Empirical Bayes with prior:
\[W | \xi, \Omega_1, \Omega_2 \sim \mathcal{M}(\mathbf{w}_i | \mathbf{0}, \Sigma_{d \times m}) \cdot \mathcal{M}(\mathbf{w}_i | \mathbf{0}_{d \times m}, \Omega_1, \Omega_2) \]

Maximum marginal-likelihood with empirical estimators:
\[
\min_{w_{d \times m}} \|Y - XW\|^2_F + \eta \|W\|^2_F + \rho \|\Sigma_1^{1/2}W \Sigma_2^{1/2}\|^2_F.
\]
subject to
\[H_d \leq \Sigma_1 \leq uH_d, H_m \leq \Sigma_2 \leq uH_m \]
where
\[\Sigma_1 := \Omega_1^{-1}, \Sigma_2 := \Omega_2^{-1} \]

- Multi-convex in \(W, \Sigma_1, \Sigma_2 \)

Nonlinear extension:
- Replace the feature matrix \(X \) with the output of a neural network \(g(\xi; \theta) \) with learnable parameters \(\theta \).
- Estimate \(W \) and \(\theta \) using backpropagation.
- Optimize the two covariance matrices using our proposed approach.

Datasets:
- Synthetic data:
 - Randomly sample \(10^4 \) instances, shared among all the tasks.
 - Gradually increase the dimension of features, \(d \), and the number of tasks, \(m \), to test scalability.
- Robot data (SARCOS):
 - \(d = 21 \) (7 joint positions, 7 joint velocities, 7 joint accelerations), \(m = 7 \) (7 joint torques).
 - 44,484 train instances, 4,449 test instances.
- School data:
 - \(d = 27, m = 139, n = 15,362 \) instances.
 - Goal: predict student scores.

Convergence analysis:
- The closed form solution does not scale when \(md \geq 10^4 \).

Optimization Algorithm

Solvers for \(W \) when \(\Sigma_1, \Sigma_2 \) are fixed:
\[
\minimize \ h(W) \triangleq \|Y - XW\|^2_F + \eta \|W\|^2_F + \rho \|\Sigma_1^{1/2}W \Sigma_2^{1/2}\|^2_F.
\]

Three different solvers:
- A closed form solution with \(O(md^2 + mnd^2) \) complexity:
 \[
 \text{vec}(W^*) = (I_m \otimes (X^T X) + \eta I_m + \rho \Sigma_1 \otimes \Sigma_2)^{-1} \text{vec}(X^T Y).
 \]
- Gradient computation:
 \[
 \nabla_W h(W) = X^T (Y - XW) + \eta W + \rho \Sigma_1 W \Sigma_2.
 \]
Conjugate gradient descent with \(O(\sqrt{k} \log(1/\varepsilon)(md^2 + mnd^2)) \) complexity, \(\varepsilon \) is the condition number, \(m \) is the approximation accuracy.
- Sylvester equation \(AX + XB = C \) using the Bartels-Stewart solver.

The first-order optimality condition:
\[
\Sigma_1^{-1} (X^T X + \eta I_d) W + W (\rho \Sigma_2) = \Sigma_1^{-1} X^T Y.
\]
Exact solution for \(W \) computable in \(O(m^3 + d^3 + md^2) \) time.

Solvers for \(\Sigma_1 \) and \(\Sigma_2 \) when \(W \) is fixed:
\[
\minimize \ tr(\Sigma_1 W \Sigma_2 W^T) - m \log |\Sigma_1|,\quad \text{subject to}\quad H_d \leq \Sigma_1 \leq uH_d.
\]
\[
\minimize \ tr(\Sigma_1 W \Sigma_2 W^T) - d \log |\Sigma_2|, \quad \text{subject to}\quad H_d \leq \Sigma_2 \leq uH_d.
\]

Exact solution by reduction to minimum-weight perfect matching:

Algorithms:
- **Input:** \(W, \Sigma_1 \) and \(l, u \).
 1. \([V, \nu] \leftarrow \text{SVD}(W \Sigma_1 W^T)\).
 2. \(\lambda \leftarrow \max_{d, \nu}(d/\nu)\).
 3. \(\Sigma_1 \leftarrow V \text{diag}(\lambda) V^T\).
- **Input:** \(W, \Sigma_2 \) and \(l, u \).
 1. \([V, \nu] \leftarrow \text{SVD}(W^T \Sigma_2 W)\).
 2. \(\lambda \leftarrow \max_{d, \nu}(d/\nu)\).
 3. \(\Sigma_2 \leftarrow V \text{diag}(\lambda) V^T\).

- **Exact solution only requires one SVD**
- **Time complexity:** \(O(\max(md, md^2)) \)

Results (mean squared error):

<table>
<thead>
<tr>
<th>Method</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>STL</td>
<td>31.41</td>
<td>22.90</td>
<td>9.13</td>
<td>10.30</td>
<td>0.14</td>
<td>0.84</td>
<td>0.46</td>
<td>0.9882 ± 0.0196</td>
</tr>
<tr>
<td>MTFL</td>
<td>31.41</td>
<td>22.91</td>
<td>9.13</td>
<td>10.33</td>
<td>0.14</td>
<td>0.83</td>
<td>0.45</td>
<td>0.8891 ± 0.0380</td>
</tr>
<tr>
<td>MTRL</td>
<td>31.09</td>
<td>22.69</td>
<td>9.08</td>
<td>9.74</td>
<td>0.14</td>
<td>0.83</td>
<td>0.44</td>
<td>0.9007 ± 0.0407</td>
</tr>
<tr>
<td>MTFLR</td>
<td>31.13</td>
<td>22.60</td>
<td>9.10</td>
<td>9.74</td>
<td>0.13</td>
<td>0.83</td>
<td>0.45</td>
<td>0.8451 ± 0.0197</td>
</tr>
<tr>
<td>FEATR</td>
<td>31.08</td>
<td>22.68</td>
<td>9.08</td>
<td>9.73</td>
<td>0.13</td>
<td>0.83</td>
<td>0.43</td>
<td>0.8134 ± 0.0253</td>
</tr>
<tr>
<td>STL-NM</td>
<td>24.81</td>
<td>17.20</td>
<td>8.97</td>
<td>8.36</td>
<td>0.13</td>
<td>0.72</td>
<td>0.34</td>
<td>–</td>
</tr>
<tr>
<td>MT-NM</td>
<td>12.01</td>
<td>10.54</td>
<td>5.02</td>
<td>7.15</td>
<td>0.09</td>
<td>0.70</td>
<td>0.27</td>
<td>–</td>
</tr>
<tr>
<td>MTFLR-NM</td>
<td>11.02</td>
<td>9.51</td>
<td>4.99</td>
<td>7.11</td>
<td>0.08</td>
<td>0.62</td>
<td>0.27</td>
<td>–</td>
</tr>
<tr>
<td>FEATR-NM</td>
<td>10.77</td>
<td>9.34</td>
<td>4.95</td>
<td>7.01</td>
<td>0.08</td>
<td>0.59</td>
<td>0.24</td>
<td>–</td>
</tr>
</tbody>
</table>

Feature covariance matrix and task covariance matrix:

(a) Covariance matrix over features. (b) Covariance matrix over tasks.