, and b

is the vector of corresponding weights for each eigenvector (the principal components).

The eigenvalues, �i , represent the variance accounted for by the corresponding ith eigen-

vector, pi . These allow sensible limits to be de�ned for each of the principle components.

For example, they may be limited to lie within � 3
p
�i , to force points in the model to lie

within three standard deviations of the mean.

If the eigenvectors are sorted in decreasing order according to the size of the correspond-

2Hence the use of the term eigen-X, where X is the application of your choice.
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mode 1 mode 2 mode 3
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Figure 3.4: Statistical shape model. Each mode is plotted at � 3 standard
deviations around the mean. These six modes describe 74% of the variance of the
training set.

ing eigenvalue, then the top t eigenvectors can be used to approximate the actual shape.

Typically, t is chosen so that the sum of the top t eigenvectors describe, let's say, 95% of

the total variance. This reduces the dimensionality signi�cantly allowing valid shapes to be

represented in a compact space

s � s+Psbs ;

where Ps is the matrix of t shape eigenvectors [ps1 ;ps2;:::;pst ] , and bs is the t-dimensional

vector of corresponding weights.

Figure 3.4 shows the mean face shape deformed by projecting up to � 3 standard devi-

ations for the �rst six modes. This model uses 11 modes to describe 85% of the variance of

4072 labeled images from the IBM ViaVoiceTM audio-visual database.

3.2.2 Shape Free Appearance Modeling

Principal component analysis can be used in exactly the same manner as used in section 3.2.1

to compactly model pixel intensity, or color, variance over a training set of images. This

application of PCA is often called \eigenfaces" [94]. Pixel values in an N�M image are

represented as a single NM -dimensional vector by sampling the image from its rows or
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columns, for example. For a greyscale image, its appearance a is

a = [ l1; l2;:::; lNM ]>;

where li is the ith luminance value in the image. The extension to a color image is simply to

sample each color attribute for each pixel. For example, an RGB color image can be sampled

to give the 3NM -dimensional appearance vector

a = [ r1; g1; b1; r2; g2; b2 ;:::; rNM ; gNM ; bNM ]>:

A limitation of this approach to modeling appearance is that background pixels in the

image can introduce signi�cant variance. Typically, a region of interest (ROI) in the image

is located to remove as much background as possible.

A more speci�c appearance model could be obtained by sampling only the pixel values

that lie within the region to be modeled, for example the face. However, this would result

in the appearance vector a , that is likely to contain a di�erent number of elements for each

image. Simply resampling the modeled region to contain the same number of pixels is not

su�cient. This would mean appearance elements in one image would not correspond to the

same elements in another because of shape di�erences between the regions, which precludes

the use of PCA.

One solution is to warp all training images to a reference shape before sampling only the

ROI. The size of the reference shape can be chosen to de�ne the number of appearance pixels

to be modeled. This can easily be achieved by de�ning a warp using the landmark points

labeled for shape modeling as source vertices, and the mean shape points s , as destination

vertices. These vertices can be triangulated to form a mesh using, for example, a Delaunay

triangulation [32]. The image then forms the texture map for a simple texture mapping

operation that can be implemented using a graphics API such as OpenGL [102] and is often

hardware accelerated.

Figure 3.5 illustrates this process. The landmark points are triangulated and the region

covered by the resulting mesh is the ROI. Each triangle of the input mesh is warped to

the destination triangle in the output mesh of the reference shape s . The reference shape

could be arbitrary, it need not be the mean shape, but this is convenient. The reference

shape has already been scaled so that the resulting shape-normalized image always contains

6000 pixels. The appearance can now be sampled in this reference frame where each pixel is

approximately equivalent for all images. The use of texture mapping introduces discontinu-
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labeled image face region warped image

Figure 3.5: Appearance normalization. The landmark points de�ne the region
of interest. They form the input vertices of a Delaunay triangulation for a texture
mapping operation. The output vertices are the mean shape.

ities at each triangle boundary, but, in practice, this approximation to an ideal continuous

warping function produces reasonable results very quickly.

A further post-processing step on the shape-normalized images is to normalize them all

to have zero mean and unit variance. This removes the global lighting variation between

images. PCA can now be used on the normalized appearances to identify the major modes of

variation. Shape-normalized appearance is then approximated using the top t eigenvectors

as

a � a +Pa ba ;

where Pa is the matrix of t shape normalized appearance eigenvectors [pa1 ;pa2 ;:::;pat ] , and

ba is the t-dimensional vector of corresponding weights.

Figure 3.6 shows the mean shape-normalized appearance and projections at � 3 standard

deviations for the �rst six modes. This model uses 186 modes to describe 85% of the variance

of the 4072 labeled training images from the IBM ViaVoiceTM audio-visual database.

3.2.3 Combined Shape and Appearance Model

In many applications there will be signi�cant correlation between shape and appearance.

In the example of lips, the appearance looks di�erent when the mouth is open as the oral
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Figure 3.6: Shape free appearance. Center row: Mean appearance. Top row:
Mean appearance +3 standard deviations (+3�). Bottom row: Mean appearance
�3 standard deviations (�3�). The top six modes describe 41% of the training
set variance.

cavity is seen (and possibly the teeth and tongue). A third PCA can be used to decorrelate

the individual shape and shape-normalized appearance eigenspaces and create a combined

shape and appearance model.

A combined shape and appearance space can be generated by concatenating the shape

and appearance model parameters into a single vector

c = [b>
s ;b

>
a ]

>:

As these models represent (x ; y) coordinates and pixel intensity values respectively, PCA

cannot be applied directly on the combined vectors. This is due to the PCA scaling prob-

lem [14]. PCA identi�es the axes of most variance, so if the data is measured in di�erent

units, then scaling di�erences between them will dominate the analysis, and any correlation

between the variables will be lost. This can be compensated for, by introducing a weight to

normalize the di�erence between the variance in shape and appearance parameters. The sum

of the retained eigenvalues in the shape and appearance PCA calculation is the respective
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variance described by each model, so the required weight can be calculated using

w =

vuuuuuuut

taX
i=1

�ai

tsX
i=1

�si

;

where �ai is the ith eigenvalue from the appearance PCA, �si is the ith eigenvalue from

the shape PCA, and ts and ta are the number of retained eigenvectors in the shape and

appearance PCA, respectively. A weight matrix to be applied to the shape parameters is

then simply

W = w I ;

where I denotes the identity matrix.

For all examples in the training set, the labeled landmark points are projected into

their shape parameters bs, and the appearance into appearance parameters ba. These are

concatenated using the variance normalizing weight to form combined shape and appearance

vectors

c = [Wb>
s ;b

>
a ]

>:

Then, PCA is used to calculate the combined eigenspace

c � Pcbc ;

where P c is the matrix of t shape and appearance eigenvectors [pc1;pc2;:::;pct ] and bc is

the t-dimensional vector of corresponding weights. There is no mean vector to add, as both

bs and ba are zero mean. Again, t is chosen so the retained eigenvectors model the desired

percentage of variance.

As the model is linear, shape and appearance can still be calculated from the combined

shape and appearance model parameters

s � s +PsW
�1Pcsbc ;
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Figure 3.7: Combined shape and appearance. Center row: Mean shape and
appearance. Top row: Mean shape and appearance +3 standard deviations. Bot-
tom row: Mean shape and appearance �3 standard deviations. The top 6 modes
describe 55% of the combined shape and appearance variance.

and

a � a+PaPcabc ;

where

Pc = [P>
cs ;P

>
ca ]

> :

Figure 3.7 shows the combined shape and appearance projections at �3 standard devi-

ations for the �rst six modes. This model uses 86 modes to describe 95% of the variance of

the 4072 IBM ViaVoiceTM dataset training images.

3.2.4 Learning to Fit

A simple approach to �tting an AAM to a sample image is to use a numerical minimization

algorithm, such as the downhill simplex [69], to iteratively minimize the �t error in terms of

the model parameters. This approach works well for applications with low dimensionality [59]

but the large number of iterations required imparts too great a performance penalty in the

case of AAMs.

The AAM algorithm formulated by Cootes, et. al, in [19], assumes that, given small
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perturbations from the actual �t of the model to a target image, a linear relationship exists

between the di�erence in the model projection and image and the required updates to the

model parameters. A similar approach was also used for model �tting by Sclaro� in [88].

All of the model parameters are grouped into a single vector with the pose values that

de�ne a similarity transform for projecting the model into the image

m = [ tx; ty; �; s; go; gs; bc1 ; bc2;:::; bct ]
>;

where tx and ty are translations in the x and y coordinates, respectively, � is rotation, s is

scale, go and gs are global appearance o�set and scaling terms to model changes in lighting

conditions, and bci is the ith combined shape and appearance model parameter.

If the linear assumption is valid, then small perturbations in the total model parameter

set, denoted by �m , have a linear relationship to the di�erence between the current model

projection and the image, denoted by �a = ai � a , where a is the image appearance and

ai is the current model appearance. Clearly, to remove the e�ects of shape and pose, this

di�erence must be calculated at some reference shape. The model shape-free appearance is

calculated for a speci�c shape (generally the mean shape), so the image at the current model

projection is warped back to the same shape to create the image appearance vector ai .

Given a training set of model perturbations �m , and corresponding di�erence appear-

ances �a , the linear �t model

�m = R �a ;

can be solved for R , using multiple linear regression. The training set can be synthesized

to an arbitrary size using random perturbations of the model parameters and recording the

resulting di�erence appearance.

The �tting algorithm is then a process of iterative re�nement:

� Calculate the current di�erence image �a , and current �t error Ec =<�a ; �a> ;

� Calculate the predicted update �m = R �a ;

� Apply a weighted predicted update mp = m� � �m , where initially � = 1:0 ;

� Calculate the predicted di�erence image �ap and predicted �t error Ep = <�ap ; �ap> ;

� Iterate for values of � = 1:0 ; 0:5 ;::: ; until Ep < Ec , or the maximum number of

iterations is reached.
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Figure 3.8: AAM landmark point training examples.

This sequence represents one AAM iteration, and it is repeated until there is no improvement

in the current �t error Ec .

Given an initial model position reasonably close to the actual image, this algorithm can

typically converge within a few iterations. As all calculations involving image data occur in

the shape-free appearance reference shape, and at the scale de�ned by that shape, the entire

�t process is independent of image size. However, the model pose transformation is directly

related to the image size. For example, tx = 5 is a translation of 5 pixels in the positive x

direction. By subsampling the target image, and applying the suitable similarity transform

to the current model pose parameters, the �t algorithm is extended to work at multiple

resolutions. Starting at a coarse resolution, where a translation of 5 pixels is much more

signi�cant, the �t process is run to completion and the next highest resolution is chosen until

a �nal �t is achieved on the original image. This multiresolution approach allows greater

freedom in the choice of initial model parameters.

3.2.5 Training Data and Features

The training data consisted of landmark points hand located in 4,072 images taken from

323 sequences in the ViaVoiceTM audio-visual database. The model used 68 landmarks to

35



model the entire face region. This represents a signi�cant amount of labor as each image

can take several minutes to label. However, in total, this covers only 2 mins, 13 secs out of

the approximately 50 hrs of the full database. Some example labeled images are shown in

Figure 3.8.

This training data was used to build a point distribution model retaining 85% of the

total shape variance, giving 11 modes of variation (see Figure 3.4). A shape-free appearance

model was calculated using the mean shape as the reference shape, but scaled to contain 6000

pixels. This model required 186 modes to describe 85% of the shape-free appearance variance

(see also Figure 3.6). These were combined to form the combined shape and appearance

model by taking the 86 modes that described 95% of the concatenated shape and shape-free

appearance model variance (Figure 3.7).

Features were extracted by applying the AAM �tting algorithm described in section 3.2.4

and recording the �nal model parameters. Model pose information (translation, rotation,

scaling, and global appearance lighting transformation) was ignored as it is scene dependent.

The 86-dimensional model parameter vectors were then either used directly as features, or

further transformed using the methods described in sections 3.1.4 and 3.1.5.

Models were also built taking only the \beard" region of the face (the lower jaw and up

to the bottom of the nose), or only the lip region. In both cases, poor tracking performance

from the less detailed model prevented investigation of lipreading performance.

3.2.6 Tracking Results

The full face model was run on ViaVoiceTM image sequences over a period of �ve days at the

workshop. Prior to this, all e�orts were focused on increasing the amount of labeled training

data3 and increasing the AAM tracking speed. During this time, AAM tracking results were

obtained for 4,952 sequences. This represents 1,119,256 image frames, or 10 hrs, 22 mins of

video data at 30 frames per second. Average tracking speed was 4 frames per second.

One measure of how well the tracker was able to �t to an image sequence is to take the

average over the sequence of the mean square pixel error (MSE) per image frame. The mean

MSE over a sequence lies between 89.11 (for the best �tted sequence) and 548.87 (for the

worst one). Example frames from each of these sequences are shown in Figure 3.9. Over

all of the tracked data, the average sequence MSE was 254.21. Visual analysis of a sample

of the tracking results suggests that, in many cases, the AAM tracker failed to follow small

3Many thanks for the e�orts of Laurel Phillips at Carnegie Mellon University, and June Sison and Azad
Mashari at the workshop.
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(a) Example frame from a good �t.

(b) Example frame from a bad �t.

Figure 3.9: AAM tracking result examples. A well �tted frame is shown in (a)
and a poorly �tted frame in (b), alongside the original image.

facial motions. In practice, the tracker was more e�ective at locating the face region than

accurately modeling facial expression. Given the small size of the AAM training set, this is

perhaps to be expected.

3.2.7 AAM-Feature Visual-Only Recognition Results

Taking the same approach described in section 3.1.7, visual-only HMMs were trained using

variations of the AAM features. As AAM tracking results were not available for the full

ViaVoiceTM database, the AAM features were split into training and test sets that are

respectively subsets of the multi-speaker training and test sets described in section 2.1 (see

Table 2.1). Unfortunately, this means the AAM results cannot be directly compared to the

DCT results in section 3.1.7 (Table 3.1). However, equivalent DCT results were obtained on

the same subset used to obtain the AAM results.
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Feature set WER (%)

AAM: 86-dim 65.69
AAM: 30-dim 65.66
AAM: 30-dim + � + �� (90-dim) 65.90
AAM: 86-dim + LDA (24-dim) + LDA over 15 frames + MLLT (41-dim) 64.00

DCT: 18-dim + � + �� (54-dim) 61.80
DCT: 24-dim + LDA over 15 frames + MLLT (41-dim) 58.14

Noise: 30-dim 61.37

Table 3.2: \NLat" lattice rescoring results on a subset of the SI test set, expressed
in WER (%), obtained with visual-only HMMs trained on various visual feature
sets.

The rescoring results are summarized in Table 3.2. All results are depicted in percentage

word error rate (WER).4 The top row is the result using all 86 AAM features. The second

row is the result using only the top 30 of the 86 AAM features. The third row is obtained

by appending �rst and second derivatives (denoted by � and �� , respectively) to these

30. The fourth row is the AAM result obtained after using an LDA feature projection to a

24-dimensional space, followed by the LDA/MLLT projection described in section 3.1. The

�fth row is the result using DCT features with their �rst and second derivatives appended,

and the sixth row is the result using the LDA/MLLT transformed DCT features. Finally,

the bottom row is the result obtained by training models on 30-dimensional uniform random

noise features.

It is interesting to note that the only features that give lower word error rate than the ran-

dom noise features are the LDA/MLLT transformed DCT features. All of the AAM feature

variants performed worse than the random noise features, which are e�ectively exploiting

information in the language model combined with the restricted depth lattices.

3.3 Summary

In this chapter, we presented two visual front ends for automatic speechreading, namely

features based on the DCT of an appropriately tracked mouth ROI, discussed in section 3.1,

and features based on a joint shape and appearance model of the face ROI, by means of

AAMs, presented in section 3.2. Both feature sets can be further transformed by using LDA

4As mentioned in section 3.1.7, these results cannot be interpreted as visual-only recognition, due to the
rescoring of the noisy audio-only lattices.
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and MLLT, discussed in section 3.1.

Noisy audio lattice rescoring experiments show that using AAM features results in worse

recognition performance than simply using uniform random noise as visual features. The

AAM features also perform worse than DCT features on the same subset of the ViaVoiceTM

dataset. Therefore, the DCT based visual feature representation discussed in section 3.1 is

exclusively used in all experiments reported in the following chapters.

There are two reasons for the poor AAM performance: Modeling errors, and tracking

errors. The �rst may be due to a poor choice of model or insu�cient training data to

generalize the model to the test data. The second may also be due to insu�cient training

data as the AAM algorithm also uses this to learn how to �t.

The poor recognition performance is related to the signi�cant number of poorly tracked

sequences. The tracking algorithm used does not update model parameters if no better

�t is found between successive images. This introduces sections where the features remain

constant over many frames. As a direct transformation of the image, the DCT method

always gives a dynamic feature, even if the face tracking has failed on a given frame.

Given the small amount of labeled AAM training data it may not be surprising that

the resulting model is unable to capture all facial changes during speech. Only snap-shots

of speech were modeled and this does not appear to be enough to generalize to continuous

visual speech. Note also that the tedious task of hand labeling training data images is a

signi�cant drawback to the AAM approach.
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Chapter 4

Visual Clustering and Adaptation

A prominent aspect in any large vocabulary continuous speech recognition (LVCSR) HMM

based system is modeling context dependence of speech units (phone models) [82, 103], in

order to reliably capture co-articulation. To avoid data sparseness due to the large number

of such context dependent phone units, decision trees are typically used to cluster them. In

the case of visual speech, it is well known that not all phones are visually distinct, but rather

they cluster in so-called visemes [45,62]. It is then of interest to investigate whether context

clustering on basis of visemic instead of phonetic context is advantageous to visual-only ASR.

The issue was addressed in the summer workshop and is reported in section 4.1.

The second aspect of visual modeling considered in this chapter is the question of visual-

only HMM adaptation to unseen subjects. Although this has been studied before for small

vocabulary tasks [79], our workshop experiments constitute the �rst time that adaptation

techniques have been investigated in the visual-only LVCSR domain. Visual-only speaker

adaptation is discussed in section 4.2.

4.1 Visual Clustering

As stated above, current state-of-the-art LVCSR HMM based speech recognizers use con-

text dependent phones as speech units. In HTK [103], context dependence is modeled by

triphone units. Rather than considering all possible triphones, only triphone contexts that

are substantially di�erent are chosen. For every phone state, decision tree based clustering

is used to group contexts that are similar. At each node in the decision tree, the data is split

into two classes by means of questions that ask whether the phone to the right or left of the

current phone belongs to a group of phones which are similar along some dimension (e.g.,
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Silence /sil/, /sp/

/ao/, /ah/, /aa/, /er/, /oy/, /aw/, /hh/
Lip-rounding /uw/, /uh/, /ow/
based vowels /ae/, /eh/, /ey/, /ay/

/ih/, /iy/, /ax/

Alveolar-semivowels /l/, /el/, /r/, /y/

Alveolar-fricatives /s/, /z/
Alveolar /t/, /d/, /n/, /en/
Palato-alveolar /sh/, /zh/, /ch/, /jh/
Bilabial /p/, /b/, /m/
Dental /th/, /dh/
Labio-dental /f/, /v/
Velar /ng/, /k/, /g/, /w/

Table 4.1: The 13 visemes considered in this work.

acoustic similarity). Such a question is referred to as a context question.

In the workshop we investigated the design of context questions that are based on visual

similarity. Speci�cally, we �rst de�ned thirteen visemes, i.e., visually similar phone groupings

(see section 4.1.1). Visual context questions based on these visemes were subsequently

developed to guide binary tree partitioning during triphone state clustering (section 4.1.2).

The resulting phone trees were inspected in order to observe the importance of visual context

questions and possibly reveal similar linguistic contextual behavior between phones that

belong in the same viseme (section 4.1.3). Finally, visual-only HMMs were trained based

on the resulting context trees, and they were compared to ones trained using decision tree

clustering on basis of acoustic phonetic only questions (section 4.1.4).

4.1.1 Viseme Classes

Not all phones are visually distinct. However, they can be clustered in visemes, which

di�er in the place of articulation, and, therefore, can be visually distinguished [45, 62]. In

the summer workshop, we determined seven consonant visemes, namely the bilabial, labio-

dental, dental, palato-alveolar, palatal, velar, and two alveolar visemes. For example, f/p/,
/b/, /m/g constitutes the well-known bilabial viseme [45]. Lip rounding during formation of

vowels de�ned the remaining four vowel visemes and an alveolar-semivowel one, whereas one

viseme was devoted to the two HTK silence phones, i.e., f/sil/, /sp/g. The thirteen resulting
visemes are depicted in Table 4.1. These were subsequently used to guide development of

41



Figure 4.1: Decision tree based HMM state clustering (Figure 10.3 of [103]).

visual context questions needed for decision tree based triphone state clustering, as described

next.

4.1.2 Visual Context Questions

Triphone HMM states were clustered using binary trees as depicted in Figure 4.1. Tree

partitioning employed questions about the left and right contexts of all triphone states.

We added 76 visual context questions to an existing standard audio context question

set. This original set of questions was composed of 116 acoustic context questions and 84

questions that de�ned the context as particular single phones. Aside from the inclusion of

all original acoustic context questions, these same audio context questions (characterized

by manner of articulation) were split into more speci�c groupings restricted by place of

articulation. For example, a single acoustic context question based on non-nasal stops f/p/,
/b/, /t/, /d/g resulted in two separate visual context questions based on its bilabial and

alveolar viseme members, f/p/, /b/g and f/t/, /d/g, respectively. The �nal joint question
set consisted of a total of 276 questions.
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Figure 4.2: Decision tree root questions for the three emitting states (states 2,
3, and 4) of the HMMs for phones /p/, /b/, and /m/, that make up the bilabial
viseme.

4.1.3 Phone Tree Root Node Inspection

As a �rst investigation of the relative in
uence of the visual context questions in the decision

tree design, we used HTK to design 123 phone state clustering decision trees (one for each

of the three states of the 41 monophone HMMs, excluding /el/, /sil/, and /sp/). The trees

were constructed based on the DCT visual features, appropriately trained context dependent

visual HMMs (see section 2.3 and Figure 2.3), and the 276 questions described above. We

subsequently analyzed the root nodes of the resulting decision trees. Root node analysis

involved simple frequency counts of the number of audio, visual, and single phone context

questions that determined partitions at the root of the 123 phone state trees.

This inspection revealed that visual context questions were employed in about one third

of the root nodes. Speci�cally, out of the 123 decision trees, 33 had visual context questions
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Dec. Tree WER (%)

\AA" 51.24
\VA" 51.08
\VV" 51.16

Table 4.2: Visual-only HMM recognition performance based on three di�erent
decision trees.

at their root node, 74 had audio context root node partitions, and the remaining 16 had root

node partitions obtained by single phone context questions. Clearly, visual context questions

played an important role in the decision tree based triphone state clustering.

Further inspection of the decision trees, however, did not reveal similar linguistic con-

textual behavior between phone trees within the same viseme class. Rather, the results

appeared unbalanced and any pattern seemed to be an artifact of the speci�c data corpus

and not driven by linguistic rules (see also Figure 4.2).

4.1.4 Visual Clustering Experiments

In order to test whether decision tree clustering by means of visual context questions improves

performance of the resulting visual-only HMMs, a number of such models were trained using

the DCT visual features described in section 3.1. We trained three visual-only HMMs on

the training set depicted in Table 2.1. Similarly to the experiments reported in chapter 3,

all HMMs were used to rescore the \NLat" lattices on the SI test set (see also Tables 2.1

and 2.2).

Two sets of questions were used for the decision tree clustering. The original audio

context questions consisted of 200 questions that group phones primarily based on voicing

and manner of articulation. These questions were also used to train the audio-only baseline

HMMs in section 2.3. The second set of questions considered consisted of the 276 questions

described in section 4.1.2, namely the 200 audio context questions augmented by the 76

visual context questions. With some abuse of notation, we refer to the two sets as the

\audio" and \visual" questions, respectively.

The minimum likelihood gain threshold and the minimum cluster size used in decision

tree development were set to the same values used in the audio-only HMM decision tree

design (300 and 250, respectively). Such values were likely suboptimal for the visual models,

as they have been optimized for audio features. It would be of interest to obtain optimal

choices for these values in the visual feature case.
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Figure 4.3: Absolute recognition performance di�erence between the \VA" and
\VV" clustered visual-only HMMs, expressed in WER (%), for each of the 26 test
subjects. Positive values indicate subjects where the \VV" system is superior.

The three visual-only context dependent HMMs were trained based on clustering by

means of three di�erent decision trees. These trees were obtained using various front ends

(features) and questions, and are denoted as follows:

� AA: Uses audio features and \audio" questions (i.e., the decision tree is identical to

the one used for audio-only HMM training);

� VA: Uses visual features, but \audio" questions;

� VV: Uses visual features and \visual" questions.

The performance of the resulting visual-only HMMs trained using the \AA", \VA", and

\VV" decision trees is depicted in Table 4.2, expressed in WER (%). Clearly, there was

no signi�cant di�erence in the performance of the three models. The \AA" based system

performed somewhat worse than the other two models, whereas, surprisingly, the \VA" was

the best.

We further investigated the \VA" and \VV" system di�erences on a per subject basis, for

each of the 26 subjects of the SI test set. The results are depicted in Figure 4.3. Notice, that

although there were not signi�cant overall di�erences resulting from incorporating the new set

of questions in decision tree design, for particular individuals, absolute WER di�erences were
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almost as great as 3%. It is worth mentioning, that visual-only recognition results by both

the \VA" and \VV" systems followed the noisy audio-only HMM recognition performance,

per subject. This was an artifact of the \NLat" lattice rescoring experiments, which severely

restricted decoding (see also sections 3.1.7 and 3.2.7).

We also performed an analysis of how many times each question was used in the \VV"

decision trees. This revealed that the 76 introduced viseme based questions were used quite

frequently: Within the top 20 questions used in the \VV" tree, 11 were viseme based, thus

a�ecting the relative frequency with which the traditional audio questions were used. Some

such audio questions that did not rank high in the \VA" decision tree, were used further up

the trees in the \VV" based clustering.

It is also worth noticing that all three decision trees (\AA", \VA", and \VA") formed

approximately 7000 clusters. However, the set of visually distinguishable classes (visemes)

is much smaller than the number of phones, thus we considered it of interest to investigate

smaller \VV" decision tree sizes. We constructed such a decision tree (of the \VV" type) with

about 2500 clusters, by increasing the minimum likelihood gain threshold to 900. However,

this resulted to some performance degradation of the corresponding visual-only HMM.

These results indicate that viseme based context questions for decision tree based cluster-

ing do not appear to improve system performance. We view, however, these experiments to

be a �rst only investigation of visual model clustering. Further work is merited in this area,

including full decoding experiments, improvements in the decision tree clustering algorithm,

and a possible redesign of visual context questions.

4.2 Visual Model Adaptation

Every subject has unique speech characteristics, and, in the case of visual speech, also unique

visual appearances. It is therefore expected that a speaker independent (SI) trained audio-

visual ASR system is not necessarily su�cient to accurately model each new subject, or even

speci�c enough to each subject in its training population.

In practice, it is often the case that a small training data amount of a previously unseen

(in training) subject becomes available. This scenario corresponds, for example, to subject

enrollment in commercial LVCSR dictation systems. Such data is typically not su�cient

to train a subject speci�c HMM recognizer, however it can be used to transform SI HMM

parameters to obtain a speaker adapted (SA) HMM, capable of capturing the subject speech

characteristics better. Speaker adaptation algorithms have been successfully used for this
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task in traditional audio-only ASR [37, 54, 72]. Such common algorithms include the maxi-

mum likelihood linear regression (MLLR) [54], maximum-a-posteriori (MAP) [37] adaptation,

and methods that combine both [72]. The �rst is especially useful when the adaptation data

is of very small duration (rapid adaptation).

In contrast to audio-only HMM adaptation, in the visual-only and audio-visual ASR

domains, speaker adaptation has only been considered for small vocabulary tasks [79]. In

this section, we investigate the use of MLLR to visual-only adaptation in the LVCSR domain.

4.2.1 MLLR Visual-Only HMM Adaptation

Speaker adaptation by means of MLLR transforms only the means of the Gaussian mixtures

that model the class conditional HMM observation probabilities. Let us denote such means

by m c j , where c denotes any HMM class (context dependent state cluster), and j any

mixture component for this class (see also (5.2)). Let also P denote a partitioning of the set

of all Gaussian mixture components, obtained by K-means clustering, for example [82,103],

and let p 2 P denote any member of this partition. Then, for each mixture cluster, MLLR

seeks a transformation matrix Wp , that linearly transforms the SI mixture means of the

cluster to obtain SA means, by

m
(SA)
c j =Wp [ 1 ; m

>
c j ]

> ; where (c ; j) 2 p ; (4.1)

to maximize the adaptation data likelihood. In (4.1), matrices Wp are of size D � (D + 1) ,

where D is the mean vector dimension. Hence, MLLR also adds a bias term to the SI

Gaussian means [54]. To avoid overtraining, matrices Wp are often block-diagonal.

4.2.2 Adaptation Results

We have conducted supervised visual-only HMM adaptation experiments using part of the SI

adaptation set of our audio-visual database (see Table 2.1). For simplicity, we have considered

only 10 of the 26 subjects of this set, and used an average of 5 minutes of data per subject

to create a SA visual-only HMM for each. The performance of the SA HMM was evaluated

on the SI test set that corresponds to the speci�c subject, and compared to the performance

of the SI HMM system. To simplify experiments, all context dependent HMMs had a single

Gaussian observation probability. In addition, a single, full-matrix MLLR transform was

used in each of the 10 speaker adaptation experiments. The obtained results are depicted in

Table 4.3.
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Subject SI SA

AXK 44.05 41.92
BAE 36.81 36.17
CNM 84.73 83.89
DJF 71.96 71.15
JFM 61.41 59.23
JXC 62.28 60.48
LCY 31.23 29.32
MBG 83.73 83.56
MDP 30.16 29.89
RTG 57.44 55.73

Table 4.3: Visual-only HMM adaptation experiments using MLLR: Speaker-
independent (SI) and speaker-adapted (SA) visual-only HMM performance is re-
ported in WER (%), per subject, obtained by rescoring \NLat" lattices.

It is clear from Table 4.3 that adaptation consistently improved visual-only HMM per-

formance for all subjects. For several individual subjects (e.g., AXK, JXC, JFM, LCY, and

RTG), we actually observed signi�cant improvements. These results could likely be further

improved by using multiple block-diagonal MLLR transformation matrices, and possibly by

applying MAP adaptation, following MLLR [72].

4.3 Conclusions

As pointed out above, modeling context dependence is a key element of the progress that

has been made in audio-based speech recognition. Most of the speech community has con-

verged on using triphone contexts, while others (including IBM) use pentaphone contexts.

In both cases, it is essential to discover the most meaningful contexts. This is often done

by automatically grouping (using decision trees, for instance) phonetic contexts that are

similar along some acoustic dimension. Acoustic similarities however are not necessarily the

most appropriate for training visual-only systems. So, in this chapter, we explored ways to

develop visually meaningful phone groupings (based on the place of articulation), and we

designed a set of decision tree questions to develop viseme based triphone contexts. Analysis

of the resulting decision trees indicated that questions about visually relevant groupings do

get used at high levels in the decision trees. However, preliminary experiments using visually

clustered HMMs did not show any improvements relative to the baseline acoustically clus-
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tered HMM system. This is a somewhat surprising result. However, we believe that more

work is needed in this direction, before we can draw any conclusions. In particular, we did

not adequately optimize the parameters that guide the process of developing decision tree

triphone clusters. Also, we used the visual questions as a complement to the acoustic ques-

tions. Instead, it may have been more appropriate to use the visual questions by themselves.

In this chapter, we also considered visual-only HMM supervised adaptation in the LVCSR

domain to new subjects. A simple implementation of the MLLR adaptation algorithm in

this domain showed some expected, but small, improvements.
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Chapter 5

Models for Audio-Visual Fusion

The main concentration of our workshop team was on the audio-visual integration problem.

Our aim was to investigate and propose algorithms for the automatic recognition of audio-

visual speech within the traditional HMM based speech classi�cation framework, hoping to

obtain signi�cant performance gains over audio-only recognition for both clean and noisy

audio conditions considered.

Audio-visual fusion is an instance of the general classi�er combination problem [47]. In

our case, two observation streams are available (audio and visual modalities) and provide

information about hidden class labels, such as HMM states, or, at a higher level, word

sequences. Each observation stream can be used alone to train single-modality statistical

classi�ers to recognize such classes. However, one hopes that combining the two streams will

give rise to a bimodal classi�er with superior performance to both single-modality ones.

A number of techniques have been considered in this workshop for audio-visual informa-

tion fusion, which can be broadly grouped into feature fusion and decision fusion methods.

The �rst ones are the simplest, as they are based on training a traditional HMM classi�er on

the concatenated vector of the audio and visual features, or any appropriate transformation

of it. This is feasible, as both audio and video streams provide time synchronous features

(see also section 3.1.6). Feature fusion is presented in section 5.1.

The remaining sections in this chapter are devoted to decision fusion methods. Such

techniques combine the single-modality (audio- and visual-only) HMM classi�er outputs to

recognize audio-visual speech. Speci�cally, class conditional log-likelihoods from the two

classi�ers are linearly combined using appropriate weights that capture the reliability of

each classi�er, or data stream [47]. This likelihood recombination can occur at various levels

of integration, such as the state, phone, syllable, word, or utterance level. In the summer
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workshop we explored three such levels of integration:

� State level combination, which gives rise to the multi-stream HMM, and it is discussed

in section 5.2;

� Phone level combination, which extends the multi-stream HMM to the product, or

composite, HMM, discussed in section 5.3; and

� Utterance level combination, which is based on a discriminative model combination

approach and rescoring of n-best hypotheses (see section 5.5).

In all cases, estimation of appropriate log-likelihood combination weights is of paramount

importance to the resulting model performance. Weight estimation for multi-stream and

product HMMs is discussed in section 5.4, and for the discriminative model combination

approach in section 5.5. A summary of the best audio-visual fusion results is given in

section 5.6.

5.1 Feature Fusion

In the summer workshop, we have considered two feature fusion techniques, which are

schematically depicted in Figure 5.1. The �rst method uses the traditional concatenation

of the synchronous audio and visual features as the joint audio-visual feature vector, on the

basis of which an HMM based recognition system is trained. The second method seeks to

reduce the size of the concatenated audio-visual feature vector, before training HMMs on it.

This is achieved by projecting it to a lower dimensional space by means of LDA, followed

by an MLLT (see also sections 3.1.4 and 3.1.5). As LDA has already been applied to obtain

both audio- and visual-only feature vectors separately, the proposed additional projection

amounts to its second application. Therefore, this novel fusion method is named hierarchi-

cal LDA (HiLDA). It is worth pointing out that, unlike decision fusion techniques, neither

feature fusion algorithm makes any conditional independence assumption between the two

modalities.

5.1.1 Concatenative Feature Fusion

Let us denote the time synchronous audio- and visual-only feature vectors (observations) at

instant t , by o(t)s 2RDs , of dimensionDs , where s = A ;V, respectively. The joint audio-visual
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Figure 5.1: Two types of feature fusion considered in this section: Plain audio-
visual feature concatenation (AV-concat) and hierarchical LDA / MLLT feature
extraction (AV-HiLDA). Feature vector dimensions are also depicted.

feature vector is then simply the concatenation of the two, namely

o(t) = [ o(t)>
A

; o(t)>
V

]> 2 RD ; (5.1)

where D = DA +DV .

We model the generation process of a sequence of such features, O = [ o(1); o(2);:::; o(T ) ] , by

a traditional, single-streamHMM, with emission (class conditional observation) probabilities,

given by

Pr [ o(t)j c ] =
JcX
j=1

wc jND ( o(t);m c j ; s c j ) : (5.2)

In (5.2), c 2 C denote the HMM context dependent states (classes). In addition, mix-

ture weights wc j are positive adding up to one, Jc denotes the number of mixtures, and

Nd (o ;m ; s) is the d-variate normal distribution with mean m and a diagonal covariance

matrix, its diagonal being denoted by s .

As depicted in Figure 5.1, in our experiments, the concatenated audio-visual observation

vector (5.1) is of dimension 101. This is rather high, compared to the audio- and visual-only

feature sizes, and can cause inadequate modeling in (5.2) due to the curse of dimensionality.

To avoid this, we seek lower dimensional representations of (5.1), next.
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5.1.2 Hierarchical Fusion Using Feature Space Transformations

In general, the visual features currently used contain less speech classi�cation power than

audio features, even in the case of extreme noise in the audio channel (see also Table 3.1). One

would therefore expect that a lower-dimensional representation of (5.1) could lead to equally,

or even better, HMM performance, given the problem of accurate probabilistic modeling in

high-dimensional spaces.

It makes a reasonable choice to consider LDA as a means of obtaining such a dimension-

ality reduction. Indeed, our aim is to obtain the best discrimination among the classes of

interest, and LDA achieves this on basis of the data (and their labels) alone, without any

a-priori bias in favor of any of the two feature streams. Similarly to section 3.1, LDA is

followed by an MLLT based data rotation, in order to improve maximum-likelihood data

modeling using (5.2). The proposed method amounts to a hierarchical LDA / MLLT appli-

cation on the original audio and visual DCT features, as depicted in Figure 5.1, and it is

therefore referred to as HiLDA (hierarchical LDA).

The �nal audio-visual feature vector is (see also (5.1))

o(t)HiLDA = PMLLTPLDA o
(t) :

Matrices PLDA and PMLLT denote the LDA projection and MLLT rotation matrices. In our

experiments, their dimensions are 60 � 101 and 60 � 60 , respectively: We have chosen to

obtain a �nal audio-visual feature vector of the same size as the audio-only one, in order to

avoid high-dimensionality modeling problems.

5.1.3 Feature Fusion Results

At the workshop, we trained audio-visual HMMs using the two feature fusion techniques

discussed above for both the clean and noisy-audio cases. The training procedure for these

HMMs is outlined in section 2.3.

Subsequently, we �rst used the trained HMMs in clean audio to rescore the \Lat" lattices

(see Table 2.2). The results are reported in Table 5.1. When using the concatenated features,

we observed some performance degradation with respect to the baseline clean audio-only

WER. Using, however, the HiLDA feature fusion resulted in a slight improvement over the

baseline (about a 4%WER relative reduction). Since we rescored lattices that were generated

on basis of audio-only information, we believe that full decoding with the HiLDA technique

could have resulted in additional gains.
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Audio Condition: Clean Noisy
Rescored Lattices: \Lat" \NLat" \NAVLat"

Audio-only 14.44 48.10 {

AV-concat 16.00 44.97 40.00
AV-HiLDA 13.84 42.86 36.99

Table 5.1: Audio-visual feature fusion performance on the SI test set using con-
catenated (AV-concat) and hierarchical LDA (AV-HiLDA) audio-visual features:
Clean and noisy audio conditions are considered. Both \NLat" and \NAVLat"
lattices are rescored in the noisy audio case fusion. All results are in WER (%).

In the noisy audio case, we �rst rescored \NLat" lattices, generated by the IBM system

on basis of noisy audio-only observations and a matched-trained HMM. Both feature fusion

techniques resulted in substantial gains over the noisy audio-only baseline performance, with

HiLDA being again the best method. As discussed in section 2.2, the \NLat" lattices contain

audio-only information, that, in the noisy audio case, is very unreliable. It is therefore more

appropriate to rescore lattices that contain audio-visual information. Such are the \NAVLat"

lattices, generated by training an HMM on HiLDA audio-visual features, in the noisy audio

case. As expected, the results improved signi�cantly. The HiLDA algorithm yielded a 36.99%

WER, compared to the baseline noisy audio-only 48.10%WER. This amounts to a 24%WER

relative reduction. Notice that \NAVLat" lattice rescoring provides the fair result to report

for the HiLDA technique. However, the concatenative feature fusion result is \boosted" by

its superior HiLDA-obtained \NAVLat" lattices. Its actual, free decoding performance is

expected to be somewhat worse than the 40.00% WER (but better than the 44.97% WER),

reported in Table 5.1. In the remaining (decision) fusion experiments, \NAVLat" lattices

were exclusively used in the noisy audio case.

It is of course not surprising that HiLDA outperformed plain feature concatenation. In

our implementation, concatenated audio-visual features, were of dimension 101, which is

rather high, compared to audio-only and HiLDA features, that were both of dimension 60.

HiLDA uses a discriminative feature projection to e�ciently \compact" the concatenated

audio-visual features. The curse of dimensionality and undertraining are possibly also to

blame for the performance degradation compared to the clean audio-only system, when

plain audio-visual feature concatenation is used.
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5.2 State Synchronous Decision Fusion

Although feature fusion by means of HiLDA results in improved ASR over audio-only recog-

nition, it does not explicitly model the reliability of each modality. Such modeling is very

important, as speech information content and discrimination power of the audio and visual

streams can vary widely, and at a local level, depending on the spoken utterance, acoustic

noise in the environment, visual channel degradations, face tracker inaccuracies, and speaker

characteristics. Decision fusion provides a framework for capturing the reliability of each

stream, by appropriately combining the likelihoods of single-modality HMM classi�er de-

cisions [47]. In isolated speech recognition, this can be easily implemented by calculating

the combined likelihood for the acoustic and the visual observation for a given word model.

However, in continuous speech recognition, the number of possible hypothesis of word se-

quences becomes very large, and the number of best hypothesis obtained for each stream

might not necessarily be the same. Instead, it is simpler to carry out this combination at

the HMM state level, by means of the multi-stream HMM classi�er.

5.2.1 The Multi-Stream HMM

In its general form, the class conditional observation likelihood of the multi-stream HMM is

the product of the observation likelihoods of its single-stream components, raised to appro-

priate stream exponents that capture the reliability of each modality, or, equivalently, the

con�dence of each single-stream classi�er. Such model has been considered in multi-band

audio-only ASR, among others [7, 39, 73]. In the audio-visual domain, the model becomes

a two-stream HMM. As such, it has been extensively used in small-vocabulary audio-visual

ASR tasks [28, 29, 48, 76, 86]. However, this work constitutes its �rst application to the

LVCSR domain.

Given the bimodal (audio-visual) observation vector o(t), the state emission (class condi-

tional) probability of the multi-stream HMM is (see also (5.1) and (5.2)),

Pr [ o(t)j c ] =
Y

s2fA ;Vg

[
Js cX
j=1

ws c jNDs ( o
(t);m s c j ; s s c j ) ]

� s c t
: (5.3)

In (5.3), � s c t are the stream exponents, that are non-negative, and, in general, depend on

the modality s , the HMM state (class) c 2 C, and, locally, on the utterance frame (time)

t . Such time-dependence can be used to capture the \local" reliability of each stream, and
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can be estimated on basis of stream con�dences [1,63,85,93], for example, or acoustic signal

characteristics [1], an approach which we consider in section 5.4, below.

In this section, we consider global, modality-dependent weights, i.e., two stream expo-

nents constant over the entire database

� s = � s c t ; for all c2C ; all t ; and s = A ;V : (5.4)

Exponents �A and �V are constrained to satisfy

0 � �A ; �V � 1 ; and �A + �V = 1 : (5.5)

Clearly (see (5.3)), and in contrast to feature fusion techniques, the multi-stream HMM

assumes class conditional independence of the audio and visual stream observations. This

appears to be a non-realistic assumption.

5.2.2 Multi-Stream HMM Training

Training the multi-stream HMM consists of two tasks: First, estimation of its stream com-

ponent parameters (mixture weights, means and variances), as well as, of the HMM state

transition probabilities, and, second, estimation of appropriate exponents (5.4) that satisfy

(5.5).

Maximum likelihood parameter estimation by means of the EM algorithm [82, 103] can

be used in a straightforward manner to train the �rst set of parameters. This can be done

in two ways: Either train each stream component parameter set separately, based on single-

stream observations, and subsequently combine the resulting single-stream HMMs as in

(5.3), or, train the entire parameter set (excluding the exponents) at once using the bimodal

observations.

In the �rst case, the EM algorithm is invoked to separately train two single-modality,

single-stream HMMs, i.e., an audio-only and a visual-only one, as in section 2.3. The visual-

only HMM is forced to use the audio-only set of context dependent classes. This corresponds

to the \AA" model discussed in section 4.1.4. Thus, assuming known stream exponents, the

two resulting HMMs can be easily combined using emission probabilities given by (5.3),

and a linear combination of their two transition matrices, weighted by stream exponents

that satisfy (5.5), for example. An obvious drawback of this approach is that the two single-

modality HMMs are trained asynchronously (i.e., using di�erent forced alignments), whereas
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Clean audio Noisy audio

Audio-only 14.44 48.10

AV-HiLDA 13.84 36.99

AV-MS-1 14.62 36.61
AV-MS-2 14.92 38.38

Table 5.2: Audio-visual decision fusion performance on the SI test set by means
of the multi-stream HMM, separately trained as two single-stream models (AV-
MS-2), or jointly trained (AV-MS-1). For reference purposes, audio-only and AV-
HiLDA feature fusion WER (%) results are also depicted.

(5.3) assumes that the HMM stream components are state synchronous.

The alternative is to train the whole model at once, in order to enforce state synchrony.

Due to the stream log-likelihood linear combination by means of (5.3), the EM algorithm

carries on in the multi-stream HMM case with minor only changes [103]. The only modi�-

cation is that the state occupation probabilities (or, forced alignment, in the case of Viterbi

training) are computed on basis of the joint audio-visual observations, and the current set of

multi-stream HMM parameters. Clearly, this approach requires an a-priori choice of stream

exponents.

Such stream exponents cannot be obtained by maximum likelihood estimation [76]. In-

stead, discriminative training techniques have to be used, such as the generalized probabilistic

descent (GPD) algorithm [17, 76], or maximum mutual information (MMI) training [18, 48].

The simple technique of directly minimizing the WER on a held-out data set can also be

used. Clearly, a number of HMM stream parameter and stream exponent training iterations

can be alternated.

Finally, decoding using the multi-stream HMM does not introduce additional compli-

cations, since, obviously, (5.3) allows a frame-level likelihood computation, like any typical

HMM decoder.

5.2.3 State Synchronous Fusion Results

We have trained two multi-stream HMMs using the training procedures described in the

previous section: First, we obtained a multi-stream HMM, referred to as AV-MS-2, by

separately training two single-stream models, and subsequently combining them. A second

multi-stream HMM, denoted by AV-MS-1, was jointly trained as a single model. For both

models, the stream exponents were estimated to values �A = 0:7 , �V = 0:3 , in the clean
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Figure 5.2: Phone synchronous multi-stream HMM for audio-visual fusion.

audio case, and �A = 0:6 , �V = 0:4 , in the noisy audio one. These values were obtained by

minimizing the WER of various AV-MS-1 trained models on the SI held-out data set (see

also Table 2.1). The audio-visual recognition results on the SI test set for both clean and

noisy audio environments, obtained by rescoring \Lat" and \NAVLat" lattices, respectively,

are depicted in Table 5.2. Baseline audio-only1 and HiLDA-based audio-visual fusion results

are also depicted for reference. As expected, the AV-MS-1 models outperformed the AV-MS-

2 ones, but the AV-MS-1 HMM was unable to improve the clean audio-only system. This

is somewhat surprising, and could indicate an inappropriate choice of stream exponents in

this case. On the other hand, in the noisy audio case, the AV-MS-1 based decision fusion

slightly outperformed the AV-HiLDA feature fusion method, and, by a signi�cant amount,

the audio-only baseline.

5.3 Phone Synchronous Decision Fusion

It is a well known fact that visual speech activity precedes the audio signal by as much as

120 ms [9,62], which is close to the average duration of a phoneme. The multi-stream HMM

discussed above, however, enforces state synchrony between the audio and visual streams. It

is therefore of interest to relax the assumption of state synchronous integration, and instead

allow some degree of asynchrony between the audio and visual streams. Such a model is

discussed in this section.

1Of course, the noisy audio-only result is obtained by rescoring lattices \NLat".
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Figure 5.3: Equivalent audio-visual product HMM.

5.3.1 The Product HMM

An extension of the multi-stream HMM allows the single-stream HMMs to be in asynchrony

within a model but forces them to be in synchrony at the model boundaries. Single-stream

log-likelihoods are linearly combined at such boundaries using weights (or, equivalently,

stream exponents, if we consider model probabilities) similarly to (5.3). For LVCSR, HMMs

are typically phones, therefore, a reasonable choice for forcing synchrony constitute the phone

boundaries. The resulting phone synchronous audio-visual HMM is depicted in Figure 5.2.

Decoding based on this integration method requires to individually compute the best

state sequences for both audio and visual streams. To avoid the computation of two best

state paths, the model can be formulated as a composite, or product, HMM [28, 29, 96].

Decoding under such a model requires to calculate a single best path. The product HMM

consists of composite states that have audio-visual emission probabilities of the form (5.3),

with audio and visual stream components that correspond to the emission probabilities of

certain audio and visual-only HMM states, as depicted in Figure 5.3: These single-stream

emission probabilities are tied for states along the same row, or column (depending on the

modality), therefore the original number of mixture weight, mean, and variance parameters

is kept in the new model. The transition probabilities of the single-modality HMMs are now

shared by several transition probabilities in the composite model.

The product HMM allows to restrict the degree of asynchrony between the two streams,

by excluding certain composite states in the model topology. As the number of states in the

composite HMM is the product of the number of states of all its individual streams, such

restrictions can reduce this number considerably, and speed up decoding. In the extreme

case, when only the states that lie in its \diagonal" are kept, the model becomes equivalent
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Figure 5.4: Stream tying in a product HMM with limited state asynchrony.

to the multi-stream HMM (see Figure 5.3).

5.3.2 Product HMM Training

Similarly to the multi-stream HMM, training of the product HMM can be done separately, or

jointly. In the �rst case, an audio-only and a visual-only HMM are separately trained, based

on single-modality observations. The composite model is then constructed based on the

individual single-modality HMMs and appropriately chosen stream exponents and transition

probabilities. In joint training, all product HMM parameters (with the exception of the

stream exponents) are trained at once, by means of the EM algorithm, and using the audio-

visual training data. In our experiments, and in view of the results in the multi-stream

HMM case, we have only considered the second training approach. We have also limited the

degree of asynchrony allowed to one state only, as shown in Figure 5.4. The resulting product

phone HMMs had seven instead of the nine states of the full composite model. Stream tying

is also depicted in Figure 5.4. Such tying was only kept up to the point where clustering

was performed, as HTK does not support clustering of tied models. Although it would have

been possible to tie the streams again after clustering, to our knowledge, the toolkit would

not have allowed the creation of mixture distributions, tied both across states and across

streams [103].
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Clean audio Noisy audio

Audio-only 14.44 48.10

AV-HiLDA 13.84 36.99
AV-MS-1 14.62 36.61

AV-PROD 14.19 35.21

Table 5.3: Audio-visual decision fusion performance on the SI test set by means
of the product HMM (AV-PROD). For reference purposes, audio-only, AV-HiLDA
feature fusion, and AV-MS-1 decision fusion performance is also depicted. All
results are in WER (%).

5.3.3 Phone Synchronous Fusion Results

Lattice rescoring experiments were conducted on the SI test set for both clean and audio con-

ditions, using the jointly trained product HMM (AV-PROD) with limited state asynchrony,

as discussed above. Stream exponents �A = 0:6 , �V = 0:4 , were used in the clean audio

case, and �A = 0:7 , �V = 0:3 , in the noisy audio one. The obtained results are depicted

in Table 5.3, and are compared to the baseline audio-only performance, as well as to the

best feature fusion (AV-HiLDA) and decision fusion (AV-MS-1) techniques, considered so

far. Clearly, the product HMM consistently exhibits superior performance to both audio-

only and AV-MS-1 models, however it is worse than the AV-HiLDA model for clean speech.

Overall, it achieves a 2% WER relative reduction in the clean audio case and a 27% one in

noisy audio, over the corresponding audio-only system.

5.4 Class and Utterance Dependent Stream Exponents

In the previous two sections, we presented decision fusion algorithms that focus on both

state synchronous (combining likelihoods at the state level) and asynchronous modeling

(combining likelihoods at the phone level) of the audio and visual streams. The model

investigated in this approach was the multi-stream HMM, and its phone synchronous variant,

the product HMM. The state (class) conditional observation likelihood of these models is the

product of the observation likelihoods of their audio-only and visual-only stream components,

raised to appropriate stream exponents that capture the reliability of each modality. So

far, we have considered global such exponents that depend on the modality only, and are

estimated using held out data.

In this section, we expand on exponent estimation further, by investigating possible
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Figure 5.5: E�ect of the variation of speech / silence dependent stream expo-
nents on the WER of a 16-utterance subset of the SI held-out set. Audio stream
exponents at a resolution of 0.1 have been considered for silence (ordinates) versus
speech states (abscissa). Left: Clean audio. Right: Noisy audio.

re�nements of stream exponent dependence. First, we consider exponents that depend on the

HMM phone class, in addition to the modality. We investigate a very coarse such dependence,

namely silence (/sil/, /sp/) versus non-silence state (phone) stream exponents. A �ner such

dependence has been considered in [48], with no de�nite conclusions. Subsequently, we

consider exponents that are utterance dependent. Such exponents are estimated on basis of

the degree of voicing present in the audio signal. Voicing is considered an indication of the

reliability of the audio stream, and as such, this approach follows the concept of audio-visual

adaptive weights used in [85, 86].

5.4.1 Class Dependent Exponents: Silence Versus Speech

In this section, we investigate the e�ect of stream exponent dependence on silence (c 2
f/sil/,/sp/g) versus non-silence phone states c2C�f/sil/,/sp/g (see also (5.4)). We restrict

weights � s c to satisfy (5.5), and we subsequently compute the WER for a small sample of 16

random utterances of the SI held-out set, for varying values of the speech and silence audio

exponents (a step of 0.1 is used). The multi-stream HMM (AV-MS-1) is used for this task,

with its stream exponents replaced by speech/silence state dependent ones. The results are

ploted in Figure 5.5, for both clean and noisy audio.

Interestingly, the global audio weights (0.7, 0.7) and (0.6, 0.6), used in the previous sec-
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tions, for clean and noisy audio, respectively, do lie in the optimal (minimum WER) region.

Furthermore, lower WERs are obtained for higher values �A; =sil= in both conditions. This

suggests that silence is better modeled in the audio stream than by the video observations.

Notice however, that these results have been obtained on a very small number of sen-

tences. At this point, no conclusions can be drawn about whether phone class dependent

stream exponents are useful in state synchronous decision fusion by means of the multi-

stream HMM. No such experiments have been carried out for the product HMM.

5.4.2 Utterance Dependent Stream Exponents

In this section, we investigate utterance dependent stream exponents, based on the audio-

stream reliability. Traditionally, such reliability has been measured using the audio modality

signal-to-noise ratio (SNR) [1,45]. Here, instead, we propose the use of a measure of voicing,

as a means of estimating the reliability of the audio observations. Speci�cally, we employ an

equivalent to the harmonicity index (HNR) [4, 39, 105] to estimate the average voicing per

utterance. Based on this index, we subsequently estimate utterance based stream exponents.

63



0 5 10 15 20 25 30 35 40 45
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
XNRapriori
R1R0noisy    
R1R0clean  

Time in bin

F
re

qu
en

cy

0 0.5 1 1.5 2

x 10
4

0

1600

3200

4800

6400

8000

Figure 5.7: Top: Local estimates of R1R0 for clean (R1R0clean) and noisy
(R1R0noisy) speech, and XNR, for a database utterance. All calculations are
performed on 128 ms speech windows shifted by 64 ms. Bottom: Noisy audio
spectrogram of the same utterance.

Voicing Estimation

We use the autocorrelogram of a demodulated signal as a basis for di�erentiating between a

harmonic signal and noise. The peaks in the autocorrelogram isolate the various harmonics

in the signal. The autocorrelogram can also be used to separate a mixture of harmonic

noises and a dominant harmonic signal. An interesting property is that such separation can

be e�ciently accomplished, using a time window in the same range of the average phoneme

duration [4,39], and in a frequency domain divided in four subbands (leading to the concept

of multi-band speech recognition [7]).

A correlogram of a noisy cell is less modulated than a clean one. We use this fact to

estimate the reliability of a cell [40] for which time and frequency de�nitions are compatible

with the recognition process (128 ms of duration). Before the autocorrelation, we compute

the demodulated signal after half wave recti�cation, followed by band-pass �ltering in the

pitch domain ([90,350] Hz). For each cell, we calculate the ratio Ri = R1=R0, where R1 is

the local maximum in time delay segment corresponding to the fundamental frequency, and

R0 is the cell energy. This measure is comparable to the HNR index [105]. Furthermore, it
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is strongly correlated with SNR in the 5{20 db range, as it is demonstrated in Figure 5.6 [4].

In Figure 5.7, we plot R1R0 estimates on 128 ms speech windows on a noisy database

utterance, against the R1R0 estimates in the clean audio case, as well as, an SNR-alike

measure, de�ned as XNR = 10 log10(S=(S +N)) . We observe that the biggest di�erence in

R1R0 between the clean and noisy conditions occurs during silent frames. Notice that R1R0

and XNR are not strictly giving the same kind of information, but they are quite strongly

correlated. Indeed, their correlation factor is 0.84, computed over the entire SI test set.

Locally, R1R0 is higher than XNR on voiced parts, and it is lower on other parts. This local

divergence could be well exploited in case we further re�ne stream exponent dependence at

the frame level.

HNR Based Stream Exponents

In this �rst approach, audio speech reliability is calculated only from the regions where the

speech is dominant. Because of the strong correlation between R1R0 and SNR, we assume

that regions where local SNR is higher than 0 db, and strongly correlated to regions where

R1R0 > 0:5 (see also Figure 5.6), are speech regions. We subsequently calculate stream
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Clean audio Noisy audio

Audio-only 14.44 48.10

AV-HiLDA 13.84 36.99
AV-MS-1 14.62 36.61
AV-PROD 14.19 35.21

AV-MS-UTTER 13.47 35.27

Table 5.4: Audio-visual decision fusion performance on the SI test set by means of
the the multi-stream HMM with utterance level, HNR-estimated stream exponents
(AV-MS-UTTER). For reference purposes, audio-only, AV-HiLDA feature fusion,
AV-MS-1, and AV-PROD decision fusion performance is also depicted. All results
are in WER (%).

exponents �A t , constant for all t within the utterance, to be the mean of all R1R0 values

higher than 0.5. We assume this to be an adequate estimate of voicing within the utterance.

Then, �V t = 1� �A t (see (5.5)).

As it is demonstrated by Figure 5.8, �A t is mostly speaker dependent, and in a smaller

extent, utterance dependent, as well. For the entire SI test data set, the average �A t is

calculated to be 0:79 and 0:73 for the clean and noisy audio case, respectively.

Multi-Stream HMM Results Using HNR Estimated Exponents

For each utterance of the SI test set, we replaced the exponents of the AV-MS-1 jointly

trained multi-stream HMM, by the new HNR estimated exponents. We denote this fusion

technique by AV-MS-UTTER. We subsequently estimated the resulting cumulative WER

on the entire SI test set. The results for both clean and noisy audio are depicted in Table

5.4. In both cases, the algorithm outperformed the comparable AV-MS-1 system with global

stream exponents. Furthermore, in the clean audio case, the algorithm outperformed even

the product HMM with global exponents, resulting to a 7% WER relative reduction with

respect to the audio-only system. Preliminary only, non-conclusive experiments were carried

out using utterance dependent stream exponents, estimated by means of HNR, in the product

HMM.
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5.5 Utterance Level Discriminative Combination of Au-

dio and Visual Models

The discriminative model combination (DMC) approach [5] aims at an optimal integration of

independent sources of information in a log-linear model that computes the probability for a

hypothesis. The parameters of this new model are the weights of the log-linear combination,

and are optimized to minimize the errors in a held out set.

The combination can be performed either statically, with constant weights [5], or dynam-

ically, where the parameters may vary for di�erent segments of a hypothesis [12,99]. In the

dynamic combination, the weights aim to capture the dynamic change of con�dence on each

of the models combined for each hypothesized segment.

5.5.1 Static Combination

We can combine the audio and visual model scores, along with a language model score, as

independent sources of information in the DMC framework. If we denote by PA(hjOA) the

probability provided by the audio model for a hypothesis h = [ h1; h2;:::; hjhj ]
> 2 H , given

the acoustic observation OA , by PV(hjOV) the probability provided the the visual model for

the same hypothesis given the visual observation OV , and by PLM(h) the language model

probability, then we de�ne the log-linear model that combines all the available information

I (audio, visual, and linguistic information) as:

P (hjI) = 1

Z�(I)PA(hjOA)
�APV(hjOV)

�VPLM(h)
�LM ; (5.6)

where Z�(I) is a normalization factor so that the probabilities for all possible lattice hy-

potheses h 2 H add to one. The weights in this formulation are constant for every model.

5.5.2 Dynamic Combination - Phone Dependent Weights

We can combine the scores from the available information sources dynamically, within the

simple form of an exponential model, by weighting each of the scores with di�erent exponents,

for di�erent segments of a hypothesis.

We decided to use phone level segments and the weight for each segment depends on the
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identity of the hypothesized phone (similar to [99]):

P (hjI) = 1

Z�(I)

0
@

jhjY
i=1

PA(hi)
�A;hiPV(hi)

�V;hi

1
APLM(h)

�LM; (5.7)

where hi is the ith phone in hypothesis h .

The weights �
�;� can be tied for di�erent classes of segments. For example, we can have

the same weight for all the consonants and the same for all the vowels as was examined

in [12]. In the case of the visual model we can examine the case of having one weight for

each of the di�erent visemic classes.

5.5.3 Optimization Issues

The above de�ned model is used to rescore the n-best lists and choose the maximum-a-

posteriori (MAP) candidate. We train the parameters �
�
in (5.6) and �

�;� in (5.7), so that

the empirical word error count induced by the model is minimized. Since the objective

function is not smooth, gradient descend techniques are not appropriate for estimation. We

use the simplex downhill method known as amoeba search [69] to minimize the word errors

on a held out set [98].

5.5.4 Experimental Results

The above described techniques were used to combine the scores from the available audio

and visual models, in the clean only audio case.

We used the clean audio lattices \Lat" for our experiments, the SI held-out data set

in order to optimize the weights, and the SI test set for testing. For the purposes of the

experiments, 2000 best hypotheses were obtained for each utterance using acoustic model

scores provided by IBM and they were then rescored with the new acoustic and visual models

created in the workshop using HTK.2

We performed three experiments:

� The audio and visual models are combined statically with one weight for each of the

models.

2Due to this rescoring of the n-best hypotheses, the baseline obtained using only the HTK audio model
is slightly better than the one obtained using this model directly in the decoder (ROVER e�ect [31]).
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SI held-out SI test

Baseline acoustic 12.8 13.65

DMC: Static (acoustic + visual) weights 12.5 13.35
DMC: 1 acoustic + 13 visemic weights 12.2 13.22
DMC: 43 phonemic-acoustic + 13 visemic weights 11.8 12.95

Table 5.5: Discriminative model combination fusion WER (%) results in the
clean audio case.

� One global weight is still used for the audio model scores, but we use 13 di�erent

weights for visual models corresponding to the each of the 13 visemic classes of Table

4.1.

� Di�erent weights are used for each of the 43 audio phone-models and each of the 13

visemic classes.

The results are depicted in Table 5.5. Signi�cant gains have been obtained in the clean audio

case. The DMC technique has outperformed all other decision fusion techniques, albeit with

the caveat of a lower audio-only baseline (see also Table 5.4).

5.6 Summary

In this chapter, a number of feature fusion and decision fusion techniques have been applied

to the problem of large vocabulary continuous audio-visual speech recognition. Some of

these techniques have been tried before in small vocabulary audio-visual ASR tasks, such as

concatenative feature fusion, as well as state- and phone-level decision fusion by means of the

multi-stream and product HMMs, respectively. However, none of these methods have been

applied to the LVCSR domain before. Furthermore, new fusion techniques were introduced

in the workshop: The hierarchical LDA feature fusion technique, an HNR-based, utterance

dependent, stream exponent estimation algorithm, as well as the composite model joint

maximum likelihood training based on bimodal observations. Finally, the discriminative

model combination approach has never before been considered for audio-visual ASR.

We have conducted fusion experiments in both clean and noisy audio conditions. In both

cases, we were able to obtain signi�cant performance gains over state-of-the-art baseline

audio systems, by incorporating the visual modality. Thus, we demonstrated for the �rst

time that speaker independent audio-visual ASR in the large vocabulary continuous speech
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Clean audio Noisy audio

Audio-only 14.44 48.10

AV-concat 16.00 40.00
AV-HiLDA 13.84 36.99

AV-MS-1 14.62 36.61
AV-MS-2 14.92 38.38
AV-MS-UTTER 13.47 35.27
AV-PROD 14.19 35.21
AV-DMC 12.95 {

Table 5.6: Audio-visual feature and decision fusion results in WER (%) on the
SI test set in both clean and matched noisy audio conditions.

domain is bene�cial.

A summary of all workshop audio-visual fusion results is depicted in Table 5.6. A novel

and simple feature fusion technique, namely the hierarchical LDA approach, gave us signi�-

cant gains in both audio conditions considered. More complicated decision fusion techniques,

by means of the multi-streamHMM with utterance dependent stream exponents, the product

HMM, and the discriminative model combination for rescoring n-best hypotheses, resulted

in additional gains. Overall, we achieved up to a 7% WER relative reduction in the clean

audio case, and 27% WER reduction in the noisy case.

It is worth noticing that the nature of lattice rescoring experiments places limits to these

improvements. It is worth conducting full decoding experiments with some of the decision

fusion techniques considered. Furthermore, it is of interest to consider local stream exponent

estimation schemes at the frame level, in conjunction with multi-stream, as well as, product

HMMs.
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Chapter 6

Summary and Discussion

When we proposed audio-visual speech recognition as a workshop theme, our goal was to

bring together leading researchers in the �eld of audio-visual speech recognition to advance

the state-of-the-art by carrying out experiments on a �rst-of-a-kind audio-visual large vo-

cabulary continuous speech recognition database collected and provided by IBM.

At the highest level, we were very successful in achieving these goals. In our view,

this workshop is a signi�cant milestone in audio-visual, large vocabulary continuous speech

recognition. We demonstrated improvements for the �rst time in this domain in the clean

audio environment case by adding visual information. Speci�cally, by conducting audio

lattice rescoring experiments, we showed a 7% relative word error rate (WER) reduction

in that condition. Furthermore, we demonstrated a signi�cant improvement of 27% WER

relative reduction over audio-only matched models at a 10 dB SNR with additive speech

\babble" noise.

Our main focus was audio-visual integration. In that aspect, we pursued several interest-

ing experimental threads. We investigated discriminant visual feature representations, visual

modeling using visual relevant clustering schemes, a novel feature fusion technique based on a

hierarchical linear discriminant analysis, state-synchronous and phone-synchronous decision

fusion and local weighting schemes at the utterance level and speech unit levels.

There are fundamentally four research areas in audio-visual speech recognition:

� Visual speech ROI extraction: Once we de�ne what is an appropriate ROI, it is im-

portant to come up with techniques that robustly extract the ROI under a variety of

visually variable conditions (lighting, scene, etc). We did not focus on this aspect of

the problem during the workshop. Given the nature of the IBM audio-visual data, we

used face and mouth tracking algorithms developed at IBM [89].
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� Visual speech representation: What portion of the face provides all the visually relevant

speech information? A simple low-level, video pixel based approach representing a

rectangular box around the subject mouth (baseline in our experiments) appears to

take us a long way. However, perceptual [92] and other experiments [53] suggest that

more of the face region (including the cheeks and the jaw) carry useful information.

In our experiments, we did some preliminary investigation by using representations

of the whole face (active appearance models, in section 3.2), with limited success.

However, we believe that the results are preliminary and the jury is out on this thread

of experimentation. Also, 3-D aspects of the face during speech production appear

to provide additional information (in particular, for languages like French). Such 3-D

representations could also provide a greater degree of pose-invariance. Thus, 3-D visual

speech representations are a potential direction for future pursuit.

� Visual modeling: Modeling context dependence is a key element of the progress that

has been made in audio-based speech recognition. Most of the speech community has

converged on using triphone contexts, while others (including IBM) use pentaphone

contexts. In both cases, it is essential to discover the most meaningful contexts. This

is often done by automatically discovering (using decision trees, for instance) similar

contexts by grouping together phonetic contexts that are similar along some acoustic

dimension. Obviously, acoustic similarities are not the most appropriate for visemes.

So, we explored ways to develop visually meaningful groupings (based on the place of

articulation) of phones and their use in developing triphone contexts that are similar.

Our preliminary results did not show any improvements due to visually meaningful

modeling (section 4.1.4). However, the investigation is too preliminary to come to any

conclusions.

� Audio-visual integration. This we believe, is a wide open area for research with impli-

cations transcending the audio-visual speech recognition problem [71]. In audio-visual

speech recognition, the key questions are:

{ What is the right granularity for combining the decisions between the audio and

visual sources of information? A useful source of information that in
uences the

decision is the experimentally observed asynchrony between the two streams [9].

Being the easiest from an implementation point of view, synchronous feature level

fusion was the baseline in our experiments. Feature level fusion (synchronous fu-

sion) using discriminant joint representations (HiLDA, see section 5.1.2) bought
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us most of the gains during the workshop. We experimented with state-level deci-

sion fusion. Although this framework does not allow for asynchrony between the

audio and visual streams, it does allow for weighting the decisions independently

(section 5.2). We did not see any improvements over discriminant feature fusion

for clean speech (in fact, it was slightly worse). We partially modeled the asyn-

chrony between the streams by creating HMM topologies that permit asynchrony

within a phone (section 5.3). Although this does not adequately address the asyn-

chrony at onset, the approach used in the workshop lays the foundation for more

general asynchronous models (at word and utterance level). We did see some ad-

ditional improvements over feature level fusion by using this approach. However,

our ability to investigate this further was limited by what we could implement

in HTK in 6 weeks. Carefully modeling the asynchrony between the two streams

by taking into account the sampling rates and the timing of information-bearing

events is an area of research with a lot of potential.

{ How do you measure the reliability of the audio and visual information sources

to weight the in
uence of the decisions in the combination? Reliability of the

audio and visual streams can be obtained by measures of the signal (such as the

amount of noise using SNR) or by knowledge-based (perceptual or linguistic) as-

pects of the two streams or by data-driven approaches (discriminative training).

We pursued two di�erent lines of investigation. The �rst was based on perceptual

and acoustic-phonetic knowledge. We used the fact that voicing is only available

in the audio stream to de�ne an utterance level voicing estimator to determine

the relative weights. We did see improvements (section 5.4.2). Although, we

used utterance level weighting schemes, more local (at the frame level or unit

level) weighting schemes may be more appropriate. The second approach was

a data-driven approach where individual stream weights were estimated at the

appropriate unit level (phones for audio and visemes for visual) using a discrim-

inative technique. Small improvements of the order of 5% relative in clean were

observed (section 5.5). A combination of the two approaches may be a fruitful

direction.
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