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Abstract

We study how to improve the throughput of high-bandwidth
traffic such as large file transfers in a network where re-
sources are fairly shared among connections. While it is
possible to devise priority or reservation-based schemes that
give high-bandwidth traffic preferential treatment at the ex-
pense of other connections, we focus on the use of routing
algorithms that improve resource allocation while maintain-
ing max-min fair share semantics. In our approach, routing
is closely coupled with congestion control in the sense that
congestion information, such as the rates allocated to ex-
isting connections, is used by the routing algorithm. To
reduce the amount of routing information that must be dis-
tributed, an abstraction of the congestion information is in-
troduced. Using an extensive set of simulation, we identify
a link-cost or cost metric for “shortest-path” routing that
performs uniformly better than the minimal-hop routing and
shortest-widest path routing algorithms. To further improve
throughput without reducing the fair share of single-path
connections, we propose a novel prioritized multi-path rout-
ing algorithm in which low priority paths share the band-
width left unused by higher priority paths. This leads to a
conservative extension of max-min fairness called prioritized
multi-level max-min fairness. Simulation results confirm the
advantages of our multi-path routing algorithm.

1 Introduction

Future integrated-service networks will support a wide range
of applications with diverse traffic characteristics and per-
formance requirements. To balance the need for efficient re-
source management within the network against the diversity
of applications, networks should provide multiple classes of
services. While most service models recognize only a single
best-effort traffic class, the growing diversity of applications
can be classified into at least three traffic types. First, low-
latency traffic consists of small messages, each sent as a
single packet a small number of packets, so the key perfor-
mance index is the end-to-end per packet delay; a typical
example is RPC. Second, continuous-rate traffic consists
of a continuous traffic stream with a certain intrinsic rate,
i.e. the application does not benefit from bandwidths higher
than the intrinsic rate; Internet video applications such as
nv and vic are examples. Finally, high-bandwidth traf-
fic consists of transfers of large blocks of data; examples

are Web browsing and I/O intensive scientific computations.
The key performance index is the elapsed time, which is de-
termined by average throughput rather than packet delay.
In contrast to the other two traffic classes, it can typically
consume as much network bandwidth as is available. Given
the large diversity in best-effort applications, we argue that
they should not all be handled in the same way by the net-
work.

For best effort traffic, network resources are shared dy-
namically by all applications. Resources are usually allo-
cated by two mechanisms operating on different time scales.
At a coarser time scale, a routing entity directs traffic along
less congested paths to balance the network load. At a finer
time scale, congestion control mechanisms dynamically ad-
just the source transmission rate to match the bandwidth
available on the chosen path. Since traditional data net-
works use a connectionless architecture with no per-session
state inside the network, routing is usually performed on a
per-packet basis and congestion control is performed end-
to-end with no network support. The trend in high speed
networks is to have a connection-oriented architecture with
per-session state inside the network. Congestion control al-
gorithms that exploit the per-session state have been stud-
ied widely, and this has resulted in algorithms that provide
max-min fair sharing between competing applications. How-
ever, routing algorithms for this new environment have been
largely neglected.

In this paper, we study how we can use routing to im-
prove the performance of high bandwidth applications in
networks that employ max-min fair share based congestion
control. The routing entity makes use of rate information
generated by the traffic management algorithm. Linking the
two resource allocation mechanisms makes it possible to do
effective load-sensitive routing. We propose an abstraction
of max-min rate information that can be used efficiently as
the routing link-state and we identify a “link cost” that is
suitable for routing high-bandwidth traffic. The dynamic,
complex nature of resource sharing in max-min fair sharing
networks makes this a difficult task. Our evaluation is based
on simulation of several traffic loads on a number of network
topologies. We study both single-path and multi-path algo-
rithms. For multi-path routing, we introduce a prioritized
multi-level max-min fairness model, that allows low prior-
ity paths to share bandwidth left unused by higher priority
paths. This approach preserves the original single path max-
min fair share semantics and prevents a multi-path connec-
tion from grabbing an unfair amount of bandwidth by using
a large number of paths.

The remainder of this paper is organized as follows. In
Section 2 we present our general approach. We describe the
routing algorithms and discuss their implementation issues
in Section 3. Section 4 describes our evaluation methodology



and Sections 5 through 7 present our results. In Section 8
we discuss related work and we summarize in Section 9.

2 Problem statement

In this section we review the characteristics of high-bandwidth
applications and max-min fair share networks and we present
our approach to routing.

2.1 High bandwidth traffic

The main performance index for a high-bandwidth traffic
stream is the elapsed time, i.e. the period from when
the application issues the transfer command to when the
transfer finishes. The elapsed time E; for traffic stream ¢
consists of the following terms:

b;

T

Ei=P+ Di+ (1)
where P; is the connection establishment time, D; is the
end-to-end packet delay, b; is the size of the data transfer,
and r; is the average rate.

For high-bandwidth applications, the message size b; is
very large, so the elapsed time E; is dominated by the last
term. Since b; is a constant, we minimize F; by maximiz-
ing the average rate r;. One way of increasing r; is to give
session ¢ a higher priority, larger service share, or reserved
bandwidth. All these mechanisms give session 1 preferential
treatment at the expense of other sessions, and they require
external administrative or pricing policies to function prop-
erly. In contrast, we focus on max-min fair networks, where
all traffic streams are treated equally by the traffic manage-
ment algorithm. It is still possible to enhance the perfor-
mance of high-bandwidth traffic streams by routing them
along paths that will yield, on average, higher rates. This
requires a routing algorithm that can estimate the expected
rate for new connections along any paths.

2.2 Max-min fair share network

The concept of max-min fair share was first proposed by
Jaffe to address the issue of fair allocation of resources in
networks based on virtual circuits (VC) or connections [14].
Recently, it has received much attention [6, 4] because it has
been identified by the ATM Forum as one of main design
goals for ABR traffic management algorithms.

Intuitively, if there are N connections sharing a link of a
max-min fair share network, each will get one “fair share”
of the link bandwidth. If a connection cannot use up its
fair share bandwidth because it has a lower source rate or
it is assigned a lower bandwidth on another link, the ex-
cess bandwidth is split “fairly” among all other connections.
There are several definitions of “fair share”. In the basic
definition, each of the N connections competing for the link
or excess bandwidth, gets one N®" of the bandwidth. Other
definitions, such as weighted fair sharing and multi-class fair
sharing, require pricing or administrative policies to assign
a weight or class for each connection. Since these policies
are still an active area of research, we expect the basic max-
min fair share model to be the first one to be supported by
commercial ATM networks, and we will use it in this paper.

There are two ways of implementing a max-min fair share
network. One option is that all switches use a Fair Queue-
ing [9] scheduler. The other option is to have switches ex-
plicitly compute the maz-min fair rate for each connection
and inform each source of this rate; sources are required to

send no more than their max-min fair rate [6, 7]. While
the first approach requires per-connection queueing in the
switch, the second one does not, thus simplifying switch de-
sign. This is one of the reasons why the ATM Forum selected
the implementation based on explicit rate calculation. This
approach also has the advantage that switches have rate in-
formation for all connections, and we will make use of this
information to do load sensitive routing.

We now describe a simple centralized algorithm to cal-
culate the max-min fair rates or saturation rates of all con-
nections. A connection is called saturated if it has reached
its desired source rate or a link on the path traversed by the
connection is saturated. A link is called saturated if all of
its bandwidth has been allocated to connections sharing the
link. Let CN be the set of all connections in the network,
CN; the set of connections using !, and sat and unsat the set
of saturated and unsaturated connections, respectively. Let
sat; be the set CN; Nsat, and unsat; the set CN; N unsat.
Given a set S of connections, let L(S) be the set of all links
in the network with at least one connection in S using them.
Let C; be the capacity of the link {. The algorithms can be
described as follows:

1. Initialization: sat = @, and unsat = CN.

2. Iteration: Repeat the following steps until unsat be-
comes @

e For every link ! € L = L(unsat), calculate

G — Eiesatl T
|unsat|

(2)

inc; =

e Get the minimum: min_inc = min{inc; | € L}.
e Update rate r;: r; = r; 4+ min_inc.

o Move new saturated connections in unsat to sat.

Note that the max-min fair rate of a connection is a
function of time — it can change when new connections
arrive or depart.

2.3 Routing approach

We will use link-state source routing algorithms. Link-state
routing means that each node knows the network topology
and the cost associated with each link [23, 3]. Source routing
means that the source selects the entire path. Link-state
source routing algorithms are particularly suitable for load-
sensitive routing [5] and make it possible to select paths
on a per-connection basis. Note that the ATM Forum also
adopted hierarchical link-state source routing [10].

Link-state routing algorithms are typically based on Di-
jkstra’s shortest path algorithm [11]; algorithms differ in the
function that is used as the link cost. Since we are focus-
ing on high-bandwidth traffic, we will use the (expected)
fair share bandwidth for the connection in calculating the
link cost. The fair share bandwidth of a new connection
is estimated based on the rate information available in the
switches, as we describe in Section 3.

Using the max-min fair rate as a cost function is unique.
The routing algorithm used in most networks tries to min-
imize the number of hops (link cost is 1), or, for load sen-
sitive routing, the end-to-end delay (link cost is packet de-
lay). Neither cost function is necessarily a good predictor
of available bandwidth. A common link cost function in
reservation-based networks is the residual link bandwidth —



unreserved bandwidth. We cannot use residual bandwidth
since the nature of bandwidth sharing in reservation-based
and max-min fair share networks is very different. In con-
trast, an estimate of max-min fair rate that accounts for the
nature of bandwidth sharing is an accurate load-sensitive
predictor of the bandwidth available to a new connection.

3 Routing algorithms for high bandwidth traffic

We describe our single-path and multipath routing algo-
rithms, and our approach to max-min fair rate estimation.

3.1 Single path: link cost functions

When trying to maximize bandwidth, it seems natural to
pick the “widest path” algorithm, i.e. to select the path with
the highest current max-min fair rate. This is however not
necessarily the best link cost. The key observation is that
the max-min fair rate changes over time, and the high fair
rate available at connection establishment time may not be
sustained throughout its lifetime of the connection. Since
the fair rate of a connection is the minimum of the rates
available on each link, the chance that the fair rate will go
down increases with the number of hops. Moreover, longer
paths consume more resources, which may reduce the rate
of future connections. In summary, a “good” link cost has
to balance the effects of the path length and the current
max-min fair rate.

Toward this goal, we define a family of polynomial link
costs, (%)n, where r is the current max-min rate for a new
connection (see [16] for the use of polynomial costs in solving
optimal graph cut problem). By changing n, we can cover
the spectrum between shortest (n = 0) and widest (n — o0)
path algorithms. In the remainder of this paper we will
consider the following five algorithms:

o Widest-shortest path: a path with the minimum
number of hops. If there are several such paths, the
one with the maximum max-min fair rate is selected.

o Shortest-widest path: a path with the maximum
max-min rate. If there are several such paths, the one
with the fewest hops is selected.

o Shortest-dist(P, n): a path with the shortest distance

K
dist(P,n) = E in
r’
=1 °

where 71, - -, g are the max-min fair rates of links on
the path P with k¥ hops. We will consider three cases
corresponding to n = 0.5,1, and 2.

An interesting point is that dist(P, 1) can be interpreted
as the bit transmission delay from the traffic source to the
destination should the connection get the rate r; at hop @
(Note: min;{r;} is the connection’s max-min fair share rate
along the path). This delay is different from the measured
delay used in traditional shortest delay paths in two ways.
First, the focus is on bit transmission delay (i.e. bandwidth)
instead of total packet delay. Second, the measure is for data
belonging to a specific connection instead of a link average.

3.2 Link-state representation

To use the link cost functions defined above, we need to
know the expected max-min rate r; for a new connection at

each link. The calculation of r; requires to access rate in-
formation of all connections associated with this link. Since
the number of connections can be very large, the volume of
rate information can be large as well. To address this prob-
lem, we introduce a concise data structure to represent this
rate information, and propose an approximate algorithm to
calculate r;. Instead of having a separate rate entry for each
connection, we use a fixed number of discrete rate intervals.
The rate information is simply represented by the number of
connections with max-min rate in each interval. The size of
this representation scales with the number of rate intervals,
but it is independent of, and therefore scales well with, the
number of connections sharing the link.

For each interval ¢, let rate_scal[i] be the middle value
of the interval, and num_conn[i] the number of connections
in the interval. For example, for a link of 155 Mb/s, rate
information of a link can be represented by a vector of 64
entries with a scale function defined by

0.5%1 if0<i<16
1.0xi—8 if 16 <i< 32
1.5%1—24 if 32 <1< 48
2.0%x7—48 if 48 <i < 64

rate_scal(i) =

We used multiple scales in this example to ensure the accu-
racy for connections with low rates while limiting the size
of the vector. The max-min rate for a new connection can
now be estimated by

int i = 0, num_below_ave = 0;

int N = num_conn_using_the_link + 1;
float rate_below_ave = 0.0;

do {

rate = (C - rate_below_ave) / (N - num_below_ave);

tmp_num_below_ave = 0;
while (rate_scale(i) < rate) {

rate_below_ave += num_conn[i] * rate_scale(i);

tmp_num_below_ave += num_connl[i];
i++;
¥
num_below_ave += tmp_num_below_ave;
} while (tmp_num_below_ave > 0)
return rate;

It is important to realize that both the rate representa-
tion and algorithm to calculate max-min fair rate are ap-
proximations. However, this is sufficient since the max-min
fair rate will change over time and we are only interested in
maximizing the max-min fair rate averaged over the connec-
tion’s life time.

3.3 Multi-path: prioritized multi-level max-min fairness

One technique to increase the average throughput of a high-
bandwidth traffic session is to use multiple parallel paths
to transfer the data. FEach path is realized using a sin-
gle network-level connection. However, simply having high
bandwidth applications use multiple paths is not accept-
able since “max-min fairness” is implemented on the basis of
network-level connections and a session with multiple paths
(i.e. network-level connections) will receive a higher perfor-
mance at the expense of the performance of sessions using
only one path. Actually, applications could increase their
bandwidth almost arbitrarily by using more paths.

To take advantage of higher throughput offered by mul-
tiple paths, without violating the fairness property, we pro-
pose a prioritized multi-level max-min fair share model. In
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Figure 1: Prioritized multi-level max-min fair share

this model, connections are assigned to different priorities.
If a session has N paths, the n'® path, n = 1,---, N, is
assigned to the n'® priority level. The number of priority
levels in the network determines the maximum number of
parallel paths (or connections) one session can have. For
a network with M priority levels (Figure 1), M rounds of
max-min fair share rate computations are performed. In the
m'" round, the algorithm computes the max-min fair share
rate for all the connections in level m using the residual link
bandwidth left unused by higher priority connections, that

1s,
k m
(Ci— Ek<m R*) — Ez‘esatlm T
|unsat]™|

(3)

where Ry is the total max-min fair rate of all connections
with the priority k.

This model has two interesting features. First, the multi-
level fair share model is consistent with the single-level fair
share model in the sense that the max-min fair rate for ses-
sions using one path will not be reduced by the presence of
multi-path sessions. Second, the priority levels are used in
the max-min rate computation, but they do not necessarily
have to be directly supported or even be visible by sched-
ulers on switches and sources. For example, the rate-based
congestion control adopted by ATM forum can easily be ex-
tended to prioritized multi-level fair sharing. The changes
needed are the assignment of a priority to each connection
and the use of a different algorithm for the fair rate cal-
culation. The schedulers on the sources do not have to be
changed: they continue to enforce the explicit rate assigned
to them by the network. Similarly, switches can continue to
use FIFO scheduling.

The multi-path routing algorithm based on prioritized
multi-level fair sharing simply repeat a single-path routing
algorithm at each level of max-min fair sharing, starting
with the highest priority. At each level, the algorithm only
uses bandwidth left unused by paths in the higher priority
level. Note that this means that links that are saturated at
a certain level will not be present in the network topology
used at lower levels. The algorithm terminates either paths
with sufficient bandwidth have been found or no more new
paths with nonzero bandwidth can be found.

Finally, striping data over parallel paths is likely to intro-
duce some overhead on the sending and receiving host, for
example to deal with out of order packet arrival. Multi-path
routing should therefore be used only if the expect increase
in bandwidth is above a certain threshold.

inc; =

4 Simulator design

We briefly describe our simulator and the simulation param-
eters that were used to collect results.

4.1 Simulator

We designed and implemented a session-level event-driven
simulator. The simulator allows us to specify a topology
and code modules representing traffic sources, the algorithm
used by the switches for distributing bandwidth between
connections sharing links, and the routing algorithm for dif-
ferent traffic classes.

The simulator manages connections as follows. An in-
coming request specifies the number of bytes to be sent and
possibly the maximum rate the source can sustain for the
request. Paths are selected by executing the routing algo-
rithm and connections are set up; both operations can have
a cost associated with them. Connections are torn down
when the specified amount of data has been sent. The rates
of all connections are dynamically adjusted when connec-
tions start and stop sending data.

Figure 2: Topologies used by simulator

4.2 Simulation parameters

The main inputs to the simulator are the network topology,
the traffic load, and the routing and connection management
parameters.

We use three topologies G1, G2, and G3 (Figure 2) that
have different degree of connectivity and size. For each of the
topologies, we assume that eight host nodes are attached to
each switch. The host-switch and switch-switch link band-
width is 155 Mbit/second or 622 Mbit/second.

The nature of the trafficis controlled by a number of pa-
rameters. First, we distinguish two traffic types: low-latency
and high-bandwidth traffic. The low latency traffic repre-
sents both the low-latency and rate-limited traffic from Sec-
tion 2.2. The balance between the two traffic types is con-
trolled by the parameter HBFraction, which represents the
fraction of bytes of data sent that belong to high-bandwidth
connections.

Second, the arrival rate of connection requests in each
class follows a Poisson distribution, and the number of bytes

in each request is uniformly distributed over [IKByte, LLvsHB]

for low latency traffic and [LLvsHB, 1GByte] for high band-
width traffic; most of the simulations use a threshold LLvsHB
of 1 MByte. We believe this a good approximation of long-
tail distribution of message sizes. For high-bandwidth re-
quests, the source can make full use of bandwidth assigned
by the network. For a low-latency connection, the source



specifies the maximum rate at which it can send data over
the connection; this peak rate is in the range of 3 to 5
MByte/second.

Finally, the overall traffic load is modified by changing
the average inter-arrival rate of connection requests and it is
expressed as the average aggregate bandwidth of the traffic
injected in the network at each switch by the hosts attached
toit. We will consider both uniformly distributed and client-
server loads. A uniform load means that each host has an
equal chance of being a sender or a receiver, independent
from the traffic type. In the client-server scenarios, the low-
bandwidth load is still uniformly distributed, but most of the
high-bandwidth load is between clients and servers. Servers
are randomly selected from the pool of hosts at the start of
the simulation. This represents the case of a distributed ap-
plication (clients) making heavy use of a high-performance
parallel file system (servers).

The routing algorithmsused are widest-shortest path rout-
ing for low-bandwidth traffic and the algorithms described
in Section 3 for high-bandwidth traffic. Initially we assume
that routing algorithms have immediate access to the rate
information, and we then look at the impact of using more
realistic periodic updates that introduce a delay. Both the
routing and the connection costs are included in the elapsed
time of the connection since they are in the critical path of
getting the data to the receiver. We use connection set up
and tear down costs of 3 msec/hop and 1 msec/hop, respec-
tively, while the routing cost for high-bandwidth connections
is 10 milliseconds. There is no routing cost for low-latency
connections.

4.3 Presentation of results

The main performance measure reported by the simulator is
the average throughput achieved by high-bandwidth connec-
tions. Since the throughput is a ratio, we take the weighted
harmonic mean to average the throughput [15], using the
message length as the weight:

EieN bi

throughput = (4)
ienti
where b; represents the number of bytes sent over connec-
tion ¢, and ¢; its duration. Since the total number of bytes

EiEN b; sent over the network is almost fixed for a long time

interval, the throughput can also be viewed as a measure of
elapsed time experienced by all high-bandwidth connections.
However, the average throughput is only a part of the
picture. Another important parameter is how the through-
puts are distributed. In general, having all throughputs fall
in a small range is preferable over having a wide variance.
This is especially true in a max-min fair share network that
tries to balance the throughput of connections sharing links.
For this reason, we will also discuss the actual throughput
distribution for a few typical scenarios in more detail.

5 Simulation results for single-path routing

We compare the performance of the five routing algorithms
discussed in 3 with different topologies and traffic load dis-
tributions. We also discuss how the routing algorithm affects
the throughput distributions.

5.1 Average throughput as a function of traffic load

Figure 3 shows for all three topologies, the average through-
put achieved by high-bandwidth connections as a function

of the aggregate traffic arrival rate from all hosts connected
to a switch. The traffic load is uniformly distributed with
90% of the bytes traveling over high-bandwidth connections.
For all three topologies we can distinguish three phases cor-
responding to low, medium, and high traffic loads. We first
focus on topology G1.

When the load is low, all algorithms give fairly similar
performance, although “greedy” users who use the Shortest-
widest, Shortest-dist(P,2), or Shortest-dist(P,1) path al-
gorithm achieves slightly higher throughput. This result
matches our intuition: when the network is lightly loaded,
we expect all algorithms to perform well, but greedy algo-
rithms are likely to have an edge.

As the network load increases, the average per-connection
throughput decreases. The greedy shortest-widest path al-

gorithm has the biggest drop in performance, while the Shortest-

dist( P, 1/2) and widest-shortest path algorithms, which place
more emphasis on finding a short path rather than a wide
path, exhibit the slowest decrease in average throughput.
The intuition is that with a higher network load, resources
become more scarce, and algorithms that tend to pick longer
paths (i.e. attach less value to a small hop count) perform
more poorly. While a greedy algorithm might be able to in-
crease the throughput of an individual connection by picking
a long path with higher bandwidth, this might reduce the
throughput of many other connections, and thus the average
throughput. Moreover, paths with more hops have a higher
chance of having their throughput reduced as a result of fair
sharing with connections that are added later. The shortest-
dist(P, 1) outperforms all the other algorithms.

Further increases in network load reduce the difference in
performance achieved by different algorithms. The reason is
that under high load, all links are likely to be congested, so
path selection becomes less sensitive to the obtainable rate
and most algorithms tend to pick widest-shortest paths.

5.2 Impact of topology

While the curves for the other topologies have a similar
shape, there are some interesting differences. Topology G2
is less symmetric and has a lower degree of connectivity than
topology G1. Figure 3(b) shows that as a result, greedy al-
gorithms perform consistently better than algorithms that
attach more weight to minimizing the number of hops. For
example, the widest-shortest path, which performed well on
topology G1, has very poor performance, and the shortest-
widest and Shortest-dist(P,2) path algorithms, which per-
formed poorly on topology G1, give the best performance.
This difference is a result of the unbalanced nature of topol-
ogy G2: to make good use of the links connected to switch
node 5 it is important to attach a lot of weight to the width
of the path so that the bottleneck link can be avoided (link
3-5). The Shortest-dist(P, 1) path algorithm continues to
perform well, e.g., it outperforms the widest-shortest path
algorithm by as much as a factor of 4, while its throughput
is only 9% or less lower than with the shortest-widest paths.

For topology G3 (Figure 3(c)) most algorithms have very
similar performance for all loads. For example, shortest-
dist(P, 1) can only perform 8% better than widest-shortest
path. This is a result of the high degree of connectivity
in G3, which results in a balanced load across links. The
shortest-widest path algorithm is an exception: it performs
poorly for the medium and high loads because it is too re-
source intensive.

In summary, the Shortest-dist( P, 1) path algorithm con-
sistently performs well across the different topologies and
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Figure 3: 90% bytes in high-bandwidth traffic

outperform the shortest-widest or widest-shortest path al-
gorithms by as much as a factor of three. The reason is that
it balances the ”shortest path” and ”widest path” metrics.
Algorithms that favor one or the other metric tend to have
a more uneven performance across the different topologies,
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especially for medium loads.

5.3 Impact of high-bandwidth traffic volume

We examine the effect of changing the distribution of traffic
between high-bandwidth and low-latency connections. In
Figure 4, the ratio of high-bandwidth traffic is reduced to
50%, compared to 90% in Figure 3(a). We observe that the
results are similar, although the performance of the shortest-
widest path is somewhat better. The Shortest-dist(P,1)
path algorithm still outperforms the other algorithms.
Figure 5 shows the average throughput as a function of
the percentage of high-bandwidth traffic, for a fixed traffic
load of 24 MB/s per switch. We see that as the contribu-
tion of high bandwidth traffic increases, the choice of rout-
ing algorithm used for high-bandwidth traffic has more im-
pact, although even with only 10% high-bandwidth traffic,
the best algorithm (widest shortest) still gives a 20% higher
throughput than the worst algorithm (shortest widest).

5.4 Client-server configurations

The results so far used uniformly distributed traffic loads.
We now split the 64 host nodes into 52 clients and 12 servers.
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Figure 7: G1: 90% bytes in HB

Most high-bandwidth traffic (90%) is between clients and
servers, with the remaining 10% flowing between clients or
between servers. Figure 6 shows results for server node
access links of 155 Mb/s and 622 Mb/s; the client access
links remain at 155 Mb/s. In both cases the shapes of the
performance curves are similar to the uniform traffic load
scenarios (Figure 3(a)), although the scale of the perfor-
mance difference depends on the load distribution. For ex-
ample, the shortest-dist(P,1) path algorithm outperforms
the shortest-widest path algorithm by as much as 63% and
widest-shortest path algorithm by as much as 14% (155
Mb/s); the differences are 100% and 20% for 622 Mb/s.

5.5 Variability of per-connection throughput

So far we have focused on the average throughput obtained
by high-bandwidth connections. In this section we look at
how the routing algorithm influences the throughput vari-
ability. Note that since the shape of the throughput dis-
tribution is often uneven and influenced by the topology,
measures such as variance are not meaningful, so we exam
the actual distribution.

% of Number of Connections

shortest-dist(P, 1) ——
shortest-widest path
widest-shortest path

o shores-wides pain -

14

16 18

8 10 1
Traffic Load: (MB/9)/switch
Figure 8: G2: 90% bytes in HB and (16 MB/s)/switch

In Figure 7, we present the throughput distribution of



high-bandwidth connections for the shortest-widest path,

widest-shortest path, and Shortest-dist (P, 1) path algorithms.
The results are for topology G1 with 90% high-bandwidth

traffic and for two traffic loads: 28 MB/s and 20 MB/s per

switch (compare with Figure 3(a)).

For the higher load, the throughput distribution for shortest-

widest paths has has a peak around 3 MB/s and a long tail
which corresponds to connections that obtain high through-

put. With the the widest-shortest path and Shortest-dist (P, 1)

path algorithms, the throughput is more evenly distributed
between 3 to 9 MB/s, with a tail of higher throughput. With
the shortest-widest path algorithm, few connections are able
to get a high throughput because paths with more hops have
a higher chance of having to share bandwidth with many
connections. This can be seen from table 1, where we break
down all connections according to the number of hops in
their paths and show the average throughput, average ini-
tial rate, and distribution of connections with different hops.

hops 3 4 5 6 algorithms

throughput 4.4 3.3 2.9 | 2.7
AvelnitRate 4.2 3.3 3.1 | 3.6
connections 30% | 36% | 23% | 9%

shortest-widest

throughput 7.4 6.1 58 | 54
AvelnitRate 6.7 6.1 6.5

7 shortest-dist(P,1)
connections || 46% | 41% | 12% | 1%

Table 1: Average throughput, average initial rate, and % of
connections with different hops

When the network load is lower (20 MB/s per-switch
in Figure 7(b)), the throughput distributions for the differ-
ent algorithms are more similar. All three loads have ap-
proximately a bimodal distribution, which is a result of the
network topology. Using the Widest-shortest and Shortest-
dist(P, 1) path algorithms increases the chance of achieving
very high throughput.

Figure 8 shows the throughput distribution for topol-
ogy G2, with a traffic load of (16MB/s)/switch and 90%
of high-bandwidth traffic (compare with Figure 3(middle)).
It shows why the Widest-shortest path algorithm performs
poorly: many widest-shortest paths use the link between
switches three and five, resulting in a bottleneck and low
throughput (0.5MB/s). The other two algorithms avoid the
bottleneck and have more evenly distributed throughputs.

6 Simulation results for multi-path routing

We now move on to the evaluation of multi-path routing.
Since our evaluation of single path routing algorithms shows
that the Shortest-dist (P, 1) path algorithm has the best over-
all performance, we will only consider that algorithm at ev-
ery priority level of multi-path routing. We will also limit
our study to 2-path routing since our simulations show that
the benefit of using a third and fourth path is limited (about
an additional 5% increase in throughput).

Our main performance measure is the average through-
put of high-bandwidth connections using multi-path rout-
ing, compared to that using single-path routing. Note that

multi-path routing can improve throughput not only by adding

a second path, but also by improving the throughput of the
first path. The reason is that 2-path connections will often
finish faster compared with single-path routing, thus free-
ing up bandwidth. To show this effect, we will also present
the average throughput for 1-path and 2-paths connections
separately.

6.1 Average throughput as a function of traffic load

Figure 9 shows the average throughput as a function of the
traffic load for two different percentages of high-bandwidth
traffic, 50% and 90%. The results are for topology G1, but
similar results were observed for the other topologies. We
observe that 2-path routing increases the average through-
put compared with single-path routing, not only for connec-
tions that use two paths but also for connections that use
a single path. We observe that, as the traffic load becomes
higher, the increase in throughput gets smaller, although
the relative increase in throughput with multi-path routing
compared with single-path routing remains relatively con-
stant.
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Figure 10: G1: percentage of sessions using two paths

Figure 10 shows that the percentage of connections that
use two paths increases with the traffic load. This is a result
of the fact that, when the traffic load becomes higher, the
shortest-dist(P, 1) path algorithm tends to pick the shortest
path more often, which leads to a relatively higher number
of links with unused bandwidth, and these links can accom-
modate more secondary paths due to the increased number
of arrivals.

6.2 Impact of high-bandwidth traffic volume

Figure 11 shows the average throughput using single-path
and 2-path routing as a function of the percentage of high-
bandwidth traffic for a traffic load of 20 MB/s and 24 MB/s
per switch. Connections that use two paths achieve an av-
erage increase in throughput of 20% to 35%, while connec-
tions that use a single path have a increase of 2% to 8%.
The overall improvement ranges from 13% to 26%. We also
observe that the benefit of multi-path routing decreases as
the contribution of high-bandwidth traffic increases. The
reason is that more high-bandwidth traffic results in more
competition among secondary paths.

Figure 12 shows the percentage of sessions that actually
use two paths for the two scenarios in Figure 11. The per-
centage of sessions that use two paths decreases as the high-
bandwidth traffic volume increases (although the number
of 2-path connections goes up). The reason is that high-
bandwidth connections can use any available network band-
width, i.e. they can by themselves saturate links, making
them unavailable for secondary paths. As a result, more



T T T T
14 multi-path: using 2-path only -— | 14 - multi-path: using 2-path only —-—
multi-path: average -+-- multi-path: average -+--
multi-path: using 1-path only -=--- multi-path: using 1-path only -=---
. single-path -x single-path -x
12 - B 4 12 + 4
X
2 2
o) o)
= =
é 10 B é 10 4
< <
g g
<t <t
= =
s s
g 8 1 g sl 4
> >
< <
6 - 4
6 - 4
4t ey x
L L L L L 4 L L L L L
16 20 24 28 32 16 20 24 28 32
Traffic Load: (MB/s)/switch Traffic Load: (MB/s)/switch
(a) 50% HB traffic (b) 90% HB traffic
Figure 9: G1: average throughput as a function of traffic load for multipath routing
14 T T 12 7 T T
multi-path: using 2-path only —— multi-path: using 2-path only ——
multi-path: average -+-- multi-path: average -+--
multi-path: using 1-path only -=-- multi-path: using 1-path only -=---
13 single-path - 11 single-path -
v v
o 12+ | 2
= =
g g
_cg »_/_«* ””””””””””””” L -+ _cg
3 1t 1 3
= B S | =
£ — ST £
[} ()
Z of x 4z 8 g 1
Nch X
. X
--a
o X
9 = x E 7 b E
%
gl L L L L 6 Lu L L L L
10 30 50 70 90 10 30 50 70 90
% bytesin HB % bytesin HB

(a) 20 MB/s per switch
Figure 11: G1: average bandwidth as a function

high-bandwidth traffic means fewer links available for sec-
ondary paths and a lower percentage of 2-path connections.

Our results suggest that multi-path routing is an effective
technique to make use of unused network resources in a max-
min fair share network. While the performance improve-
ment for multi-path routing is relatively constant across dif-
ferent traffic loads (previous section), it is sensitive to the
volume of high-bandwidth traffic. When the percentage of
high-bandwidth traffic increases the performance improve-
ment from multi-path routing goes down, both because it is
harder to find secondary paths and because less bandwidth
is available once they are established.

6.3 Variance of increased throughput

Figure 13 shows the distribution of the throughput increase
over single-path routing for sessions that use two paths; the
graph includes results 30% and 70% high-bandwidth traf-
fic (compare to Figure 11). The two distributions are fairly
symmetric, with an average throughput increase around 3
MB/s. A few sessions increased their throughput by as much
as 6 to 10 MB/s. A few sessions suffer a throughput reduc-

(b) 24 MB/s per switch
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tion. The reason is that the early completion of some ses-



sions changes the routes of later sessions, and in some cases
that results in routes with a slightly lower average rate.
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Figure 13: G1: throughput increase for two-path connec-
tions with an arrival rate 20 MB/s per switch

Figure 14 shows the distribution of the throughput in-
crease over single-path routing for sessions that could not
find a second path; the peak (off scale) corresponds to 54%
of the connections observing an increase of about 0.1 MB/s.
On average, single-path connections benefit slightly from
multipath routing. We also observed that the distribution is
more spread out when the ratio of high-bandwidth traffic is
higher. This indicates that there is more interference among
high-bandwidth connections.

7 Sensitivity analysis

In the previous discussions, we assumed that accurate rout-
ing information is available whenever making a routing deci-
sion, and used fixed PCRs (3-5 MB/s depending on message
size) for low-latency traffic, and a fixed routing cost of 10 ms
for routing algorithms other than the widest-shortest path.
In this section, we show the performance impact of changing
these parameters.

7.1 Impact of routing information update interval

In Figure 15, we show a scenario with the same traffic con-
dition and topology as Figure 3 (a), but with a 100ms rout-
ing information update interval, i.e., routing information is
usually somewhat dated. The two figures are very simi-
lar, although a lightly worse performance for the one 100ms
routing update interval can be observed, especially for the
shortest-widest path algorithm. This suggests that greedy
algorithms might be more sensitive to outdated information.

One potential problem with load-sensitive routing is that
it might lead to oscillation. This is specifically a problem
when the frequency of status updates is low compared with
the rate of change in the network. The reason is that out-
of-date load information can result in traffic being directed
to some part of the network, even after it has become al-
ready heavily loaded, while other, previously heavily loaded
links, are relatively lightly loaded; this trend is then re-
versed after the next update. We do not expect this to be a
problem for high-bandwidth routing. The reason is that the
changes in high-bandwidth connections are, almost by def-
inition, relatively infrequent, since there are relatively few
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high-bandwidth connections and they are long-lived. As a
result, the connectivity and bandwidth information does not
get stale fast, and even infrequent periodic routing updates
are likely to be sufficient to avoid oscillation.

7.2 Impact of PCR of low-latency traffic

In Figure 16, we show the performance difference for multi-
path routing by increasing (a) and decreasing (b) PCR rate
for low-latency traffic by 1 MB/s. The topology is G1 and
the traffic load is 24 MB/s per switch. We observe that
the performance of single-path routing seems fairly insensi-
tive to the PCR. For multi-path routing, while the overall
performance is very close to what we showed earlier (Fig-
ure 11(a)), the performance improvement is slightly higher
when the PCR is lower. The reason is that a lower PCR
leaves higher unused bandwidth to lower priority paths.

7.3 Impact of routing cost

In Table 2 we list average throughputs for two different rout-
ing costs (1ms instead of 10ms); the results are for topology
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G1, a ratio of high-bandwidth traffic of 90%, and a traf-
fic load of 24 MB/s per switch. We see that the change in
routing cost has little impact on the results.

1 ms | 10 ms
shortest-widest 5.86 6.08
widest-shortest 7.45 7.44
shortest-dist( P, 1) 8.29 8.25
shortest-dist( P, 2) 7.45 | 7.50
shortest-dist(P,0.5) | 7.91 7.91

Table 2: Average throughput in MB/s for two routing costs

7.4 Impact of LLvsBB

In Table 3, we list average throughputs for two different
cutoff LLvsBB’s between high-bandwidth and low-latency
traffic. The results are for topology G1, a HBFraction of
90%, and a traffic load of 28 MB/s per switch. The per-
formance becomes slightly worse when LLvsBB increases
from 1 to 10 MByte, due to the decreased number of con-
nections and consequently increased traffic concentration.
The impact on the results is little, although it affects more
on shortest-widest paths than on shortest-dist(P,1) paths.

1 MB | 10 MB

shortest-widest 3.518 3.177
widest-shortest 5.863 5.588
shortest-dist(P, 1) 6.488 6.417
shortest-dist(P,2) | 5.535 | 5.495
shortest-dist(P,0.5) | 6.346 | 6.123

Table 3: Average throughput in MB/s for two LLvsHB’s

8 Related work

To the best of our knowledge, this paper is the first that
studies routing algorithms in networks with max-min fair
sharing. In this section, we review related work in the areas
of service definition and routing.

It has been long recognized that data communication ap-
plications can be divided into several classes, including bulk
data transfer and interactive applications. However, until
recently, networks did not distinguish between these classes.

With the advent of integrated service networks, several pro-
posals [8, 21, 17] have been made to divide the traditional
best-effort service into multiple service classes. An alter-
native to defining service classes is to implement queueing
policies that optimize the performance of interactive appli-
cation without sacrificing bulk data transfer applications;
this is for example done in the DataKit network [12]. These
approaches rely on traffic management support to optimize
the performance of different classes of applications. In con-
trast, we assume that the traffic management algorithms
treats data transfers in the same way, and we pursue the
use of routing to optimize performance.

Packet-switched networks have traditionally used shortest-
path routing. While different measured “link-cost” measures
can be used (see [20, 18]), earlier networks typically selected
minimal-hop paths. The problem with using measured link
costs is that it does not always accurately account for how
resources are shared among connections, so they can be inac-
curate and even misleading. The rate information we use is
an accurate measure of available bandwidth since we model
the sharing algorithm that is used in the max-min fair share
network.

Routing in circuit-switched networks has focused on find-
ing paths with certain quality-of-service (QoS) guarantees
while minimizing the blocking rate of future requests. Trunk-
reservation [1], adaptive routing [13], shortest-widest path [26],
and min-max routing have been well-studied and are very
relevant to today’s QoS routing in data networks. However,
these algorithms are based on a residual bandwidth model,
which is representative for reservation-based networks but
not for max-min share networks.

Multipath routing algorithms have been used to optimize
network performance [19, 25, 2, 5, 22, 24]. Multiple paths
are selected in advance. When data traffic arrives, a path
with the lowest traffic load is used. None of these studies ad-
dresses the issue of fairness. In contrast, we studied the use
of multiple paths simultaneously to maximize throughput in
a max-min fair share network.

9 Conclusions

In this paper, we studied routing support for high-bandwidth
traffic. in max-min fair sharing networks. A fundamental
feature of our routing algorithms is that they make use of



rate information provided by the fair share congestion con-
trol mechanism. By giving the routing algorithm access to
rate information, we couple the coarse grain (routing) and
fine grain (congestion control) resource allocation mecha-
nisms, allowing us to achieve efficient and fair allocation of
resources.

Our evaluation of single-path routing algorithms for high-
bandwidth traffic shows that the Shortest-dist(P, 1) path
algorithm performs best in most of the situations we sim-
ulated. While the Shortest-widest path algorithm can
give slightly better performance when the network load is
very light, it can have very poor performance for medium
and high traffic loads, because it tends to pick paths that
are resource-intensive. The Shortest-dist(P, 1) path algo-
rithm is able to route around bottlenecks, thus avoiding the
clusters of connections with very low throughput that are
sometimes the result of using the widest-shortest path al-
gorithm. Overall, the Shortest-dist( P, 1) path algorithm
balances the weight given to the “shortest” and “widest”
metrics in an appropriate way.

Finally, we introduce a prioritized multi-level max-min
fairness model, in which multiple paths are assigned differ-
ent priority. This approach prevents a multi-path connec-
tion from grabbing an unlimited amount of bandwidth by
using a large number of paths, i.e. additional paths use only
unused bandwidth and do not affect the bandwidth available
to primary paths. Our simulations show that 2-path routing
increases the average bandwidth compared with single-path
routing by 25% overall and 35% for those connections using
two paths.
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