
Implementing Scheduling Algorithms in High-Speed Networks�

Donpaul C. Stephens

Carnegie Mellon University &

Ascend Communications

donpaul@cs.cmu.edu

donpaul@ascend.com

Jon C.R. Bennett

Harvard University &

Xylan Corporation

jcrb@eecs.harvard.edu

jcrb@xylan.com

Hui Zhang

Carnegie Mellon University

hzhang@cs.cmu.edu

Abstract

The
uid Generalized Processor Sharing (GPS) algorithm has desirable properties for integrated

services networks and many Packet Fair Queueing (PFQ) algorithms have been proposed to approximate

GPS. However, there have been few high speed implementations of PFQ algorithms that can support a

large number of sessions with diverse rate requirements and at the same time maintain all the important

properties of GPS. The implementation cost of a PFQ algorithm is determined by (1) computation of the

system virtual time function and (2) maintaining the relative ordering of the packets via their timestamps

(scheduling); and (3) in some algorithms, regulation of packets based on eligibility times. While most

of the recently proposed PFQ algorithms reduce the complexity of computing the system virtual time

function, the complexity of scheduling and tra�c regulation (and therefore the overall complexity of

implementing PFQ), is still a function of the number of active sessions. In addition, while reducing

the algorithmic or asymptotic complexity has been the focus of most analysis, it is also important to

reduce the complexity of basic operations in order for the algorithm to run at high speed. In this paper,

we develop techniques to reduce both types of complexities for networks of both �xed and variable size

packets. In our approach, regulation and scheduling are implemented in an integrated architecture that

can be viewed as logically performing sorting in two dimensions simultaneously. By using a novel grouping

architecture, we are able to perform this with an algorithmic complexity independent of the number of

sessions in the system at the cost of a small controllable amount of relative error. To reduce the cost of

basic operations, we propose a hardware implementation framework and several novel techniques that

reduce the on-chip memory size, o�-chip memory bandwidth, and o�-chip access latency. The proposed

implementation techniques have been incorporated into commercial ATM switch and IP router products.

�The work on ATM Networks was performed while Jon Bennett was at FORE Systems Inc. Donpaul Stephens and Hui

Zhang were sponsored by DARPA under contract numbers N66001-96-C-8528 and E30602-97-2-0287, and by NSF under grant

numbers Career Award NCR-9624979 and ANI-9814929. Views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the o�cial policies, either expressed or implied, of DARPA, NSF, or the

U.S. government.

1

1 Introduction

Future high-speed integrated-services packet-switched networks will simultaneously support multiple types

of services over a single physical infrastructure. In packet switched networks, packets from di�erent sessions

belonging to di�erent service and administrative classes, interact with each other when they are multiplexed

at the same output link of a switch. The packet service disciplines or the scheduling algorithms at switching

nodes play a critical role in controlling the interactions among di�erent tra�c streams and di�erent service

classes.

Recently, a class of service disciplines called Packet Fair Queueing (PFQ) algorithms have received much

attention. PFQ algorithms approximate the idealized Generalized Processor Sharing (GPS) policy [13],

which is proven to have two desirable properties: (a) it can guarantee an end-to-end delay to a leaky-

bucket-constrained session regardless of the behavior of other sessions; (b) it can ensure instantaneous

fair allocation of bandwidth among all backlogged sessions regardless of whether or not their tra�c is

constrained. The former property is the basis for supporting guaranteed service tra�c [13] while the latter

property is important for supporting best-e�ort service tra�c [12, 18] and hierarchical link-sharing service [4].

While there are many proposed PFQ algorithms, with di�erent tradeo�s between complexity and accuracy

[7, 9, 10, 11, 16, 19, 20, 25], few real implementation exists that can achieve all three of the following goals:

1. support a large number of sessions with diverse bandwidth requirements,

2. operate at very high speeds, 100 Mbps and higher,

3. maintain important properties of GPS (delay bound, fairness, worst-case fairness).

The key di�culty is that PFQ algorithms require bu�ering on a per session basis and non-trivial service

arbitration among all sessions. There are three major costs associated with the arbitration: (1) the com-

putation of the system virtual time function, which is a dynamic measure of the normalized fair amount of

service that should be received by each session, and (2) the management of a priority queue to order the

transmission of packets; and (3) the management of another priority queue to regulate packets. Weighted

Fair Queueing [9, 14], the �rst proposed and best-known PFQ algorithm, uses the virtual time function de-

�ned by the GPS system whose worst case complexity is O(N). More recently, a number of PFQ algorithms

have been proposed that have virtual time functions with complexity of O(1) or O(logN) [4, 10, 11, 20].

While the algorithmtic complexity of implementing a priority queue for N arbitrary numbers is O(logN),

it is possible to implement Fair Queueing with mechanisms of lower complexity by taking advantage of the

properties of PFQ algorithms [16]. However, as discussed in Section 7, there are a number of di�culties

in applying this technique in a high speed implementation. In addition, for algorithms that require regu-

lation, one straightforward solution would be to maintain two separate priority queues for regulation and

scheduling, but moving packets between these two queues may become a serious bottleneck in high speed

implementations.

2

In this paper, we present a novel architecture that reduces the overall complexity of implementing a

general class of scheduling algorithms. We begin with the case of networks with �xed length packets, such

as ATM. In such a system the server is restricted to supporting a �xed number of rates, and groups together

sessions with the same rate. By using the locally bounded timestamp (LBT) property [3], which tightly

bounds the di�erence between the virtual times of sessions with the same rate, it is possible to maintain the

priority relationship among sessions in the same group without sorting. The problem is then reduced from

one that schedules among all sessions to one that schedules among only the sessions that have the smallest

timestamp in each rate group. With such an implementation, the complexities for both priority management

and virtual time computation grow with the number of discrete rates supported rather than the number of

sessions. In addition, the regulation is integrated with scheduling and comes for free. We then extend the

grouping architecture to support networks of variable-sized packets. The resulting archiecture can be used

to implement not only PFQ algorithms, but also other scheduling algorithms such as those based on service

curves [17, 23].

To reduce the complexity of basic operations in hardware implementations, we observe it is important

to minimize the bandwidth requirements between on and o� chip, improve latency tolerance, and minimize

on-chip area. By taking advantage of the globally bounded timestamp (GBT) property [3], which bounds the

di�erence between system virtual time and the virtual start time of all sessions, we can reduce the memory

requirements for both systems.

The rest of the paper is organized as follows. In Section 2, we give an overview of GPS and issues in

approximating GPS by PFQ algorithms. In Section 3, we describe an architecture that addresses the com-

plexity of both the algorithmic scaling and the basic operations for implementing a class of PFQ algorithms

in ATM networks. In Section 4, we extend this architecture to support networks with variable size packets.

We present the implementations of these techniques in both ATM networks and packet networks in Section 5.

2 Background: PFQ Algorithms

PFQ are packet approximation algorithms for the GPS discipline [13]. A GPS server has N queues, each

associated with a service share. During any time interval when there are exactly M non-empty queues, the

server serves the M packets at the head of the queues simultaneously, in proportion to their service shares.

All PFQ algorithms use a similar priority queue mechanism based on the notion of a virtual time function.

They di�er in two aspects: the virtual time function and the packet selection policy.

2.1 System Virtual Time Function

To approximate GPS, a PFQ algorithm maintain a system virtual time V (�) and a virtual start time Si(�)

and a virtual �nish time Fi(�) for each session i. Si(�) and Fi(�) are updated each time session i becomes

3

active or a packet pki from session i �nishes service:

Si(t) =

(
max(V (t); Fi(t�)) session i becomes active

Fi(t�) pk�1i �nishes service
(1)

Fi(t) = Si(t) +
Lki
ri

(2)

where Fi(t�) is the virtual �nish time of session i before the update and Lki is the length of the packet at

the head of session i's queue.

Intuitively, V (t) is the normalized fair amount of service time that each session should have received by

time t, and Si(t) represents the normalized amount of service time that session i has actually received by

time t. The goal of all PFQ algorithms is to minimize the discrepancies among Si(t)'s and V (t).

The role of the system virtual time function is to reset the value of the session's virtual start time when

a previously unbacklogged session becomes backlogged. Di�erent PFQ algorithms use di�erent virtual time

functions, which have di�erent tradeo�s between accuracy and complexity. A virtual time function is accurate

if a PFQ algorithm based on it provides service that is almost identical to the GPS algorithm.

Weighted Fair Queueing (WFQ), the best-known PFQ algorithm, and Worst-case-Fair Weighted Fair

Queueing (WF2Q), the most accurate PFQ algorithm, use a virtual time function that is de�ned with respect

to the GPS system. While this is the most accurate virtual time function, it is too complex to implement

because its computation involves keeping track of the number and identity of all the active sessions in the

uid GPS system, which may change as many times as there are sessions in the system during an arbitrarily

short time period.

A number of simpler virtual time functions have been proposed that can be calculated directly from the

state of the packet system. In the Self Clocked Fair Queueing (SCFQ) algorithm, the virtual time function

is de�ned to be the virtual �nish time of the packet currently being serviced, i.e., VSCFQ(t) = F p(t), where

p(t) is the packet being serviced at time t. While VSCFQ(t) is quite simple to compute, the resulting SCFQ

algorithm provides much larger delay bounds than WFQ. A more accurate virtual time function VFBFQ(�)

that can also be computed directly from the packet system was proposed by Stiliadis and Varma [20]. The

resulting Frame Based Fair Queueing (FBFQ) algorithm can provide the same delay bound as WFQ.

An even more accurate virtual time function, VWF2Q+ [4], is iteratively de�ned as follows:

VWF2Q+(t+ �) = max(VWF2Q+(t) + �; mini2B̂(t+�)(Si(t + �))) (3)

where B̂(t+ �) is the set of sessions backlogged in the WF2Q+ system at time t+ � .

2.2 Packet Selection Policy

In WFQ, SCFQ, and FBFQ, when the server is picking the next packet to transmit, it chooses, among all the

packets in the system, the one with the smallest virtual �nish time. We call such a packet selection policy

the \Smallest virtual Finish time First" or SFF policy. SFQ uses the \Smallest virtual Start time First"

4

or SSF policy. Both types of policies use only one of two tags (virtual start and �nish times) for packet

selection.

While PFQ algorithms with policies using one tag can provide delay bounds almost identical to GPS, they

may still introduce large service discrepancies from GPS. In [5], a metric called Worst-case Fair Index (WFI)

was introduced to characterize the service discrepancy between a PFQ algorithm and the idealized GPS. It

was shown that large WFI's are detrimental to the performance of best-e�ort and link-sharing services [4, 5].

All PFQ algorithms with policies using one tag (SFF or SSF) have large WFI's.

Two algorithms, WF2Q [5] and WF2Q+ [4], were proposed 1 using a di�erent packet selection policy

wherein the server chooses, among all the eligible packets, the one with the smallest virtual �nish time. A

packet is eligible if its virtual start time is no greater than the current virtual time. Intuitively, a packet

becomes eligible only after it has started service in the corresponding
uid system. We call such a packet

selection policy the \Smallest Eligible virtual Finish time First" or SEFF policy.

The di�erence between WF2Q and WF2Q+ is that WF2Q uses a system virtual time function that

emulates the progress of the GPS system while WF2Q+ uses a system virtual function that can be computed

directly from the packet system as de�ned in Eq. (3). It has been shown that WF2Q is the optimal PFQ

algorithm in terms of accuracy in approximating GPS. WF2Q+ maintains all the important properties of

WF2Q: both of them provide the tightest delay bounds and smallest WFI's among all PFQ algorithms.

In the rest of the paper, we will use WF2Q+ as an example to discuss the issues of implementing PFQ

algorithms in high speed networks.

2.3 Algorithmic Complexity

Besides the computation of the virtual time function, a second cost of implementing a PFQ algorithm is to

maintain a priority queue based on either virtual start time, virtual �nish time, or both. Since virtual start

and �nish times are monotonically increasing within each session, only the �rst packet of each session needs

to be considered when the server selects the next packet to transmit. Thus, the number of entities in the

priority queue is the number of active sessions.

Therefore, even though SCFQ, SFQ, and FBFQ have simple virtual time functions, their overall imple-

mentation complexity still grows with the number of sessions sharing the link. While it has been demon-

strated that sorting can be implemented at very high speed with only several hundred sessions [7], it is unclear

whether such implementations can scale to large networks with tens of thousands of sessions competing for

a single link. In addition, for algorithms using the SEFF policy such as WF2Q, WF2Q+, and EEVDF [22],

there is the additional complexity of regulating packets based on eligibility or start times. While the straight-

forward solution would be to maintain two separate priority queues for regulation and scheduling, moving

packets between these two queues may become a serious bottleneck in high speed implementations

1We note that WF2Q+ was independently developed in [21], wherein it was called Start Potential Fair Queueing (SPFQ).

5

2.4 Implementation Complexity

Most of the research in the literature focuses on reducing the algorithmtic or asymptotic complexity of

scheduling algorithms. In high speed implementations, it is also important to reduce the complexity of basic

operations2. The rapid increase in the performance of silicon chip technology makes it possible to perform

on-chip operations across both time (pipelining) and space (superscalar). This level of parallelism is not

available for o�-chip memory accesses, and this will eventually be the dominating factor as improvements

in on-chip performance continue to outpace improvements in o�-chip bandwidth. For this reason, o�-chip

memory bandwidth and latency are the main bottlenecks in high speed implementations. The impact of the

high memory latency becomes even more pronounced when there are data dependencies between o�-chip

accesses, such as when traversing the pointers in a tree-based priority queue.

While on-chip memory is expensive, it provides high bandwidth with low latency; external memory is

relatively inexpensive but faces signi�cantly higher latency and bandwidth restrictions. Thus properly par-

titioning the storage and access requirements between on and o�-chip memories is the key to designing

cost-e�ective, high speed, implementations. As we will discuss in Section 5, our architecture can be imple-

mented in an array based structure on-chip with a �xed number of o�-chip memory references. This enables

us to take advantage of available parallelism on-chip while having a relatively simple component that can be

easily designed and veri�ed.

3 Implementing Fair Queueing in ATM Networks

In this section, we present an architecture [3] that can e�ciently implement a class of PFQ algorithms in

ATM networks which have �xed sized packets refered to as cells. In this architecture, the server is restricted

to supporting a �xed number of rates and groups together sessions with same rate. The grouping mechanism

we employ does not sacri�ce the accuracy of the implemented algorithm. For PFQ algorithms with the

locally bounded timestamp property Eq. (4), the priority relationship among sessions in the same group

can be maintained without sorting. The problem is then reduced from one that potentially must schedule

among all the sessions in the system to one that only has to schedule among the sessions at the head of

each group. With such an implementation, the complexities for both priority management and virtual time

computation grow only with the number of discrete rates simultaneously supported rather than with the

number of sessions.

Furthermore, we note that while available bandwidth to o�-chip memory and the latency between se-

quentially dependent accesses are the main bottlenecks in the implementation of modern computing systems,

our architecture adds only two o�-chip accesses per cell enqueue or dequeue beyond what is required for

a Round-Robin scheduler. The additional o�-chip accesses and required storage is exclusively that of a

timestamp per session. For PFQ algorithms with the GBT property, we can apply a technique to compress

2Arithmetic operations such as +;�; �; = and memory read and writes

6

i, Sim, Sm

Si
Fi = Si + L/r1

Off Chip On chip

j, Sjk, Sk

p, Spv, Sv

Sp
Fp =Sp + L/rN

Tail
Head

q, Sq

Group 1

Group N

Session
Scheduler

Link

Tail
Head

Figure 1: Grouping Architecture

the session timestamps by more than 50%. This reduces both the system cost and the implementation com-

plexity by more than halving both the memory required to store, and the bandwidth required to access, the

timestamps. In addition, we use array-based rather than pointer-based data structures on-chip which allows

us to take advantage of memory pipelining to greatly reduce the e�ect of o�-chip memory access latency.

Most of the PFQ algorithms in the literature, including WF2Q+, SCFQ, and SFQ, have both the LBT

and the GBT properties, and therefore can be implemented with this architecture.

3.1 Grouping Architecture for ATM Networks

The key di�culty of implementing PFQ algorithms is that the complexity of maintaining the priority queue,

and possibly computing the virtual time function, grow as a function of the number of sessions sharing the

link. To decouple the implementation complexity from the number of sessions, we introduce the following

restriction: at any time, only a �xed number of guaranteed rates are supported by the server. As we discuss

in Section 3.3, this restriction will not signi�cantly a�ect the link utilization. All sessions that share a

common rate are associated with a group which stores an entry for each active session. These entries contain

a pointer to the head of the session's queue and the virtual starting time for the cell at the head of the

session's queue. In each group, the session with the smallest virtual starting time is placed in the scheduler

(see Figure 1).

An important advantage of such a grouping architecture is that for any of the three packet selection

policies of Smallest Start time First (SSF), the Smallest Finish time First (SFF) or the Smallest Eligible

7

Finish time First (SEFF), only the packets in the scheduler need to be considered. For algorithms with the

SSF policy, this is easy to see as the packet with the smallest virtual start time in the scheduler is also the

one with the smallest virtual start time among all packets. For algorithms with the SFF policy, we observe

that in an ATM network with a �xed packet size, L, for any two sessions i; j that belong to the same group,

(Si(t) � Sj(t))) (Fi(t) � Fj(t)). This follows directly from Fi(t) = Si(t) +
L
ri
, Fj(t) = Sj(t) +

L
rj
, and

ri = rj . Therefore, the session with the smallest virtual start time in the scheduler is also the one with

the smallest virtual �nish time among all packets within the group. For the SEFF scheduling policy we

observe that if there are sessions in a group that are eligible, the session within the group in the scheduler

must also be eligible as it has the smallest virtual start time in the group. Since, it also has the smallest

virtual �nishing time of all sessions within the group, the packet with the smallest eligible �nish time in the

scheduler is also the one with the smallest eligible �nish time among all packets within the group.

The above grouping architecture reduces the complexity of the scheduler from one that scales with

the number of sessions to one that scales with the number of distinct rate groups. It does this without

introducing any inaccuracy because it is an optimization rather than an approximation of the algorithm

being implemented. However, there is still a need to select the packet with the smallest virtual start time

from each group.

3.2 Maintaining Priority Within Groups

In this section, we show for PFQ algorithms that have the locally bounded timestamp property that, in ATM

networks it is possible to maintain a priority queue of sessions for each rate group with a simple linked list.

De�nition 1 Let Qi(t) be the queue for session i at time t. A PFQ algorithm has the Locally Bounded

Timestamp (LBT) property if the following condition holds:

jSi(t)� Sj(t)j �
L

ri
8i; j j ri = rj; Qi(t) 6= 0; Qj(t) 6= 0 (4)

De�nition 2 A PFQ algorithm has the Globally Bounded Timestamp (GBT) property if the following con-

dition holds:

Si(t) �
L

ri
� V (t) � Si(t) +

L

ri
8i s:t:Qi(t) 6= 0 (5)

The properties are so named because Eq. (4) tightly bounds the di�erence of virtual start times between

two sessions in the same rate group, while Eq. (5) which bounds the di�erences between the system virtual

time and virtual start times of all sessions.

WF2Q+ has both the Locally Bounded Timestamp property and the Globally Bounded Timestamp

property. Other PFQ algorithms in the literature, including SCFQ and SFQ, also have these properties.

We will discuss in Section 5.1 how scheduling algorithms with the globally bounded timestamp property

can reduce the memory requirements for their timestamps by 50% or more. For scheduling algorithms with

the locally bounded timestamp property, it is possible to maintain a priority queue of sessions in the same

8

rate group with a simple linked list. Each rate group contains a linked list of the timestamps belonging to

the cells at the head of the queue for each session in the group. The entries in the linked list are stored

in increasing timestamp order. There are three situations when insertions into the list are needed: (i) the

session at the head of the group has �nished service, (ii) a new session joins, (iii) and a previously idle session

becomes active.

Implementing the exact timestamp assignment as de�ned by Eq. (1) has two complications. First, since

timestamps are represented by �nite number of bits n, it is not possible to compare two timestamps that

are more than 2n�1 time units apart. When a session remains idle long enough, the di�erence between Ski

and V (t) can be more than 2n�1 time units apart, therefore making it impossible to compute the maximum

of the two. When a session i arrives into an empty queue, we can employ Eq. (1) and Eq. (5) to bound the

session's virtual start time to be within the range of valid times, [V (t); V (t)+ L
ri
]. Sessions whose timestamps

lie outside of this range should ideally be reset according to Eq. (1). However, sessions that have been idle

for an integer number of over
ows of the system virtual time could also appear within this range. For this

reason, when representing timestamps with a �nite number of bits, the session start time could be assigned

a value between [V (t); V (t) + L
ri
]. A second complication is that in order to maintain the sorted order of the

group, an arriving session has to be inserted into the correct relative position within the group.

Qi Queue of cells for session i

Ghead Session at the head of the group G queue

ri Service rate for session i

Gi Rate group for session i

BG(t) Set of backlogged groups at time t

EG(t) Set of eligible groups at time t,

8 G 2 BG(t)kSGhead � V (t)

Schedule-Cell(t)

1 /* Find group containing session to be transmitted */

2 for 8J 2 EG(t)

3 do if FJhead � FGhead

4 then G J

5 i Dequeue-Session(G)

6 Transmit-Cell(Qi)

7 Si Si +
L
ri

8 Store(Si)

9 if Qi 6= ;

10 then Enqueue-Session(G; i)

11 Load(SGhead) /* For new head session */

9

When the session at the head of the linked list i is served it will have its new starting time computed

as Si = Si +
L
ri
. From Eq. (4), we know that this new starting time will be larger than the timestamp of

any other session in its rate group. Therefore, simply moving the session to the tail of the linked list will

maintain the sorted order of the list.

Cell-Arrival(c; i)

1 if Qi = ;

2 then /* Session was idle */

3 /* Protect against timestamp wrapround */

4 Load(Si)

5 Si MIN(V (t) + L
ri
;MAX(Si; V (t)))

6 if Ghead
i 6= ;

7 then /* Maintain ordering of timestamps */

8 Si MAX(Si; SGtail
i

)

9 Store(Si)

10 Enqueue-Session(Gi; i)

11 Enqueue-Cell(Qi; c)

When a previously idle session i becomes backlogged at time t, we append the session to the end of the list.

When a session i arrives into an empty queue, its virtual start time will be within the range [V (t); V (t)+ L
ri
].

The lower bound is given by Eq. (1) and its upper bound by Eq. (5). If the rate group that session i belongs

to has other backlogged sessions there is need to preserve the locally bounded timestamp property and the

sorted order. To do this we insure that Si is at least as large as the timestamp of the last session in Gi while

still conforming to the range [V (t); V (t) + L
ri
] The e�ects of this operation on the delay bound is explained

in Section 6.

Compared to a Round Robin scheduler, our scheduler adds only two additional o� chip accesses when

a group is scheduled (procedure Schedule-Cell lines 8 and 11), and two accesses when a cell arrives to an

empty session queue (procedure Cell-Arrival line 4 and 9).

3.3 Implications of Limited Rates

One issue is how many rates need to be supported and how the restriction of supporting only a �xed number

of rates a�ect the network utilization. It has been demonstrated by Charny [8] that in the context of the

ABR service, high network utilization can be achieved even with di�erences as large as a 10% between

consecutive rates. By assigning the group rates by such an exponential distribution, a wide range of rates

can be supported with a relatively small number of groups. It should be also noted that the number of rates

that can be used at any time is strictly less that the number of di�erent rates that may exist in the system.

For example, a system can only have one session active at any time with a rate between one half of a link's

10

rate and the link rate, regardless of granularity.

For any given link rate and granularity, we can determine the maximumnumber of rates that can be used

at the same time by summing the possible rates starting with the smallest until the link capacity is met. For

example, a 150 Mbps link that supports rates in integer multiples of 10 Mbps, (10; 20; 30; � � � ; 140; 150) has 15

di�erent possible rates. However, no more than 5 may be active at one time because 10+20+30+40+50 =

150. It is also shown in [8] that it is necessary for networks to support at least a common subset of the

possible rates in order to insure interoperability of equipment. As a result we do not believe that there is

anything unreasonable or limiting in these assumptions.

4 Regulation and Scheduling in Packet Networks

The techniques presented in Section 3 enable the e�cient implementation of WF2Q+ and its rate controlled

variant in ATM networks that have �xed packet sizes. However, they are not applicable to variable-packet-

size networks such as Ethernet, Frame Relay, and Packet Over SONET. In this section, we present techniques

to e�ciently implement scheduling algorithms in networks with variable packet sizes.

4.1 Generalized Grouping Architecture for Packet Networks

As discussed in 3, one of the key advantages of the the ATM grouping architecture is that it reduces overall

complexity of priority queue management from the number of sessions to the number of groups. A second

important advantage of the grouping archiecture is that it performs regulation (based on virtual start times

Si) and scheduling (based on virtual �nish times Fi) in an integrated manner by taking advantage of the

fact that the Si and Fi are related (Fi = Si +
L
ri
), and therefore reduces the worst-case complexity of the

overall system.

In this section, we will present a generalized grouping architecture that is applicable to packet networks

while maintainingmost of the advantages of the original grouping architecture. In order to perform regulation

and scheduling among tens of thousands of queues in a packet system, we again need to employ an architecture

that performs both operations in an integrated manner. Instead of moving between two successive one

dimensional priority queues, we propose a two dimensional sorting structure in which the sorting keys are

Fi � Si and Fi respectively. We call Fi � Si the service interval of session i, denoted by �i. As in the ATM

system which uses a discrete set of rates to group sessions, we will use a discrete set of service intervals to

group sessions.

Within each group, the system will employ a designated timestamp (either Si or Fi) for sorting among

sessions within the group. For most scheduling algorithms, it is preferable that Fi be used for sorting within

the groups, as this enables tighter delay bounds to be achieved by the implemented algorithm. Si will

be inferred from Fi and the service interval of the group the session belongs to. Only the session with

the smallest Fi within each group will be considered for scheduling between groups. As with the ATM

11

implementation, this packet implementation need only to perform a scan amongst the G groups.

While these conceptual features remain, the variable sized nature of packets imposes key operational

restrictions that require major changes in the implementation techniques. In particular, a session may not

always be bound to the same group because the session's service interval is dependent upon not only its

scheduling parameters (e.g. rate) but also the length of the �rst packet in the session's queue. This has

two consequences. First, there will be a large number of possible values of session service intervals and

only a small number of service interval groups. To achieve a desired level of accuracy in the approximated

algorithm, we need to choose the proper number and values of the service intervals that depend on both

the supported ranges of rates and packet lengths. In addition, care needs to be taken when a session is

mapped to a group so that the inaccuracy introduced by the approximation does not signi�cantly a�ect the

performance guarantees that can be provided by the approximated algorithm. Secondly, while a session's

queue will always stay in the same group in the ATM scheduler, it may change groups in the packet scheduler

when a new packet comes to the head of the queue as the service interval may change due to the change of

the packet length. When a session changes groups, it can be inserted at an arbitary position in the priority

queue of the new group. Therefore, it is not longer possible to maintain a sorted relationship within each

group with only a simple FIFO queue. We discuss these two issues in the next two sections.

4.2 Discretization of Service Intervals

Similar to the case of ATM while a session needs to be put in the closest group with a group rate not less

than the session's rate, care needs to be taken when a session's service interval is discretized. In particular,

we will round up the session's service interval �i to the smallest group service interval �g that is not less

than �i, i.e.

�g � �ki = F k
i � S

k
i > �g�1 (6)

Which we use to derive the approximated virtual start time bSi used for regulation:

bSki = F k
i ��kg (7)

Which, in turn is bounded by:

Ski � �maxi < bSki � Ski 8i; k (8)

Where �maxi represents the maximal amount of virtual time that a session i can appear eligible earlier in

the approximate system than in the non-approximate system.

�maxi = max(�kg � �ki) 8i; k (9)

Since derived virtual start time bSi is computed by Eq. (7), Eq. (6) ensures that it is not larger than

the actual virtual start time. Recall that in WF2Q+, the virtual start times of the sessions are used for

two purposes: (a) to determine if the session is currently eligible for transmission, and (b) to advance the

12

system virtual time. By rounding up the length of the session's service interval which results in a smaller

approximated virtual start time bSi(t), the �rst packet in the session can become eligible earlier and the system

virtual time may grow slower during a short period in the approximated system than in the original system.

As will be discussed in Section 6, this should not a�ect the worst-case delay bound that can be provided by

the approximated system. Alternatively, if the length of the session's service interval were rounded down,

the derived virtual start time could be later than the actual start time and the system virtual time could

advance faster than it would in a non-approximated system, which would in turn a�ect the achievable delay

bounds.

As in the case of the ATM implementation where the group rates need to be discretized, we need to

discretize the service intervals in the packet implementation. The key di�erence is that while the number

and values of rates depends solely on the supported range of rates in the ATM system, the number and

values of service intervals in the packet system depend on both the supported ranges of rates and packet

lengths.

Provided that the entire range of packet sizes from the media's minimum to maximum packet size is

permitted for all rates, the maximum and minimum service intervals that can be present are given by the

following:

�min =
Lmin

rmax
(10)

�max =
Lmax

rmin
(11)

For some number of groups G to span this range with a given granularity �, the following relationship

needs to be satis�ed:

�G�1 =
�max
�min

=
Lmax � rmax
Lmin � rmin

(12)

With such a uniformly exponential spanning of the groups, a session i with service interval �i would be

placed into the group that satis�es the following equation:

g =

�
log�

�ki
�MIN

�
+ 1 (13)

To put this into context, consider a 1 Gbps link in a network with packet sizes ranging from 64 to 1500

Bytes in length. Furthermore, it is desired that the network support any session rate from 64 Kbps to 100

Mbps. This results in a range of service intervals from 5:3 to 195; 312 packet per second (pps), which is a

factor of 39,000. This range may be spanned with a granularity � of 2, 1:25, and 1:18 between successive

groups with 16, 48, and 64 groups respectively. While the tradeo� in the delta to the number of groups

is the same as in the ATM scheduler, the implications of the delta are di�erent. In the ATM system, the

number of groups de�ne the rates that can be assigned to the sessions. In the packet system, the number of

13

groups de�nes the accuracy with which a session's service interval could be expressed during a single packet

scheduling operation. Note that any session rate within the given range may be supported.

4.3 Sorting within groups

While a session queue will always stay in the same group in the ATM scheduler, it may change groups in

the packet scheduler when a new packet comes to the head of the queue as the service interval may change

due to the change of the packet length. When a session changes groups, it can be inserted at an arbitary

position in the priority queue of the new group. Therefore, in the packet system, it is not longer possible to

maintain a sorted relationship within each group with only a simple FIFO queue, instead an explicit priority

queue mechanism must be used. However, since the task is to sort the virtual �nish times of
ows that have

similar service intervals, it can be shown that the virtual �nish times of sessions in the group span a range

of Lmax

Lmin
times the service interval. Therefore, if we are willing to tolerate an increase of the delay bound by

a fraction of one service interval (like the case in the ATM implementation), we can reduce the complexity

of sorting by measuring the virtual �nish times in units of fractions of the group's service interval.

For example, for the network mentioned above, the mechanism would thus need to support a range of
Lmax

Lmin
= 1500

64 = 23:4 times each group's service interval. This can be easily accomplished by using a calendar

queue mechanism with 32 entries. To further increase the accuracy, each calendar entry can be further

divided into sub-interval \bins". For example, to achieve an accuracy of 50%, 25%, and 6% within this

range, 2, 4, and 16 sub-interval \bins" need to be allotted per interval � respectively. Combined, we have a

two-level hierarchical calendar queue (also called a trie). In this a structure, a bit will be set in a higher level

unit to imply that a bit is set somewhere in the word beneath it. In Figure 2, these are the marked locations

whose sub-unit is expanded. Searching at each level can be easily implemented by a scan operation.

...

Figure 2: Hierarchical Calendar Queue for Intra-Group Scheduling

Note that placing sessions into the sorting structure, the approximate virtual �nish time used for schedul-

ing a packet must not be less than the computed virtual �nish time. If this were not so, sessions could miss

14

their deadlines due to the server erroneously sending packets with later deadlines. We de�ne the approximate

virtual �nish time that is used by the server by:

Fi(t) � bFi(t) < Fi(t) +
maxi 8i; t (14)

where
maxi represents the maximal amount of virtual time that a session i's virtual �nish time can

appear to be later in the approximated system than in the non-approximated system. Thus, a session is

scheduled as if its bFi(t) is the largest value in the bin (all lower bits are set). The bSi(t) is computed by

subtracting the group's service interval from the smallest value in the bin (all lower bits are cleared).

The worst case complexity is as follows: an enqueue requires one insertion into a linked list along the

leaves of the trie and potentially one replacement of the value within the group data structure. A dequeue

requires one scheduler selection among the elements within the group data structure, one removal of a session

from the head of a linked list, plus the cost of an enqueue. Note that the complexity is not a function of

the number of sessions. We �nd it interesting to note that the on-chip complexity of the packet scheduler is

actually simpler than that of the ATM scheduler.

5 Hardware Implementation

5.1 Implementing Timestamps

The size of the timestamps used determines both the range of supportable rates and the accuracy with

which those rates may be speci�ed. In addition, they determine the scheduler's memory requirements in

terms of bandwidth and storage space, both on-chip and o�-chip. In this section we will show that for any

service policy which maintains the globally bounded timestamp property that the size of the timestamps in

the system need only be 1 bit larger than the number of bits needed to represent the service interval of the

largest rate in the system, which is the service interval which requires the fewest bits to represent. Before

discussing the details of how this is accomplished we will �rst give some examples of how comparisons are

performed in modular arithmetic to help provide some intuition into our approach. We will then discuss

the details of how we represent service intervals and the units in which we measure time. Finally we will

show how these concepts come together to allow us to greatly reduce the size of our timestamps without any

appreciable impact on their accuracy.

5.1.1 Comparisons in modular arithmetic

Using modular arithmetic, timestamps represented by �nite number of bits n can be compared without

ambiguity if di�erence between them is is less than 2n�1. Using this property, Rexford et al [15] suggested

that the size of the timestamps in the system only need to be a few bits larger than the number of bits

needed to represent the smallest rate in the system, rmin, as it has the largest service interval, �max =
L

rmin
.

15

However in a system where some sessions have very small rates, a relatively large number of bits may still

be needed to represent the timestamps.

For scheduling algorithms that have a tight bound between the timestamps of the sessions and the system

virtual time, we can exploit this relationship to further reduce the number of bits needed to represent the

timestamps. In the case of WF2Q+ in ATM networks, the Globally Bounded Timestamp (GBT) property

(5) bounds the maximum discrepancy between the system virtual time V (t) and the virtual start times

Si(t) of any session i to one service interval �i. Due to the tightness of the bounds in this system, we can

successfully compare the system virtual time with the timestamp of a high rate session using only one more

bit than is needed to represent the service interval of that session, as the higher order bits may be inferred

from the bound.

Using the notation X[j : i] to represent the binary number formed from the bits in X in the range j

down to i, a modular arithmetic A > B comparison can be computed as follows:

GT(A;B; n)

1 if A[n� 1 : 0] > B[n� 1 : 0]

2 then result = TRUE;

3 else result = FALSE;

4 if A[n] = B[n]

5 then return result

6 else return NOTresult

For example, consider the following 4 bit numbers: A = 11102 and B = 00012. Without considering

rollover, it would appear that A > B. However, because the di�erence between them cannot exceed 8, we

note that B = A+ 3) A < B. A more complete explanation of how to compare numbers in the presence

of wraparound can be found in the discussion of TCP (Transmission Control Prototcol) sequence numbers

by Wright and Stevens [24].

5.1.2 Representing Time

In an ATM system it may seem tempting to use an integer representation of the virtual time in units of

seconds per cell, so that the virtual time is simply incremented by 1 each time a cell is sent. However, this

would result in service intervals which are integer multiples of a cell time, adversely a�ecting the provisioning

of high rate sessions. In a system with an integer virtual time the fastest service intervals would be every 1,

2, 3, .. cell times, which would in turn represent only rates of 1, 1
2 ,

1
3 , .. times the link rate. As a result,

session rates between 1
2 and 1

3 of the link rate could not be represented. Another problem is that the rate

of increase of the virtual time function is not guaranteed to be integer valued. To avoid these problems, we

choose to represent virtual time as an N bit �xed point number with N �M bits in the integer portion and

M bits in the fractional portion. Figure 3 shows V (t) = 429496678410 in �xed point format with N = 32

and M = 9 with the service intervals for a high rate session i, �i, and a lower rate session j, �j .

16

11111111111111111111111.000000000

31 0M M�1

V (t)

00000000000000000000001.000000001 �i

00000000000011000000010.000000000 �j

Figure 3: Fixed point representation of V (t), �i and �j

In the �xed point system we have chosen, �i corresponds to the second largest rate which can be

represented, equal to � :99805 times the link rate. Assume that we have chosen the number of bits in the

fractional portion of our timestamp so that the delta between the two smallest representable service intervals,

in this case � :195%, is acceptably small. It would then seem reasonable to accept this same relative delta

for larger service intervals. This then leads us to storing the service intervals as
oating-point numbers with

M bits of mantissa and log2(N) = 5 bits of exponent. Figure 4 shows the service interval for sessions i and

j in
oating-point format. Note that we use a normalized
oating-point format and thus do not store the

leading 1 of the mantissa, mi.

Mantissa Exponent

mi 000000001

8 0 4 0

00000 ei �i

mj 100000001

8 0 4 0

01010 ej �j

Figure 4: Floating-point format for �i and �j

This interval compression technique is not speci�c to our timestamp techniques and is genericly applicable

to any PFQ algorithm.

5.1.3 Compressed Timestamps

Having introduced the notion that we can accept the same degree of relative accuracy in the representa-

tion of service intervals for di�erent sessions, we now introduce the same concept for the representation of

timestamps. Figure 5 shows the computation of Sj by the addition of V (t) and �j. In order to perform the

addition of �j we �rst left shift the mantissamj by ej bits and then zero �ll the low order bits. Based on the

11111111111111111111111.000000000 V (t)
M+ei ei

+ 1100000001 0.000000000 �j

00000000000011000000001.000000000 Sj

M+ei+1

01100000000 CSj

Figure 5: Computing the value of CSj

17

discussion in Section 5.1.1 we can successfully compare Sj [M+ej+1 : 0] against V (t). If instead of storing

Sj [M+ej+1 : 0], we choose to store Sj [M+ej+1 : ej], shown by the wider box around Sj in Figure 5 we can

reconstruct Sj in the much the same manner that we constructed the �xed point representation of �j from

it's
oating-point representation. In order to avoid some problems which could be caused by truncating the

low order bits, instead of zero-�lling the low order bits we one-�ll the low order bits. In the worst case this

would be equivalent to having an interval which is almost as large as the next smaller representable rate.

Since Sj [M+ej+1 : ej] has the same number of bits as Si[M+1 : 0], it represents Sj with the same relative

accuracy with which Si[M+1 : 0] represents Si.

5.1.4 Reconstructing Full Length Timestamps

The previous section demonstrated that it is possible to compress a 32 bit timestamp down to a much smaller

number of bits and then uncompress the number so that it could be compared against the system virtual

time, V (t). When comparing a session's timestamp against V (t) to determine if session i is eligible we only

needed to reconstruct the lower M+ei+2 bits of Si. To compare session i's �nish time against session j's

�nish time, where ej > ei, we will need to reconstruct the lower M+ej+2 of Si as well as Sj . In the case

where session j is the lowest rate session in the system this amounts to having to reconstruct all 32 bits of

Si. The method by which we reconstruct the full length timestamp depends on whether the upper bit of the

compressed timestamp is the same as the corresponding bit of the current value of V (t). If the upper bit

of the compressed time stamp is the same as the corresponding bit of V (t), then the upper bits of the full

length timestamp are the same as the upper bits of V (t). If the upper bit of the compressed timestamp is

di�erent than the corresponding bit of V (t) then there has been a rollover of some of the upper bits of the

timestamp. To reverse the rollover, we simply add or subtract a 1 from V (t) in the M+e1+2'th bit position

depending on whether the V (t) is respectively less than or greater than Si. Below is the pseudocode.

Reconstruct-Timestamp(V (t); CSi; ei)

1 M 0 M + ei + 1;

2 Si[M 0 : ei] CSi;

3 if ei > 0

4 then Si[ei�1 : 0] 1 � � �1;

5 if V (t)[M 0] = Si[M 0]

6 then Si[31 :M 0+1] V (t)[31 :M 0+1];

7 return (Si);

8 if GT(V (t); Si;M 0+1) = TRUE

9 thenSi[31 :M
0+1] V (t)[31 :M 0+1]�1;

10 else Si[31 :M
0+1] V (t)[31 :M 0+1]+1;

11 return (Si);

18

5.2 ATM Networks

Using the methods outlined in Section 3, we have implemented a controller for a FORE Systems ATM

switch 8 port network module. This controller implements a rate controlled variation [2, 26] of WF2Q+ [1]

to address the requirements of the service provider marketplace. It should be noted that a work conserving

WF2Q+ scheduler could be implemented with the same complexity as the rate controlled variant.

The implementation provides each port with up to 64 di�erent rate groups. There is only one instance

of the scheduling hardware which is shared among 8 ports. The scheduler is completely self-contained and

can schedule an outgoing VC in about 500ns. The implementation was done in 3V 0.5um 3LM CMOS

technology. The scheduler part of the chip operates at 60MHz and requires only 15K gates. To support all

types of service, beyond just those requiring tight shaping, there are two statically prioritized round-robin

queues into which UBR (Unspeci�ed Bit Rate), ABR (Available Bit Rate) and VBR (Variable Bit Rate)

sessions can be queued. It is important to point out that we can enqueue a VC into one of the round-robin

queues even if it has already be placed into the rate controlled WF2Q+ scheduler. So ABR and VBR VCs

can be placed into both servers, where the rate controller will provide any minimum bandwidth guarantees,

and the round-robin will allocate the excess bandwidth.

The exact implementation consists of two symmetric blocks in the scheduler: each one searches half of

the 64 groups. In each block, there is a memory in which the start times of 32 of the 64 groups are stored.

256 entries are needed for the 8-port con�guration. There is also a time interval table which indicates what

rate has been assigned to each of the 64 groups. Each block �nds the group with the smallest �nish time

among all eligible groups through linear search in 32 60MHz cycles. After 32 cycles, the eligible group

with the smallest �nishing time in each memory is found. The top level block will pick the �nal minimum

elements among two blocks and schedule the head VC of the group. If there is no eligible group, or the VC

at the head of the queue for the selected group has no cells, then the scheduler will service a VC from the

round-robin, if one exists. Since this can all be done in 500ns, the scheduler is fully capable of OC-12c

(622Mbps) operation.

5.3 Packet Networks

Using the methods outlined in Section 4, we have implemented a linecard controller for a router prototype at

Ascend Communications. The controller maintains all queue counters, bu�er management, and a scheduling

unit that can operate as either in a work conserving or non-work conserving (rate controlled) WF2Q+ mode.

The controller maintains 16 groups per-port, with a uniform � of 2 between the service intervals of

successive groups. Having a � of 2 dramatically simpi�es the computation of the group number (Eq. 13),

as the log2 function reduces to a search for the highest bit set in the session's �i. For our choice of system

parameters, we cover a range of 128 � �g in virtual timespace for each group wherein we have 4 sub-bins

per �g (thus,
g = 0:25 ��g) to enable more precise placement of the F (t). In order to facilitate constant

time insert and delete-min operations, we employ a two-level trie with 32 entries in the top level and 16

19

subinterval bins associated with each �rst level entry. This structure can e�ciently be searched for the �rst

non-empty subinterval bin, relative to the current virtual time's logical position in the structure. To reduce

memory bandwidth, the �rst level of the trie is cached on-chip along with the �rst bin with data (which also

happens to be the timestamp).

The server selects the next packet to send by scanning all of the groups, looking at only the (approximated)

timestamps for the
ows in each group with the smallest bSi(t), bFi(t) pair. Because the group service intervals
are �xed, we embed the group's service interval into the logic that compares the virtual time to the group's

subinterval bin (which, as stated earlier is its earliest
ow's timestamp). The resulting packet system can be

constructed out of very simple hardware circuits, with the most complex component being the multiplication

function required to compute L
ri

(which is required for any PFQ algorithm). These functions are capable of

operating at over 1 Mpps, which is su�cient to support two OC-12c POS media interfaces. With current

ASIC technology, we believe these techniques could easily be applied to support speeds su�cent for OC-48c

media interfaces.

6 Delay Results for Approximated Scheduling

Theorem 1 A cell of session i in the ATM scheduling architecture presented in Section 3 will miss its

deadline by no more than � + �i, where � represents the time to transmit an ATM cell on the link and �i

is the service interval of session i.

The proof may be found in Appendix A.

Theorem 2 A packet of session j will miss its deadline by no more than �+�maxj +
maxj , where � represents

the time to transmit a maximum sized packet on the link, �maxj represents the maximum amount the session

may be deemed by the server to be eligible before its computed virtual start time, and
maxj represents the

maximum amount the server may in
ate the session's virtual �nish time.

The proof may be found in Appendix B.

We conjecture that as long as bSi(t) � Si(t), there is no e�ect on the session's delay bound. Thus, a

packet of session j will miss its deadline by no more than � +
maxj .

7 Related Work

For ATM networks an idea for scheduling among rate groups similar the one used in the commercialOC�12c

implementation [6] we presented was later independently developed by Rexford et. al who were the �rst to

present it in the literature [15]. With Rexford's algorithm, sessions with similar throughput parameters are

placed into one of a small number of groups. The server scheduled among the groups which then provided

service to sessions, as if they were nodes in a hierarchical scheduler. Fundamentally this mechanism is

20

a heuristic approximation of the desired scheduling algorithm. As a result, in the worst case it cannot

provide minimum bandwidth guarantees due to the variation in the set of sessions between the packet and

corresponding
uid systems, as brie
y discussed in [15].

In contrast, our grouping techniques are solely used as an optimization to simplify the sorting for both

regulation and scheduling of the sessions themselves. This enables our mechanism to retain the fairness

properties of the implemented algorithm while incurring only a small increase in the session's delay bound.

By observing that the range of virtual times of all sessions at any given time is bounded, Suri, Vargh-

ese, and Chandranmemon map the priority queue management problem to that of searching in a �nite-

universe [16]. In such a universe, a priority queue can be used that supports insert, delete, and successor in

O(loglogN) time, when the elements are in the range [0; N]. This is a particularly attractive solution for

algorithms with SEFF policy (such as LFVC and WF2Q+) while there is a tight bound among the virtual

times of all sessions, i.e., the range N is quite small. However, the O(loglogN) result holds only for the

priority queue based on virtual �nish times, there is still the problem arising from the interaction of the

two priority queues. In particular, whenever the server is selecting the next packet for service, it needs �rst

to move all the eligible packets from the priority queue based on eligibility times to the priority queued on

virtual �nish times. In the worst case, all N packets must be moved between the two priority queues before

selecting the next session for service.

8 Conclusion

In this paper, we develop techniques to reduce both the asymptotic and basic operation complexities of

implementing scheduling algorithms in high speed networks. For fair queueing algorithms with the locally

bounded timestamp property, we propose a grouping mechanism that reduces the complexity of sorting

so that it grows as a function of the number of distinct rates in the system. To reduce the cost of basic

operations, we propose a hardware implementation framework and several novel techniques that reduce the

on-chip memory size, o�-chip memory bandwidth, and o�-chip access latency. In particular, for service

policies with the globally bounded timestamp property, we present a technique that compresses the size of

the timestamps, which have to be accessed from o�-chip memory during each cell time, by 50% or more.

These techniques introduces little inaccuracy for the implemented algorithms and may be used for any

scheduling algorithm for which these properties hold, including SCFQ, SFQ, and WF2Q+. The resulting

system implements Fair Queueing in ATM systems with no external memory required outside that used for

storing a single timestamp value, and that in a very compact form. This forms the basis for a commercial

OC � 12c ATM hardware implementation.

We then extend our conceptual framework to address a more general class of scheduling algorithms

for networks with variable sized packets. For these systems, we discretize not the set of usable rates for

external tra�c, but rather the the service intervals used for internal scheduling. Regulation and scheduling

are implemented in an integrated architecture that can be viewed as logically performing sorting on two

21

dimensions simultaneously. The packet system achieves further on-chip optimizations by hard-coding the

mapping between the groups and their intervals. The resulting system, while requiring additional external

memory, can implement a broader class of scheduling algorithms, including the FSC algorithm, for networks

with variable sized packets.

9 Acknowledgement

We are very grateful to Ion Stoica for helping with the proofs used in the paper. We would also like to thank

Jennifer Rexford, Anna Charny, Mike Smith, and anonymous reviewers for their insightful comments and

suggestions.

References

[1] J.C.R. Bennett. Method and a scheduler for controlling when a server provides service to an entity,

October 1998. United States Patent 5,828,879.

[2] J.C.R. Bennett. Method and a scheduler for controlling when a server provides service with rate control

to an entity, December 1998. United States Patent 5,845,115.

[3] J.C.R. Bennett, D.C. Stephens, and H. Zhang. High speed, scalable, and accurate implementation

of packet fair queueing algorithms in ATM networks. In Proceedings of IEEE ICNP '97, pages 7{14,

Atlanta, GA, October 1997.

[4] J.C.R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. In Proceedings of the

ACM-SIGCOMM 96, pages 143{156, Palo Alto, CA, August 1996.

[5] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case Fair Weighted Fair Queueing. In Proceedings of

IEEE INFOCOM'96, pages 120{128, San Francisco, CA, March 1996.

[6] J.C.R. Bennett, F. Zhou, R.J. Brownhill, and M.N. Ganmukhi. Digital network including mechanism

for grouping virtual message transfer paths having similar transfer service rates to facilitate e�cient

scheduling of transfers thereover, October 1997. EU Patent EP0800296.

[7] H. Chao. Architecture design for regulating and scheduling user's tra�c in ATM networks. In Proceedings

of ACM SIGCOMM'92, pages 77{87, Baltimore, Maryland, August 1992.

[8] A. Charny, K.K. Ramakrishnan, and A. G. Lauck. Scalability issues for distributed explicit rate allo-

cation in ATM networks. In IEEE INFOCOM'96, San Francisco, March 1996.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. In Journal

of Internetworking Research and Experience, pages 3{26, October 1990. Also in Proceedings of ACM

SIGCOMM'89, pp 3-12.

22

[10] S.J. Golestani. A self-clocked fair queueing scheme for broadband applications. In Proceedings of IEEE

INFOCOM'94, pages 636{646, Toronto, CA, April 1994.

[11] P. Goyal, H.M. Vin, and H. Chen. Start-time Fair Queuing: A scheduling algorithm for integrated

services. In Proceedings of the ACM-SIGCOMM 96, pages 157{168, Palo Alto, CA, August 1996.

[12] S. Keshav. A control-theoretic approach to
ow control. In Proceedings of ACM SIGCOMM'91, pages

3{15, Zurich, Switzerland, September 1991.

[13] A. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks.

PhD dissertation, Massachusetts Institute of Technology, February 1992.

[14] A. Parekh and R. Gallager. A generalized processor sharing approach to
ow control - the single node

case. ACM/IEEE Transactions on Networking, 1(3):344{357, June 1993.

[15] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi. Hardware-e�cient fair queueing architectures for

high-speed networks. In IEEE INFOCOM'96, San Francisco, March 1996.

[16] S. Suri and G. Varghese and G. Chandranmenon. Leap Forward Virtual Clock. In Proceedings of

INFOCOM 97, Kobe, Japan, April 1997.

[17] H. Sariowan, R.L. Cruz, and G.C. Polyzos. Scheduling for quality of service guarantees via service

curves. In Proceedings of the International Conference on Computer Communications and Networks

(ICCCN) 1995, pages 512{520, September 1995.

[18] S. Shenker. Making greed work in networks: A game theoretical analysis of switch service disciplines.

In Proceedings of ACM SIGCOMM'94, pages 47{57, London, UK, August 1994.

[19] M. Shreedhar and G. Varghese. E�cient fair queueing using de�cit round robin. In Proceedings of

SIGCOMM'95, pages 231{243, Boston, MA, September 1995.

[20] D. Stiliadis and A. Varma. Design and analysis of frame-based fair queueing: A new tra�c scheduling

algorithm for packet-switched networks. In Proceedings of ACM SIGMETRICS'96, May 1996.

[21] D. Stiliadis and A. Varma. A general mothodology for designing e�cient tra�c scheduling and shaping

algorithms. In Proceedings of IEEE INFOCOM'97, Kobe, Japan, April 1997.

[22] I. Stoica, H. Abdel-Wahab, K. Je�ay, S. Baruah, J. Gehrke, and G. Plaxton. A proportional share

resource allocation for real-time, time-shared systems. In Proceedings of the IEEE RTSS 96, pages 288

{ 289, December 1996.

[23] I. Stoica, H. Zhang, and T.S.E. Ng. A Hierarchical Fair Service Curve algorithm for link-sharing,

real-time and priority services. In Proceedings of the ACM-SIGCOMM 97, Cannes, France, August

1997.

23

[24] Gary R.Wright and W. Richard Stevens. TCP/IP Illustrated Volume 2: The Implmentation, chapter 24,

pages 807{812. Addison-Wesley, 1995.

[25] G.G. Xie and S.S. Lam. An e�cient channel scheduler for real-time tra�c. Technical Report TR-95-29,

University of Texas at Austin, July 1995.

[26] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed Networks, 3(4):389{

412, 1994.

A Proof of Theorem 1

Proof.

The approximated ATM algorithm di�ers from the original WF2Q+in only one case: when a previously

idle session i becomes backlogged, its virtual start time should be computed as max(Fi(t�); V (t�)) in

WF2Q+, while it will be computed as max(Fi(t�); V (t�); (bSGtail
i
� bSg(t)+ L

ri
)) in the approximated system,

where bSg(t) and SGtail
i

are the virtual start times of the �rst and last sessions in the group that session i

belongs to, respectively. In the following, we will show that the increase of the worst-case delay bound due

to this approximation is not more than L
ri
.

We call the approximated system S. Consider the system S with an arbitrary arrival pattern. The idea

of the proof is to show, by construction, that there exists a WF2Q+system S0 such that (1) the departure

times of all packets are identical in both systems, (2) the time t when a session i becomes backlogged in

system S0 is such that bSi(t) = Si(t). Then, it is easy to see that bSi(t) = Si(t), bFi(t) = Fi(t), bVi(t) = Vi(t)

hold for any time t and session i. In addition, (3) the discrepancy between the arrival times of any packet

of session i is bounded by L
ri
. The theorem follows directly from (1) and (3).

Let t be the time when a session i becomes backlogged. Let u be the time when the �rst packet of a

backlogged period of session i arrives at the head of the queue. Let u1; u2; : : :uN be all such events in S,

where ui < ui+1, 0 < i < N . Then we construct a series of systems S1;S2; : : : ;SN , such that SN = S0.

Next, we describe how S1 is constructed. Let t1 be the time when the packet that is at the head of the

queue at u1 arrives. Denote this packet p1, and assume that it belongs to session i. Then t1 represents the

time when session i becomes backlogged in system S. Its start time in S satis�es the following condition,

V (t1) � bSi(t1) < V (t1) +
L

ri
: (15)

Then we de�ne S1 to be the same as S except for the arrival time of p1. More precisely, we choose the

arrival time of p1 to be t01, such that V (t01) =
bSi(t1). Since by de�nition V (x)� V (y) � x� y; 8x > y holds,

it is easy to see that t01 exists and furthermore, t1 � t01 < t1 +
L
ri
. That is, the discrepancy between arrival

times of p1 in the two systems is bounded by L
ri
.

The key observation is that replacing t1 by t01 does not change u1. Thus, the virtual time in both S and

S0 remains identical. Further, it is easy to see that the start and �nish times of every packet also remain

24

unchanged, and as a result the packets' departure times are identical in both systems. By applying the same

transformation repeatedly we end up obtaining system S0.

B Proof of Theorem 2

Let B(t) be the set of sessions backlogged in the packet system at time t. Let I(t) be the set of sessions that

are idle in the packet system at time t. Let A be the set of all sessions at the link. (i.e. A = B(t)
S
I(t))

In order for the sessions to be granted a rate guarantee, it is necessary that the server is not overbooked.

Formally:

X
i2A

ri � C; (16)

where ri is the rate of session i and C is the link capacity.

While the system virtual time function is used to reset the virtual start times of formerly idle sessions, we

rede�ne the assignment of the session virtual start times so as to be properly de�ned when they are idle:

Si(t) =

(
max(V (t); Si(t�)) i 2 I(t)

Si(t�) +
L
k
i

ri
pki �nishes service

(17)

Fi(t) = Si(t) +
Lki
ri

(18)

Recall, our packet system computes a set of approximate virtual start bSi(t) and virtual �nish bFi(t)
timestamps from the session's computed virtual start Si(t) and virtual �nish Fi(t) timestamps on a per-

packet basis.

While subsequent computed timestamps are computed as per Eqs. (17) and (18), the system virtual time

is computed based on the approximated timestamps, i.e.

VWF2Q+(t+ �) = max(VWF2Q+(t) + �; min
i2bB(t+�)(bSi(t + �))) (19)

where bB(t) is the set of sessions backlogged in the WF2Q+ system at time t.

Lemma 1 Consider an arbitrary interval [t1; t2] during a server busy period, and a subset of sessions H � A

which includes all sessions that receive service during [t1; t2]. If

X
i2H

Si(t1)ri � V (t1)
X
i2H

ri; (20)

then we have

25

X
i2H

Si(t)ri � V (t)
X
i2H

ri 8t 2 [t1; t2] (21)

Proof. The proof is by induction on the events in the system.

Base Step. See Ineq. (20).

Induction Step. We consider three cases: (1) a packet departs, (2) a session becomes backlogged, and (3) a

session becomes idle. These are the only instances when the system virtual time or the session's start time

may change.

Case 1. A packet departs. Assume the kth packet of session j completes service at time t + � . Then we

need to show that

X
i2H

Si(t+ �)ri � V (t+ �)
X
i2H

ri: (22)

From Eq. (19) we have

V (t+ �)
X
i2H

ri = max

V (t) +

Lkj

C
; min
i2bB(t+�)(bSi(t + �))

!X
i2H

ri; (23)

We consider two subcases, based on the result of the max() operator. If the second element is the largest,

Ineq. (22) holds trivially, since by the de�nition of V (t + �), bSi(t + �) � V (t + �) for any backlogged

session i 2 bB(t + �) and by Eq. (8) it follows that Si(t + �) � V (t + �), and since by Eq. (17) we also

have Si(t + �) � V (t + �) for any idle session. Thus, Si(t + �) � V (t + �), 8i 2 A, and consequently

Si(t + �) � V (t+ �), 8i 2 H.

If the �rst element is the largest then

V (t+ �)
X
i2H

ri = V (t)
X
i2H

ri +
Lkj

C

X
i2H

ri � V (t)
X
i2H

ri + Lkj (24)

Finally by Eq. (17) we have

X
i2H

Si(t+ �)ri =
X

i2Hnfjg

Si(t)ri +

Sj(t) +

Lkj

rj

!
rj =

X
i2H

Si(t)ri + Lkj : (25)

The proof of this case follows from induction hypothesis, (24), and (25).

Case 2. A session becomes backlogged. Since the start time of a session does not change as the session

becomes backlogged (see Eq. (17)), this case follows immediately.

Case 3. A session becomes idle. According to Eq. (17), the start time of a session can only increase (to

V (t)) when the session becomes idle. As a result, the left hand side of Ineq. (21) increases as the right hand

side remains unchanged. This completes the proof of the Lemma.

26

Let Wi(t1; t2) be the amount of session i tra�c served in the interval [t1; t2]

Lemma 2 Let t and t1, where t < t1, be two arbitrary time instances when a packet departs. The service

received by session i during the time interval [t; t1] is then bounded as follows

Wi(t; t1) � ri(Si(t1)� Si(t)) (26)

Proof. Let L1i , L
2
i ; : : :L

M
i denote the lengths of the packets of session i transmitted during [t; t1], if any. By

the de�nition of Wi we have

Wi(t; t1) =
MX
k=1

Lki (27)

Let Ski and F k
i be the start, respectively, the �nish time of the k-th packet of session i that is served during

the time interval [t; t1]. Then by the de�nition of the start and �nish times (see Eqs. (17) and (18)) it is

easy to see that

Si(t) � S1i < F 1
i � S2i < F 2

i � : : : � SMi < FM
i � Si(t1): (28)

In addition from Eq. (18) we have

Lki = (F k
i � Ski)ri: (29)

By combining Eqs. (27), (28), and (29) we obtain

Wi(t; t1) =
MX
k=1

Lki =
MX
k=1

(F k
i � S

k
i)ri � ri(Si(t1)� Si(t)): (30)

Lemma 3 Let tD be the time when the k-th packet of session j departs. Let tB be the last time before tD

when the following conditions hold:

1. a packet departs

2. during the entire interval [tB; tD] session j has an eligible packet

The service time received by session j during [tB ; tD] is then bounded as follows

Wj(tB ; tD) � rj(tD � tB � �maxj �
maxj); (31)

27

Proof. Note that if packet k�1 departs before its �nish time, tB represents the time when packet k becomes

eligible and the server can send a new packet.

By the de�nition of tB we have

bSj(tB) � V (tB) (32)

Let bF k
j be the �nish time of the k-th packet of session j in the virtual timespace. Since session j is assumed

to have always an eligible packet during the interval [tB; tD] the server is continuously busy during the same

interval. Thus, during the interval [tB; tD], the server allocates

W (tB ; tD) = C(tD � tB): (33)

If session i is idle at time tD , let tiD denote the time when it became idle, where obviously tiD < tD. For

uniformity, if session i is backlogged at time tD, we take t
i
D = tD . Since session i is assumed to be idle during

[tiD; tD], we have Wi(tB ; tD) = Wi(tB ; tiD). Further, by Lemma 2 we have Wi(tB ; tD) � ri(Si(tiD) � Si(tB).

From here and from Eq. (33), we obtain

W (tB; tD) =
X
i2A

Wi(tB ; tD) =
X

i2Anfjg

Wi(tB ; tD) +Wj(tB ; tD)) (34)

C(tD � tB) �
X

i2Anfjg

ri(Si(t
i
D)� Si(tB)) +Wj(tB; tD):

Rearranging terms we obtain

Wj(tB; tD) � C(tD � tB) �
X

i2Anfjg

ri(Si(t
i
D)� Si(tB)) (35)

Let H be the set of all sessions that receive service during the interval [tB; tD]. Then we have

X
i2A

ri(Si(t
i
D) � Si(tB)) =

X
i2H

ri(Si(t
i
D) � Si(tB)))X

i2Anfjg

ri(Si(t
i
D) � Si(tB)) =

X
i2Hnfjg

ri(Si(t
i
D)� Si(tB)): (36)

Next note that Si(t
i
D) represents the �nish time of the last packet of session i served during [tB; tD]. Since

WF2Q+ selects the packet with the smallest approximate �nish time, it can be shown that Si(t
i
D) �

bF k
j ,

8i 2 Hnfjg. Assume this is not true, i.e., there is a session i 2 Hnfjg such that Si(t
i
D) >

bF k
j . But this

means that the packet with the �nish time Si(t
i
D) was transmitted during [tB; tD]. Since the approximate

�nish time of this packet is no smaller than Si(t
i
D), and since session j is assumed to have an eligible packet

at any time during the interval [tB; tD] (all of them having a �nish time no larger than bF k
j < Si(t

i
D)), this

28

contradicts the WF2Q+ selection policy and therefore proves our claim, i.e., Si(tiD) �
bF k
j , 8j 2 H. With

this, Eq. (36) becomes

X
i2Hnfjg

ri(Si(t
i
D) � Si(tB)) �

X
i2Hnfjg

ri(bF k
j � Si(tB)); (37)

By combining Ineqs. (35) and (37) we obtain

Wj(tB ; tD) � C(tD � tB) �
X

i2Hnfjg

ri(bF k
j � Si(tB)) (38)

Let t0 < tB be the last time when a packet belonging to a session in G = AnH is served before tB.

Note that any session i 2 H that is backlogged at time t0 has an approximate �nish time no larger than bF k
j

(otherwise it would belong to H). Since no such session is served at time t0 it follows that all sessions in

H are either idle, or the packets at the head of their queues are not eligible at t0. By the de�nition of the

approximate start time and of the eligibility criterion we then have

Si(t
0) � bSi(t0) � V (t0); 8i 2 H; (39)

and further

X
i2H

Si(t
0)ri � V (t0)

X
i2H

ri: (40)

By applying Lemma 21 we obtain

X
i2H

Si(tB)ri � V (tB)
X
i2H

ri: (41)

By combining Ineqs. (32) and (41) and using the fact that bSj(t) � Sj(t)� �maxj , we obtain

X
i2Hnfjg

Si(tB)ri + �maxj rj � V (tB)
X

i2Hnfjg

ri: (42)

From Ineqs. (38) and (42) we get

Wj(tB ; tD) � C(tD � tB)�
X

i2Hnfjg

ri(bF k
j � V (tB)) � �

max
j rj: (43)

Further, by Eqs. (17) and (14) we have Sj(tD) = F k
j > bF k

j �
maxj . Since session j is continuously

backlogged during [tB; tD] it follows that

Wj(tB ; tD) = rj(Sj(tD)� Sj(tB)) > rj(bF k
j �
maxj � Sj(tB)): (44)

By combining with Eq. (32) and using the fact that Sj(tB) � �maxj < bSj(tB) we obtain
29

bF k
j � V (tB) <

Wj(tB ; tD)

rj
+
maxj + �maxj : (45)

Finally, by combining with Eq. (43) and using the fact that
P

i2H ri � C we have

Wj(tB ; tD) � C(tD � tB)�
C � rj
rj

Wj(tB ; tD) � (C � rj)(�
max
j +
maxj)� rj�

max
j) (46)

Wj(tB ; tD) > rj(tD � tB � �
max
j �
maxj)

Proof. of Theorem 2

Consider the moments of time tB and tD as de�ned in Lemma 3, where tD is the departure time of

the k-th packet of
ow j. By the de�nition of tB session j has no eligible packet at time tB � � , where �

represents the service time for the packet that departs at time tB. This means the the packet at the head of

the queue of session j becomes eligible at a time t0 2 [tB � �; tB].

Let L1j , L
2
j ; : : : ; L

k
j be the lengths of the packets of session j which are served during [tB; tD]. From

Lemma 3 we have

Wj(tB; tD) =
kX

m=1

Lmj � rj(tD � tB � �
max
j �
maxj): (47)

On the other hand, since session j is continuously backlogged during the interval [tB; tD] the deadline of the

k-th packet, denoted dk, is

dk = t0 +

Pk

m=1 L
m
j

rj
> tB � � +

Pk

m=1 L
m
j

rj
: (48)

By combining Ineqs. (47) and (48) we have tD < dk + � + �maxj +
maxj

Q.E.D.

30

