Resilient Multicast Support for Continuous-Media Applications

X. Rex Xu Andrew C. Myers
Carnegie Mellon University
{rexx, acm, hzhang} @Qcs.cmu.edu

Abstract

The IP multicast delivery mechanism provides a
popular basis for delivery of continuous media to many
participants in a conferencing application. However,
the best-effort nature of multicast delivery results in
poor playback quality in the presence of network con-
gestion and packet loss. Contrary to widespread belief
that the real-time nature of continuous media applica-
tions precludes the possibility of recovery of lost pack-
ets using retransmissions, we have found that these
applications offer an interesting tradeoff between the
desired playback quality and the desired degree of in-
teractivity.

In particular, we propose a new model of multi-
cast delivery called resilient multicast in which each re-
ceiver in a multicast group can decide its own tradeoff
between reliability and real-time requirements. To be
effective, error recovery mechanisms in such a model
need to be both fast (due to the real-time constraint)
and have a low overhead (due to high volume of con-
tinuous media data).

We have designed a resilient multicast protocol
called STORM (STructure-Oriented Resilient Multi-
cast) in which senders and receivers collaborate to re-
cover from lost packets using two key ideas. First,
group participants self-organize themselves into a dis-
tribution structure and use the structure to recover
lost packets from adjacent nodes. Second, the dis-
tribution structure is dynamic and a lightweight al-
gorithm is used to adapt the structure to changing
network traffic conditions and group membership. We
have implemented STORM in both VAT and a packet
level simulator. Experimental results using both the
MBONE and a simulation model demonstrate the ef-
fectiveness of our approach.

1 Introduction

Availability of IP multicast has prompted the de-
velopment of a suite of continuous media applications
(nv, vat, vic, ivs) to support multimedia conferenc-
ing over the Internet. Because delivery of packets in
real-time is essential for continuous playback of au-
dio/video streams, it has been widely believed that it
is not important or even feasible to attempt to recover
from lost packets by retransmitting them. Instead, it
has been observed that continuous media applications
can tolerate a certain amount of packet loss and, there-
fore, most of the research in audio/video transport has
concentrated on devising adaptation techniques that
minimize the effect of packet loss and variable delays

Hui Zhang

Raj Yavatkar
Intel Corporation
vavatkar@ideal.jf.intel.com

on the quality of audio/video playback. However, we
make two important observations about the require-
ments of such applications.

First, there is a tradeoff between the desired level
of playback quality and interactivity. The amount
of interactivity within an application has an impor-
tant bearing on the flexibility in packet delivery times.
When an application requires a high degree of interac-
tivity, real-time delivery of packets is essential. How-
ever, the desired degree of interactivity varies signifi-
cantly across different applications. At one extreme, a
recording application involves no interactivity. Today,
many MBONE tools are used mostly for broadcast
events, where there is little interaction among partici-
pants and most receivers are only passive listeners. In
such cases, playback quality can be greatly improved
by waiting for delayed packets and by recovering lost
packets using retransmissions. On the other hand, if
a high degree of interactivity is desired, the packet
delivery delay must be very small, which means that
lost packets cannot be retransmitted and packets with
large delays must be discarded.

Second, receiver requirements vary widely in terms
of tolerable playback quality and desired degree of in-
teractivity. Within the same application, the desired
degree of interactivity typically varies from one partic-
ipant to another. For instance, even in a conferencing
session such as an IETF meeting using MBONE tools,
there are usually many more passive participants than
active participants. Passive participants would rather
prefer high playback quality, which can be achieved by
a combination of delayed playback and retransmission
of lost packets.

Existing continuous media MBONE applications,
designed only to trade quality for interactivity uni-
formly over all participants, fail to take this tradeoff
into account and never allow retransmission. We pro-
pose a new model of multicast delivery called resilient
multicast that allows each receiver in a multicast group
to independently decide its own tradeoff between de-
sired quality (reliability in delivery) and interactivity
(latency in delivery).

In this paper, we study error recovery strategies for
resilient multicast. Since the amount of data trans-
mitted by continuous media applications is large, it is
desirable to reduce the relative overhead of error re-
covery packets. In addition, since resilient multicast
has real-time requirements, it is important to mini-
mize the delay in recovering lost packets. We propose
the Structure-Oriented Resilient Multicast (STORM)

protocol that is based on two key ideas: First, group
participants self-organize themselves into a distribu-
tion structure and use the structure to recover lost
packets from adjacent nodes. Second, the distribution
structure itself is built dynamically using a lightweight
algorithm that takes into account changes in network
traffic conditions and multicast group membership.

We have evaluated and verified the effectiveness
of our approach using both the experiments across
MBONE and a simulation model. The rest of this
paper is organized as follows. We first begin with a
description of the resilient multicast and how it dif-
fers from the conventional notion of reliable multi-
cast (Section 2). Section 3 summarizes Scalable Re-
liable Multicast (SRM) [9], a well-known protocol for
achieving large-scale, reliable multicast using receiver-
driven error recovery, and points out its relevance to
our work. We then describe the details of a new proto-
col called STORM (Structure-Oriented Resilient Mul-
ticast) based on our approach (Section 4). Section
5 describes the results of a systematic performance
evaluation using both MBONE experiments and large-
scale simulations.

2 Characteristics of Resilient Multi-

cast

To motivate the need for resilient multicast, we will
first discuss the important differences between resilient
and reliable multicast. Reliable multicast transport is
typically needed by a data dissemination application
such as a whiteboard (e.g. wb) where a sender wishes
to reliably deliver all the parts of its presentation to all
the receivers. Many researchers [9, 13, 26, 25, 10] have
examined ways of reliably delivering data to all the re-
cipients within a multicast group. Resilient multicast,
on the other hand, is directed at continuous media
(CM) applications, creating significant differences in
the delivery requirements of the two sets of applica-
tions:

1. In the wb case, every member requires a uniform
level of reliability (all the packets must be deliv-
ered eventually) whereas in the case of CM ap-
plications, there are real-time requirements, and
each member has its own reliability requirement
based on its playback delay.

2. In wb applications, traffic tends to be more bursty
than in CM applications and overall data rate
tends to be much lower than in CM applica-
tions. This has important consequences. First,
enough bandwidth can be assumed to be available
for retransmissions within a wb session. Traffic
is continuous with CM applications, bandwidth
requirements are high, and the bandwidth con-
sumed by retransmissions can interfere with nor-
mal transmissions. Second, to avoid contribut-
ing to traffic congestion and interference, resilient
multicast must also rely on localized recovery (re-
covery using retransmissions from nearby group
members) as much as possible.

3. In the wb case, each participant maintains per-
sistent state of the session (e.g., buffers all the

slides in a presentation) as the sender may refer
back and forth to different parts of the presenta-
tion. Thus, every member is equally capable of
helping other members with recovery from data
they have not received. This is not the case with
CM applications. Since every member chooses its
own playback delay (and, therefore, the amount
of data 1t buffers), a participant’s ability to help
with error recovery varies widely.

To motivate our design further, we describe the pre-
viously used techniques for reliable multicast in the
next section and point out the need for a new ap-
proach for achieving resilient multicast.

3 Reliable Multicast Protocols

Loss detection and retransmission strategy are two
important aspects in the design of any reliable proto-
col. In a traditional point-to-point reliable protocol
such as TCP, positive acknowledgements are used to
detect loss and the sender is responsible for retrans-
mission of the packet. In a multipoint communication,
if multiple receivers send back positive acknowledg-
ments, the sender would become a bottleneck. This
problem is known as an ACK implosion. Therefore,
reliable multicast protocols rely on a combination of
negative acknowledgements (NACKs) and selective re-
transmissions to recover from lost packets. In addi-
tion, some form of NACK aggregation may be used
to further increase efficiency. Among several reliable
multicast protocols proposed in the literature, Scal-
able Reliable Multicast (SRM) protocol [9], used in
the popular Internet wb program, is a good example
of such a protocol. We will use SRM’s error recov-
ery mechanisms to motivate our design of a protocol
for resilient multicast. In the following subsection, we
provide an overview of the recovery scheme used in
the SRM protocol.

3.1 Overview of the SRM Protocol

In SRM, whenever a receiver detects a packet loss,
it multicasts a NACK packet to the entire group.
Upon receiving the NACK packet, any member in
the group having the packet can multicast a repair
packet. To avoid duplicate NACK and repair pack-
ets, a suppression algorithm is used in which a node
sets a random timer before multicasting a NACK or
repair packet. If a node receives the same NACK or
repair packet from another node before the timer ex-
pires, it will cancel the planned multicast. Such an
algorithm is simple and robust. However, the algo-
rithm will end up consuming a lot of bandwidth when
there is little correlation of losses among receivers. For
example, in a group of 1000 receivers, even when only
one receiver loses a packet, all 1000 receivers need to
process the multicast NACK and repair packets. This
introduces significant overhead for both the network
and the receivers. The problem becomes more severe
as the number of receivers in the group increases be-
cause the probability that at least one receiver does
not receive a multicast packet also increases. In the
worst case, for every multicast packet, at least one re-
ceiver does not receive the packet, which means every
packet needs to be transmitted to the whole group at

Result of Multicast Ping

400 T T T T
SDR (CMU, Aug. 4, 1996) —
SDR (Berkeley, Jun. 24, 1996) ----
350 - B
300 B
.
250 | o E
!
g
3 -
S 20 | E
¢
150 B
r
100 i 1
!
!
50 | 4
0 Il Il Il Il Il Il

70 80 920 100 110 120

Figure 1: Number of hosts reachable by a given TTL

least twice — this is assuming that the NACK and re-
pair suppression algorithm work perfectly. In reality,
in order to reduce the number of duplicate packets, the
random timer needs to be set to a rather large value,
delaying repair and NACK packets further. This is
undesirable for CM applications where packets will be
useless after a certain fixed delay.

3.2 Improvements in the SRM Approach

One possible method of improving SRM’s efficiency
is to use localized recovery. The idea is to multicast
NACKSs and repairs locally to a limited area instead of
to the whole group. Clever use of local recovery can
improve the protocol performance in terms of both
latency and bandwidth consumption, but requires an
effective multicast scope control mechanism.

Using the TTL (Time To Live) field in the IP packet
header is one possible way to implement scope control.
Each link at a multicast router is configured with some
threshold value so that only those packets with TTL
values greater than or equal to the threshold can be
forwarded to the next hop. As in a traditional IP
router, TTL is also decreased by one at each multicast
router.

To evaluate how well TTL can be used to con-
trol multicast scope, we performed experiments with
the mping program. We ping’ed the popular sdr ad-
dress (224.2.127.254) with different TTL values, and
then counted the hosts reached with these TTL val-
ues. Figure 1 shows the results for two experiments
performed at two hosts, Berkeley and CMU. The fig-
ure only shows TTL values from 64 to 128 because
when the TTL is less than 64, only hosts within a lo-
cal region can be reached, and hosts in the same region
usually share the same packet loss pattern, reducing
the probability that they will be able to provide re-
pairs to each other.

From the figure, it can be seen that TTL is not
a good measure of locality. The number of reach-
able hosts does not increase linearly with TTL values.
Rather, the curve has large jumps for certain TTL val-
ues and remains flat for other TTL values. In addition,
our experiments showed that the TTL values between

two hosts are usually not symmetric. That host A can
reach host B with some TTL value does not imply that
host B can reach host A with the same TTL. When a
group member receives a NACK message with a spe-
cific TTL value, it does not know which TTL value to
use to multicast the repair. To make matters worse,
there might be some other members who have also
received the same NACK and suppressed their own
NACKSs. The repairer is expected to provide repair to
these members also, but it has no way of knowing the
appropriate TTL value to use to reach them all.

To summarize, the SRM protocol represents a sim-
ple and robust approach for large-scale recovery based
on persistent state, suppression of duplicate NACKs
and repairs, and global retransmissions. However,
global recovery may incur large overhead both in terms
of network bandwidth and end system processing time.
In addition, effective suppression in a large group re-
quires higher timer values, which will increase recov-
ery latency. Localized recovery using TTL to limit
the scope of multicast NACKs and repairs does not
work well. Other approaches for limiting the scope
of multicast recovery such as modifications to the un-
derlying multicast routing algorithms need further in-
vestigation. Next, we will describe STORM, which
is designed to overcome these limitations and provide
quick recovery from lost packets.

4 Structure-Oriented Resilient Multi-

cast

In designing error recovery algorithms for resilient
multicast, we want to (a) minimize the overhead of
control packets as continuous media applications al-
ready consume relatively large amount of bandwidth,
and (b) minimize the delay in recovery as packets ar-
riving late will be discarded. In the previous section,
we argued that multicasting every NACK and repair
packet to the entire group will result in large overhead.
This will be verified by experiments presented in Sec-
tion 5. While local multicast may alleviate this prob-
lem, the TTL-based scoping mechanism has a number
of drawbacks that severely limit its use.

In this section, we present our solution, STORM.

4.1 Overview of the Protocol

A key idea in STORM is to distribute the NACK
and repair packets along a structure that is overlaid on
application endpoints. Unlike other distribution struc-
tures such as the multicast routing tree where interior
nodes are routers, both interior and leaf nodes are
application endpoints in our structure. The construc-
tion and maintenance of the structure is lightweight
in the sense that the algorithm keeps a small amount
of local state and avoids the use of distributed and
dynamic state that needs to be consistent. As will
be explained later in this section, besides the packets
in the playback buffer, each node needs to keep the
following STORM related state: a short list of par-
ent nodes, a quality estimator for each parent node, a
level number, a delay histogram of all packets received
by the node, a list of timers for the NACK packets
that are sent to its parent, and a list of NACK pack-
ets from its children for which repair packets have not

been sent. All state information is local except the list
of NACK packets, which is shared by a pair of child
and parent nodes. For the NACK-related state, the
only possible inconsistency occurs when a NACK or
repair packet is lost, causing a parent and child dis-
agree about which packets the child lacks, in which
case the child will timeout and initiate another re-
quest. As a result, most decisions are local and only a
small number of control packets are needed to main-
tain the structure. By not guaranteeing full reliability,
we are able to avoid some expensive operations such
as keeping track of exact group membership and ag-
gregating positive acknowledgments to verify delivery
to all group members.

The recovery algorithm works as follows. Each re-
ceiver maintains a list of parent nodes, which are other
members in the multicast group. Whenever a receiver
discovers a packet is missing, it selects one node from
the parent list and sends a NACK for that packet to
the parent. If, after some timeout, the host has not
received a repair, it will choose another parent on the
list to which it will send another NACK. This goes
on until the packet is recovered or the packet becomes
obsolete and there’s no need to recover it any more.
The purpose of using multiple parents instead of a sin-
gle parent is to balance load among different members
and to make the recovery mechanism more robust.

When a parent receives a NACK from a child for a
packet that the parent has in its buffer, it will unicast
the packet to the child immediately. If the parent
does not have the packet, it will wait for the packet
to arrive, and then send it to the child. The packet
may not have arrived at the parent for two reasons:
either because the packet from the source is delayed,
or because the packet was lost and the parent itself is
in the process of recovering the packet from its own
parent.

In our protocol, NACK and repair messages are
sent using unicast UDP except in a LAN environment,
where the cost of a multicast and unicast is identical.
We avoid large scale multicast of NACKs and repairs
to reduce recovery overhead. In addition, NACK and
repair packets are sent immediately so that recovery
latency is minimized, which is critical for continuous
media applications using resilient multicast service.

In the following sections, we describe four key as-

pects of STORM:

1. a lightweight and scalable protocol to build and
maintain the structure distributedly;

2. an algorithm for choosing parents based on the
semantics of resilient multicast;

3. a distributed loop avoidance mechanism;

4. a technique for adapting the structure to changes
in network conditions and multicast group mem-
bership.

4.2 Building the Recovery Structure
The recovery structure is a multi-parent tree with
application endpoints being both the interior and leaf

nodes. The structure is incrementally built as re-
ceivers join the multicast group.

When a receiver first joins the group, it uses an ex-
panding ring search (ERS) technique to look for poten-
tial parents. An ERS consists of sending out queries
to the multicast group with increasing TTL values.

Members that are already part of the structure can
answer ERS queries they receive with a unicast reply.
The reply packet contains an indication of the per-
ceived loss rate as a function of the playback delay.
The next section describes how a new receiver uses
this information to select a parent. When the new re-
ceiver collects enough candidates for parent, it stops
its ERS.

Note that the ERS query is the only control mes-
sage that uses multicast in our protocol and TTL val-
ues are used to limit the multicast scope, ensuring that
we locate suitable parents in a scalable manner. An-
other advantage of ERS is that usually, adjacent nodes
are found as parents, creating a reasonable structure.
However, to make the structure optimal for error re-
covery, parent nodes should be selected carefully. The
selection procedure is described below.

4.3 Selection of Parent Nodes

Each receiver keeps track of a set of measured
packet losses as a function of the playout buffer size.
The loss rate is a monotonically decreasing function
of the playback buffer size as a larger playback buffer
size will allow packets experiencing longer delays and
retransmitted packets to arrive in time to be played
back. When a new member is looking for a parent, it
knows how long a packet arrival can be delayed and
still be useful (based on its own playback buffer size)
and therefore, can use a candidate parent’s loss rate
to determine whether to accept it as a parent or not.
As an extremely oversimplified example, consider a re-
ceiver with a 200 ms buffer that is looking at two po-
tential parents, A and B. Suppose A received 90% of
its packets within 10 ms and 92% of its packets within
100 ms, while B received 80% of its packets within 10
ms and 95% of its packets within 150 ms, the receiver
should choose B as its parent. It does not matter how
slowly a packet arrives as long as the packet arrives in
time to be useful.

The data source timestamps each packet with the
time the packet was sent. When a member receives
the source’s packet, it finds the adjusted arrival time,
tq, which is the difference between the time the mem-
ber received the packet and the timestamp inside the
packet. The member keeps a histogram recording how
many packets it received for each value of ¢t,. When
the loss rate at time ¢, L(t), is requested, a member
returns

ZZ:O number of packets for which t, =1

1—
total number of packets expected

To choose from a group of potential parents, the
child uses a potential parent’s value of L(t, + B —
dparent chitd) Where B is the child’s buffer size (in mil-
liseconds), dparent chitd 1s the one-way propagation de-
lay from the parent to the child, and ¢, is the typical

adjusted arrival time experienced by the child. Note
that ¢, is computed relative to the child’s time frame,
so we need to convert it to the parent’s time frame.

To make the conversion, we need to find the clock
offset between the potential parent and the child.
When the child sends the parent a message, it times-
tamps the message (call this value ¢;). The parent
records the time it receives the message (¢2) and in-
cludes this value in its reply to the child, which it
will also timestamp (t3). The child records the time
at which it receives the parent’s reply (t4). Now the
clock offset can be computed as half of the sum of
offsets between (t1, t2) and (¢4, t3), as:

t —ty+tg—t
of fset — L lattals
2

Finally, the child can ask its parent to return L(t,—
Offset + B — d.pa(ent,child). . .

The loss statistic used to judge a parent’s suitability
is a unique aspect of STORM designed to mesh well
with our goal of resilience.

4.4 Loop Avoidance

Since the recovery structure is built in a distributed
manner, loops can be formed during the ERS. Loops
are undesirable because they can prevent recovery
from packet loss. For example, when a loop is formed
among a few receivers, any packet loss shared by these
receivers will not be recovered. Therefore, STORM
should build a structure that is a loop-free multi-
parent tree rooted at the data source.

To retain the distributed nature of STORM, our
goal was to design a loop avoidance scheme that does
not require active coordination and exchange of state
information among nodes in the tree. Each node is
assigned a level number to reflect its position in the
tree. A new node can only choose nodes with a level
number lower than its own as its parents. The root
has the lowest level, which is 0. The level should be
assigned to the node soon after it joins the multicast
group, and should not change during its lifetime. It
is also desirable that the level should somehow reflect
the network topology; for example, those closer to the
root should have a lower level than those further away.

We have considered two methods to assign levels to
hosts:

e Use hop count to the root as level. When a
node joins the multicast group, it tries to find
out its hop count to the root and use it as its
level. Hop count is usually static (assuming the
network routing does not change very frequently)
and to some extent reflects the distance between
two hosts. However, the current Unix socket API
makes it difficult for a user level application to get
access to the TTL information, which encodes the
hop count, in an IP datagram header.

e Use the estimated round-trip time (RTT) to the
root as level. In our implementation, we use the
estimated RTT from a node to the root as a sub-
stitute for the hop count. Since RTT can be esti-
mated with one packet exchange, each node can

send a message to the root when it joins the group
to determine its level. (To solve the implosion of
such requests when many new members join the
group at the same time, each member can wait for
a random time before it sends the message to the
root.) A minor flaw in using the RTT estimate
is that it depends on the network load and may
not represent accurately the distance between two
hosts. This is acceptable most of the time, since
it is not necessary and not possible to make the
level always an accurate estimation of the network
topology.

Sometimes more than one node may have the same
level. In most cases, this is acceptable, but when a
large number of hosts have the same level, the number
of eligible parents for these hosts can be unacceptably
small. To avoid such a situation, each receiver’s level
is augmented with a random number, known as the
minor level. When two hosts have the same level, the
minor level is used as a tie breaker with lower minor
level deciding which node gets to be the parent.

Our experiments show that the level-based mecha-
nism prevents loops successfully and helps in building
a structure that reflects the physical network topol-
ogy. Figure 3 shows a typical structure built in one
of our experiments, with level numbers marked beside
each node.

4.5 Adapting the Structure

The structure, once built, is not final. As network
conditions and packet loss characteristics change over
time, a parent may fail to provide timely recovery in
many cases. One possible cause of degraded parental
performance is an increase in the loss rate in some
part of the network. In the extreme case, a parent
simply leaves the group so that it no longer provides
any repairs at all.

To adapt to changing conditions, each receiver pe-
riodically reevaluates the quality of each of its parents
by computing the ratio of the number of repairs sup-
plied by a parent to the number of NACKs sent to
the parent. This ratio, which serves as a dynamic rat-
ing of a parent’s performance, is updated by periodic
exponential smoothing. The ratio is checked period-
ically and if it drops below some threshold, then the
parent is removed from the parent list. To find a re-
placement, a node can start another round of ERS to
find a better parent or select a node that was found
in a previous ERS but not yet used as a parent.

The ratio of NACKs sent to repairs received com-
bined with the metrics used to choose the parents is
used to rank parents in the parent list. The num-
ber of NACKSs sent to a parent is proportional to its
rank in the parent list. For example, if two parents
have ranks 1 and 2, then the latter will receive twice
as many NACKs as the former. Dynamic adaptation
is an important feature of STORM; successful adapta-
tion makes the protocol more robust in the presence of
changing group membership and network conditions.

4.6 Distributed State Management

The main difficulty in making distributed algo-
rithms scalable and robust is maintaining distributed

state that is both dynamic and consistent. In our de-
sign, we try to minimize the amount of state infor-
mation kept at each node. In addition, we avoid dy-
namic and distributed state that needs to be consistent
across several nodes. For example, in our protocol,
while a child node keeps track of its parent nodes, a
parent node does not keep track of its children. The
parent—child state information is kept at the child in-
stead of at both the parent and child. Another ex-
ample is the design of the loop avoidance algorithm
where each receiver acquires a level number that re-
mains unchanged during the receiver’s lifetime. In the
protocol, node A can pick node B as its parent only if
node A has a larger level number than node B. Since
the level numbers define a partial ordering relation-
ship that is time invariant, change of a parent node
becomes a local operation.

In contrast, with Lorax, parent nodes explicitly
keep a list of children, and children also keep a list of
their siblings. To ensure loop-free structure, each node
includes its identifier in messages where the identifier
encodes the path from the root to the node. Since
the path changes dynamically, when a node changes
parent, all descendants have to be notified and the
information has to be updated after each change in
membership. Compared to the method in Lorax, our
algorithm is much simpler.

5 Evaluation

To evaluate the performance of STORM, we imple-
mented both STORM and SRM in the audio program
vat, and conducted experiments over the MBONE. In
addition, we implemented both protocols in a packet
level simulator, which allows us to compare STORM
and SRM in a controlled environment and to evaluate

STORM’s scalability.

5.1 Performance Metrics

We evaluate the effectiveness of an error recovery
protocol along two dimensions: the performance im-
provement to the application, and the overhead in-
curred by the protocol. In the context of resilient
multicast, application performance is characterized by
the loss rate given a fixed size playback buffer. We
use two performance indices: the initial loss rate of
a receiver is the fraction of packets that are origi-
nally multicasted by the sender but not received in
time by the receiver, the final loss rate of a receiver is
one minus the fraction of packets that arrive in time
for playback among all the packets that are originally
multicasted by the sender. Multiple packets with the
same sequence number are counted just once. The
application performance is characterized by the final
loss rate. The lower the final loss rate, the better the
performance. Since the final loss rate also depends on
the network conditions during experiments, we use the
initial loss rate as a reference.

There are two types of overhead, the network band-
width consumed due to the transmission of NACK and
repair packets, and the time spent to process these
packets at each node. The processing overhead at a
node can be measured by the number of NACK /repair
packets sent and received by the node. The bandwidth

cmu

virginia

ucla
berkeley

Figure 2: Network topology used in experiments.

overhead incurred by a packet is more difficult to mea-
sure as it depends on the route taken by the packet.
In addition, the costs of multicast and unicast packets
are quite different. In our evaluation, we assume all
unicast packets incur same overhead to the network.
For a multicast packet that is transmitted to N re-
ceivers, we assume it has a cost N/2 times the cost of
a unicast packet [18]. We call this the normalized cost
for a multicast packet.

We use an additional performance metric to charac-
terize both the application performance improvement
and the protocol overhead. We define the average cost
of a recovered packet to be the average number of
NACK /repair packets sent and received for each re-
covered packet.

5.2 Experiments over the MBONE

We modified the MBONE audio tool vat to use both
STORM and SRM and then ran a series of experi-
ments among 8-12 sites scattered on the MBONE. Fig-
ure 2 is a rough approximation of the network topology
connecting the 8 hosts involved in the experiments pre-
sented here. The topology was generated by finding
the multicast route between each pair of sites using the
program mr [23] and then combining common routes
found in mr’s output. Figure 3 shows the snapshot
of a typical recovery structure created by the hosts
during an experiment.

For the SRM implementation, each host in the mul-
ticast group exchanges a periodic, low-frequency ses-
sion message so that the distance between any two
hosts can be estimated. We used the following set of
parameters in the SRM protocol [9]: C; = C; = 2.5
and D1 = D5 = 2.5, which, according to our experi-
ence, provide acceptable performance.

For both STORM-based vat and SRM-based wvat,
we ran many experiments at different times of day,
with different hosts as the data source. Due to space
limitations, this paper only presents results collected
from 6 sets of experiments where each set includes
results from one run of STORM and one of SRM. To
make sure network conditions are consistent between

runs of SRM and STORM, we ran SRM-based vat

¥
ucla(75)

Figure 3: A typical structure built in the experiments.
The numbers specify the level assigned to each site.
Nodes that are higher in the figure can become parents

Initial Final
Run [STORM | SRM || STORM | SEM
1 5.73% 5.69% 0.04% 0.17%
2 3.71% 4.11% 0.01% 0.09%
3 1.51% 1.21% 0.01% 0.01%
4 1.83% 1.16% 0.00% 0.00%
5 5.65% 3.88% 0.05% 0.07%
6 1.06% 1.38% 0.00% 0.01%

Table 2: Loss rate seen by receiver Berkeley in 6 runs
of experiments.

Initial Final
Run || STORM | SRM STORM | SRM
1 14.16% | 11.63% 1.01% 3.35%
2 10.65% | 14.46% 0.05% 6.68%
3 5.77% 3.64% 0.22% 1.42%
4 2.60% 2.25% 0.02% 0.88%
5 8.87T% 11.60% 0.17% 3.17%
6 4.41% 6.00% 0.20% 2.78%

of lower nodes.

Initial Final
Site STORM | SRM STORM | SRM
Berkeley 3.71% 4.11% 0.01% 0.09%
Ga. Techy 4.37% 4.02% 0.00% 0.29%
ISI 3.82% 3.97% 0.04% 0.11%
UCLAf 3.82% 3.97% 0.35% 0.11%
Kentucky 10.19% | 6.88% 0.52% 0.62%
U. Masst 10.65% | 14.46% 0.05% 6.68%
Virginia 42.95% | 45.57% 0.17% | 22.6T%

Table 1: Loss rate (with and without recovery) of all
receivers in one of the data sets. Hosts marked with
a (f) used a 200 ms playback buffer while unmarked
hosts used a 500 ms playback buffer.

right after STORM-based vat. The interval between
the two experiments was usually less than 10 minutes.
We used the same configuration for all experiments:
each experiment lasted 5 minutes; a sender at CMU
sent PCM-encoded audio in 172 byte packets at a rate
of 50 packets per second. All other hosts acted as
receivers, some (Ga. Tech, UCLA, U. Mass) with 200
ms playback buffers and the rest with 500 ms playback
buffers.

Table 1 shows the loss rate observed by all the
receivers in one of our 6 sets of experiments. The
columns, marked “Initial” and “Final,” show the ini-
tial and final loss rates respectively. Tables 2 and 3
show the loss rate seen at receivers Berkeley and U.
Mass in all 6 runs of experiments. From these tables
we can see the final loss rates achieved by STORM and
SRM are usually similar. For sites with a high initial
loss rate such as the University of Virginia, STORM

Table 3: Loss rate seen by receiver U. Mass in 6 runs
of experiments.

performs much better than SRM. One explanation
is that because MBONE and unicast routes between
hosts differ, congestion in the MBONE will not affect
unicast packets. Since repair packets in SRM take the
same route as original packets, repair packets will ex-
perience the same high loss rate. For STORM, repair
packets were sent via unicast, avoiding the congestion.

While STORM and SRM provide sim-
ilar application-level performance, the overheads they
incur are quite different. This is illustrated by Fig-
ure 4, which depicts the average cost of a recovered
packet, the average number of NACKs/repairs sent or
received for each packet recovered. The bars marked
“Normalized” show the cost of SRM’s multicast pack-
ets in terms of the cost of unicast packets. The final
columns in each graph are data from a simulation of
10 hosts using a randomly generated topology.

There are several noteworthy points about Fig-
ure 4. First, in all experiments, the average cost
of recovering a packet, both in terms of the number
of NACK /repair packets received and the normalized
number of NACK /repair packets sent, is much lower
for STORM than for SRM. This is a direct conse-
quence of the fact that STORM uses unicast to recover
packets from neighboring nodes while SRM uses global
multicast for all NACK/repair packets. One benefit
of SRM is that it sends fewer packets than STORM.
However, since each packet is sent to the whole group,
it results in higher network overhead, which is reflected
in the normalized number of packets sent and num-
ber of packets received. The second thing to notice is
that there are certain relationships between the data
presented. In particular, the number of packets sent
and received for STORM are nearly equal. This is
a consequence of using unicast rather than multicast
for recovery. Also, the number of packets received in

== Repairs
=a NACKs

N
a1
|

N
o
I

154

=
o
I

Packets received per packet recovered
(2]

e

Experiment number

(a) Received

= Repairs

aa NACKs

25-
B
% 20
3 g
S 154 =
(s} ©
& £
T 2
o
;
T
4
8
o

Experiment number

(b) Sent

Figure 4: Average number of NACKs and repairs received and sent per recovered packet in 6 experiments and 1

simulation.

SRM is slightly less than half the normalized number
of packets sent. This is to be expected given that the
number of multicast packets sent is multiplied by N/2
to yield the normalized data and that without packet
loss, the number of received packets would be N times
the number of received packets. Finally, we note that
the simulation data matches with the experimentation
data closely. The simulator represents a more con-
trolled environment than the MBONE, increasing our
confidence in the fact that STORM’s lower overhead is
not due to differing network conditions between runs
of STORM and SRM.

In all the experiments we presented so far, the mem-
bership of the multicast group does not change, i.e. all
the receivers join the group simultaneously and stay in
the group until the end of the session. In order to eval-
uate the the adaptivity of STORM in the presence of
dynamic membership, we performed a number of ex-
periments in which receivers join the multicast group
sequentially with certain intervals between joins, stay
in the group for a fixed time, and then leave the group.
We ran these experiments back to back with experi-
ments without dynamic leave/join. Table 4 compares
one typical run of the two experiments. In these ex-
periments all hosts used a 500 ms playback buffer. It
can be seen from the table that dynamic joins and
leaves do not significantly degrade performance.

5.3 Simulation Experiments

The main goals of the simulation are to explore how
well our protocol scales to a large number of receivers
and to evaluate various aspects of the protocol. Before
presenting the experimental setup and results, we will
first discuss relevant features of the simulator.

We use a discrete event packet level simula-
tor. Identical implementations or code segments of
STORM and SRM are used in the experiments on
real networks and in the simulator. In the simulator,
both unicast and multicast packets are routed along
paths that minimize the number of hops. Each link i

Initial With Recovery

Site Static [Dynamic || Static | Dynamic
Berkeley || 1.31% | 2.68% 0.0% 0.0%
Ga Tech || 1.32% 4.76% 0.0% 0.0%
ISI 4.55% 3.97% 0.0% 0.0%
UCLA 4.55% 4.76% 0.0% 0.0%
Kentucky || 3.96% | 5.38% 0.59% 1.04%
U. Mass || 2.64% 5.50% 0.0% 0.03%
Virginia || 3.94% 4.95% 0.0% 0.0%

Table 4: Loss rate of two experiments with STORM,
one with static and the other with dynamic group
membership. All hosts used a 500 ms playback buffer.

is characterized by two parameters: a loss rate {; and
a typical delay d;. For each packet traversing link i,
the probability that the packet gets dropped is ;. If
the packet is not dropped, it will be forwarded with a
delay that is uniformly distributed between d; and 2d;.
With this model, we do not model delay and loss cor-
relations among packets. Furthermore, unlike a real
network, the link delay and loss properties are inde-
pendent of the number of packets traversing the link.
The result is that simulations will favor protocols that
generate more data. Since SRM with global multicast
generates more packets than STORM, the simulator
is likely to be overly optimistic about SRM’s perfor-
mance.

Network topologies for use in the simulator are ran-
domly generated. There are two levels of routers in a
simulated network: a top level backbone and second
level regional networks. Each router at the backbone
connects to a second level regional network and each
router at the regional network connects to a host that
participates in the multicast group. Routers on the
backbone are randomly connected to each other such
that on average, each router is connected to 4 other

= Repairs
=2 NACKs

£ @

Packetsreceived per packet recovered
N

2

10 S50 400

Number of receivers

Figure 5: Number of protocol packets received per
packet recovered (500 ms playback buffer)

routers. Routers in each regional network are con-
nected in the same way. Backbone links are assigned
typical delays on the order of 20 to 40 milliseconds
while regional network links are assigned delays of 1
to 5 milliseconds. All links are assigned loss probabil-
ities in the range of 0.1% to 0.5%.

Hosts in the randomly generated topologies tend
not to be isolated in contrast to our sites on the Inter-
net, which are all significantly distant from each other.
Hosts that are close to each other in the network tend
to have a high loss correspondence since they share
many links in the multicast distribution tree. Due to
the nature of the parent search, it is more likely that
a neighbor will be picked as a parent, all other things
being equal. When a host loses a packet, the parent
to which it sends the NACK is more likely to have
also lost the packet. The host needs to wait for its
parent to get a repair, increasing the delay to receive
a repair slightly and causing more NACKs to be sent
in the simulator than in our MBONE experiments due
to timeouts.

All hosts joined the multicast group simultaneously
at the very beginning of the simulation and remained
until the end, 10 minutes later (in simulated time).
The effect of all hosts joining the multicast simultane-
ously is that hosts will have fewer parents to choose
from, on average, than if they joined in series since
hosts are only able to pick a parent that has already
joined the recovery structure. This may lead to a less
optimal recovery structure at first, but parent reeval-
uation and adaptation will subsequently improve the
structure.

In order to evaluate how well STORM scales with
respect to network size and number of receivers, we
ran simulations on topologies with 10, 50, 100, 200,
and 400 hosts and with playback buffer sizes of 200
and 500 ms. Figure 5 depicts the average overhead
for each host as a function of the group size, where
the overhead is measured as the average number of

NACK /repair packets received per packet recovered.
From the figure, we can see that the cost remains a
small constant as the group/network size grows from
10 to 400.

One of the important features of STORM is that
the recovery structure is built based on a cost func-
tion that takes advantage of the semantics of resilient
multicast to choose parents. To evaluate the effect of
using the cost function, we ran two simulations of the
same 100 host topology using STORM with and with-
out the cost function enabled. We then extracted each
host’s final loss rate and created a histogram summa-
rizing how many hosts experienced a given level of
loss.

Figure 6 presents histograms comparing the fre-
quency of loss for STORM with and without its
parent—choosing metric enabled. These histograms
were generated using 100 host topologies in which each
host used a 200 ms playback buffer. The effect of the
metric is particularly obvious in this configuration be-
cause the short buffers leave little time for hosts to
recover lost packets. The histograms indicate that us-
ing the metric does yield a tangible benefit, decreasing
the average loss rate from 1.3% to 0.28%. With the
metric, it seems that hosts choose parents that are
more able to send repairs in time.

6 Related Work

A considerable amount of research has been re-
ported in the area of reliable multicast transport [13,
26, 17]. Instead of describing each approach and com-
paring it to STORM, we will focus here only on salient
similarities and differences between STORM and other
approaches in the area of distributed error recovery.
Some of the earlier work on reliable multicast trans-
port used a sender-initiated approach for error recov-
ery in which the sender is responsible for ensuring that
all the receivers receive all the data reliably. How-
ever, such an approach does not scale very well as
the number of receivers increases. Ramakrishnan and
Jain [20] were the first to explore a receiver-initiated
approach in which the burden of ensuring reliable de-
livery is shifted to the receivers. The SRM protocol
discussed earlier is an excellent example of this ap-
proach in which the receivers are completely respon-
sible to ensure reliable delivery. The tradeoff between
sender-initiated and receiver-initiated approaches has
been extensively studied [19, 13].

STORM also adopts a receiver-initiated mechanism
for error recovery because the resilient multicast model
lets each receiver make its own tradeoff between de-
sired latency and the degree of reliability. To facilitate
quick, efficient, and robust recovery, STORM also or-
ganizes the group members into an acyclic graph so
that a receiver can recover a lost packet from one of
many parents in the graph. The idea of using a hi-
erarchical error recovery based on a structure among
participants is not completely new. TMTP [26] was
the first protocol to suggest a tree-based error recovery
where the tree is built dynamically among the group
members. RMTP [17] is another protocol that uses a
statically configured, two-level hierarchy for error re-
covery. Under TMTP (or RMTP), each receiver has a

25 —
20
7
o 15
I
B
o]
a
£
S
Z 10 =
54
05 T T l_l 1
0.00 0.01 0.02 0.03

Proportion L ost
(a) with metric

254
20+

15

Number of Hosts

10

Lol ot

T T T 1
0.00 0.01 0.02 0.03

Proportion L ost
(b) without metric

Figure 6: STORM loss distribution comparing STORM with and without the parent metric (200 ms playback

buffer)

single parent and an interior node in the tree is used
to aggregate periodic ACKs to ensure feedback on re-
liable delivery to the sender. Lorax [13] is another
protocol that uses a shared tree structure for error re-
covery in an MzN communication. LBRM [10] is a
collection of strategies for achieving receiver-initiated
reliable delivery using a hierarchy of logging servers
including a primary server responsible for sending pos-
itive ACKs to the multicast source.

Another way of building a recovery structure among
participants is the Token Ring Protocol (TRP) by
Chang and Maxemchuk in which participants are or-
ganized into a ring with one of the members acting as
the token site. The token site is responsible for times-
tamping new packets and retransmitting missing pack-
ets for all the other receivers. By moving the token
site around all the members in the group, the proto-
col ensures a totally ordered reliable service. Another
protocol based on Chang and Maxemchuk’s work is
RMP (Reliable Multicast Protocol) [24].

The approach used in STORM differs in many
ways. First, STORM does not require a parent to
maintain any state information (or aggregation of
ACKs) about its children. Instead, every receiver
identifies potential parents and selects a list of its par-
ents based on each parent’s loss rate characteristics.
Second, the multi-parent tree structure is built dy-
namically and adapts as network conditions and loss
rates at parents change dynamically. Third, STORM
uses a light-weight method for building and maintain-
ing a loop-free structure which keeps the overhead very
small. For example, the level-assignment approach al-
lows us to keep the structure loop-free implicitly with-
out explicit exchange of state information among the

participants.

As pointed out by Pejhan et al. [18], there are three
techniques that are used to deal with transmission er-
rors in real-time continuous media applications: au-
tomatic repeat request (ARQ), forward error control
(FEC), and error concealment (EC). We are using an
ARQ mechanism for continuous media applications.
Recently, Bolot and others [1] proposed use of FEC for
CM applications. One advantage of FEC-based error
control is that the recovery latency is smaller than
the ARQ method provided the packet transmission
rate is high. However, the FEC mechanism usually
requires higher bandwidth than the selective retrans-
mission approach. Also, the FEC method requires use
of CPU-intensive encoding mechanisms that add to
the processing overhead at receivers. Another disad-
vantage of the FEC approach is that it builds redun-
dancy in transmission assuming homogeneous receiver
requirements and loss rates at receivers. Under the
resilient multicast model, we assume that receiver re-
quirements are heterogeneous and, therefore, each re-
ceiver must be able to make the tradeoff between the
overhead of recovery and the degree of desired relia-
bility.

Dempsey and Liebeher [7, 8] and Papadopoulos and
Parulkar [16] were the among first to examine the use
of retransmission-based error recovery for CM applica-
tions. However, their solutions are for unicast sessions
and require tighter coordination between the sender
and the receiver to recover lost packets. STORM’s er-
ror recovery scheme is designed for multicast delivery,
does not require tight coupling between a sender and
its receivers, and relies on a distributed structure to
allow recovery of missing packets from one or more

(possibly adjacent) members of the multicast group.

7 Conclusion

This paper introduces resilient multicast, a new
model for multicast delivery of continuous media
streams. Under this model, each receiver in a mul-
ticast group determines its own tradeoff between de-
sired playback quality and tolerable latency. Based
on the tradeoff, a receiver recovers from lost packets
by requesting retransmissions from other group mem-
bers whenever feasible. To facilitate fast recovery and
to ensure low retransmission overhead, resilient mul-
ticast relies on organizing the participants into a dis-
tribution structure (an acyclic graph) for error recov-
ery. We have designed a new multicast delivery pro-
tocol called STORM that includes a lightweight algo-
rithm for dynamically creating the distribution struc-
ture and a low-cost mechanism for selecting parents
for recovery of lost packets.

We have evaluated the efficiency of STORM by
comparing it against the SRM protocol and also veri-
fied its effectiveness by using both MBONE-based ex-
periments and a simulation model. Our experimen-
tal results show that STORM is effective and efficient
in error control for real-time multimedia applications.
We also show that STORM is adaptive and robust in
a real network like MBONE. Further, our simulation
results show that STORM has nice scaling properties
for large multicast groups.

Acknowledgement

We would like to thank the following people who
provided us with remote accounts and helped us with
our MBONE experiments: Bruce Mah of Univer-
sity of California at Berkeley, Dan Massey of Univer-
sity of California at Los Angeles, Kevin C. Almeroth
and Mostafa Ammar of Georgia Institute of Tech-
nology, Ted Faber of Information Sciences Institute,
Robert Adams of University of Kentucky, Jim Kurose
and Maya Yajnik of University of Massachusetts at
Ambherst, Deborah Estrin and Pavlin Ivanov Ra-
doslavov of University of Southern California, Paco
Hope and Jorg Liebeherr of University of Virginia,
Chuck Cranor, John DeHart, Zubin Dittia and Mar-
cel Waldvogel of Washington University at St. Louis,
Wieland Holfelder and Rainer Lienhart at University
of Mannheim, Germany.

References
[1] J. Bolot, H. Crepin, and A. V. Garcia. Analysis
of audio packet loss in the Internet. In
Proceedings of NOSSDAV’95, pages 163-174,
April 1995.

[2] S. Casner. Frequently asked questions (FAQ) on
the multicast backbone (MBone), August 1994.

[3] S. Casner and S. Deering. First IETF Internet
audiocast. ACM Computer Communication

Review, July 1992.

[4] J. Chang and N. F. Maxemchuk. Reliable
broadcast protocols. ACM Trans. Computer
Systems, 2(3):251-273, August 1984.

[5] S. Deering. Host extension for IP multicasting,

August 1989. RFC-1112.

[6] S. Deering and D. R. Cheriton. Multicast
routing in datagram internetworks and extended
LANs. ACM Transactions on Computer
Systems, May 1990.

[7] B. J. Dempsey. Retransmission-Based Error
Control for Continuous Media Traffi ¢ in
Packet-Switched Networks. PhD thesis,
Department of Computer Science, University of
Virginia, 1994.

[8] B.J. Dempsey, J. Liebeherr, and A.C. Weaver.
On retransmission-based error control for
continuous media traffic in packet-switching
networks. Computer Networks and ISDN
Systems, 1996.

[9] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu,
and L. Zhang. A reliable multicast framework
for light-weight sessions and application level
framing. In Proceedings of the ACM SIGCOMM
95, pages 342-356, Boston, MA, August 1995.

[10] H. Holbrook, S. K. Singhal, and D. R. Cheriton.
Log-based receiver-reliable multicast for
distributed interactive simulation. In
Proceedings of SIGCOMM’95, pages 328-341,
Boston, MA, August 1995.

[11] V. Jacobson. Multimedia conferencing on the
Internet. SIGCOMM, August 1994. Tutorial 4.

[12] V. Jacobson and S. McCanne. A visual audio
tool.

[13] B. N. Levine, D. B. Lavo, and J. J.
Garcia-Luna-Aceves. The case for concurrent
reliable multicasting using shared ACK trees. In
Proceedings of ACM Multimedia’96, November
1996.

[14] J. Lin and S. Paul. RMTP: A reliable multicast
transport protocol. In Proceedings of IEEE
INFOCOM’96, pages 1414-1424, San Francisco,
CA, 1996.

[15] S. McCanne and V. Jacobson. vic: A flexible
framework for packet video. In Proceedings of
ACM Multimedia’95, pages 511-522, San
Francisco, CA, November 1995.

[16] C. Papadopoulos and G. Parulkar.
Retransmission-based error control for
continuous media applications. In Proceedings of
the Sixth International Workshop on Network
and Operating System Support for Digital Audio
and Video, pages 5-12, 1996.

[17] S. Paul, K. Sabnani, and D. Kristol. Multicast
Transport Protocols for High Speed Networks.
In Proceedings of Local Computer Networks,
1994.

[18] S. Pejhan, M. Schwartz, and D. Anastassiou.
Error control using retransmission schemes in
multicast transport protocols for real-time

media. IEEE/ACM Transactions on
Networking, 4(3):333-344, June 1996.

[19] S. Pingali, D. Towsley, and J. Kurose. A
comparison of sender-initiated and
receiver-initiated reliable multicast protocols. In
ACM Sigmetrics’94, pages 221-230, Nashville,
TN, May 1994.

[20] S. Ramakrishnan and B.N. Jain. A Negative
Acknowledgment Protocol with Periodic Polling
Protocol for Multicast over LANs. In
Proceedings of INFOCOM ’87, pages 502-511,
1987.

[21] H. Schulzrinne. RTP profile for audio and video
conferences with minimal control, January 1996.

RFC-1890.

[22] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A transport protocol for
real-time application, January 1996. RFC-1889.

[23] University of Cambridge Computer Lab.
http://www.cl.cam.ac.uk/mbone/#Mrouted.

[24] B. Whetten, S. Kaplan, and T. Montgomery. A
high performance totally ordered multicast
protocol, August 1994. available from
research.ivv.nasa.gov as ftp at

/pub/doc/RMP/RMP _dagstuhl.ps.

[25] M. Yajnik, J. Kurose, and D. Towsley. Packet
loss correlation in the MBone multicast network.

In Proceedings of GLOBECOM’96, 1996.

[26] R. Yavatkar, J. Griffioen, and M. Sudan. A
reliable dissemination protocol for interactive
collaborative applications. In Proceedings of

ACM Multimedia’95, pages 333-344, 1995.

