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ABSTRACT

Speech production is essentially a nonlinear dynamic pro-
cess. Motivated by ideas in dynamic system research, this
paper seeks to recast the speech representation problem (front-
end) as an attempt to reconstruct the phase space of the
production process, or articulatory configurations. In par-
ticular, we point out that the use of the delta and double
delta features, common in current ASR (Automatic Speech
Recognition) systems, corresponds to time-delayed embed-
ding, a technique in nonlinear time series analysis. We will
show that due to various assumptions in the modeling frame-
work, time-delayed embedding is naturally required for a
first order HMM (Hidden Markov Model) to handle higher
order dependencies. Furthermore, we examine the effect of
linear transformations in the phase space and present exper-
imental results.

1. INTRODUCTION

The configuration of the human vocal tract, which “shapes”
speech acoustics, depends on the position of various speech
articulators, such as tongue, lips, jaw, velum, and larynx. It
is the behavior of the articulators over time that produces
continually varying acoustics. A recurrent belief among
speech researchers is that what the listener extracts from the
speech signal might be information about the speech pro-
duction process itself [1].

For automatic speech recognition purposes, it would then
be natural to represent speech in a way that captures the dy-
namics of the production process. In dynamical system re-
search, the dynamics of a physical system can be described
mathematically in phase space or state space. Each dimen-
sion of the space represents an independent state variable of
the system, such as position or velocity. Each point in the
phase space corresponds to a unique state of the system. The
evolution of a system over time produces a phase portrait in
the phase space. Much can be learned about the dynamics
of a system from its phase portrait. An example is shown in
Figure 1, where articulatory movements are measured while
the subject is producing the syllable /ba/ repeatedly [2]. The
left panel shows the traditional time domain measurements

of jaw and lower lip movements; the right panel shows the
corresponding phase portraits for the two articulators, plot-
ted in a plane of position vs. instantaneous velocity.

Certain aspects become readily apparent in the phase
portraits. The most visible is the repetitive syllable pat-
tern. Each circle represents an instance of /ba/, where the
half denoted as CLOSED corresponds to /b/, OPEN for /a/.
Inter-syllable events, such as stress, can be seen as alter-
nating patterns of larger and smaller cycles. It is also clear
that the motion of the articulators is less variable during the
production of the consonant (denoted as CLOSED) than of
the vowel (denoted as OPEN). In addition, inter-articulator
timing (articulatory synchrony/asynchrony) can be studied
if we plot a phase space that covers multiple articulators (not
shown here).
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Fig. 1. Phase portraits of two articulators during production
of reiterant /ba/. (From Kelso et al. 1985, (©)1985 Acousti-
cal Society of America)

If measurements of various articulators can be made eas-
ily and accurately, it will be an inherently superior repre-
sentation than one based on acoustics. It gives a more di-
rect access to the information source, and besides, there is
less contamination by noise or channel distortion. Gener-
ally, however, only the speech signal is available to an ASR
system. Therefore, it would be desirable to reconstruct the
phase space from acoustics. Indeed, it has been shown that



a surprisingly simple technique called time-delayed embed-
ding, can produce a one-to-one image of the dynamics of the
original system. In recent years, there has been a growing
interest to represent speech using this technique [3, 4].

Rather than the straightforward approach of applying
time-delayed embedding at the time domain, we argue that
for ASR purposes, it is more appropriate to reconstruct phase
space at a higher level, such as the cepstral level. As a matter
of fact, we will show that the delta and double delta features,
commonly used in ASR, is indeed a form of time-delayed
embedding. Hence, the incorporation of dynamic features
is an attempt to reconstruct the phase space of the speech
production system.

The use of dynamic features would not be necessary,
if the underlying model can capture higher order depen-
dencies. For a first order Markov model, we will show
that time-delayed embedding effectively transforms it into
a higher order Markov model. For HMMs in speech recog-
nition, embedding extends the feature vector from a single
frame to a segment, increasing the mutual information be-
tween the feature vector and its class label.

Since embedding typically results in a high dimensional
space, linear projection is commonly used to reduce dimen-
sionality. Having a proper transformation is crucial for ac-
curate modeling.

This paper is organized as follows. First, we give a
short introduction to phase space reconstruction and time-
delayed embedding. Section 3 explains why we should ap-
ply reconstruction at the cepstral domain. In Section 4, we
show how the underlying HMM modeling framework natu-
rally requires time-delayed embedding. The effect of linear
transformation in the reconstructed space is discussed and
experimental results presented in Section 5.

2. PHASE SPACE RECONSTRUCTION USING
TIME-DELAYED EMBEDDING

2.1. The Embedding Theorem

Phase space or state space is an important concept, widely
used in physics and dynamic system research, for studying
the dynamics of a system. It is a vector space, where each
dimension represents an independent variable of the system
under study. A simple mechanical system can be described
in a phase space of two dimensions: position versus veloc-
ity, commonly seen in physics text. A complex system with
many degrees of freedom needs a high dimensional phase
space. Each point in the space specifies a unique state of the
system, and vice versa. When the system evolves over time,
the point traces out a trajectory in the phase space: {Z,}.
In many cases, the system is not fully observable. We
may only get a scalar measurement one at a time, denoted
by {s.}. Vectors in a new space, the embedding space,

are formed from time-delayed values of the scalar measure-
ments:

Sn = (Snf(mfl)'rv Sp—(m—=2)1s"""> Sn)

The number of samples m is called the embedding dimen-
sion, the time T is called delay or lag. The celebrated recon-
struction theorem by Takens states that under certain general
assumptions, time-delayed embedding {s,, } provides a one-
to-one image of the original set {Z, }, provided m is large
enough [5].

Time-delayed embedding is a fundamental tool to inves-
tigate chaotic behavior of nonlinear systems. For a detailed
discussion, as well as how to choose the right value for m
and r, readers are referred to [6].

2.2. A Linear Oscillator Example

For simplicity, we use a linear system here to illustrate the
idea of phase space and phase space reconstruction.
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Fig. 2. A linear oscillator, its phase portrait and recon-
structed phase space from time series observation

Consider a linear oscillator consisting of a mass attached
to a linear elastic spring (Figure 2(a)). According to New-
ton’s law of motion, the acceleration of the object is the total
force acting on the object divided by the mass.

Assuming no friction, the spring force f is proportional to
the amount that the spring has been compressed, which is
equal to the amount that the object has been displaced.

f=—kx



Combining the two, the system dynamics can be uniquely

described by

T = —ﬁaz @
m

Solving this differential equation, we have
x = asin(wt + b)

where w? = % the values of a and b depend on the initial
condition.

The phase space for such a system is typically (z, &).
The system moves along a closed ellipse periodically (Fig-
ure 2(b)). When friction is taken into account, the phase
portrait is an inward spiral, since the system will gradually
lose velocity.

Now, suppose we only observe a time series {x,,}, un-
der a certain sampling rate (Figure 2(c)). The reconstructed
phase space is shown in Figure 2(d), where the embedding
dimension m = 2,7 = 3. Clearly the reconstructed phase
portrait has the same structure as the original system, al-
though a strong correlation exists between the delayed co-
ordinates.

2.3. Chaotic Systems

Time-delayed embedding comes from and is used exten-
sively in the study of chaotic systems, which have been
found to be quite common in daily life. Speech, among
other things, has been shown to be chaotic. The phase por-
trait of a chaotic system is very complex, with the existence
of strange attractors as a hallmark. Examples of chaotic
systems, their phase portraits, and reconstruction of their
dynamcis can be found in many books and websites.

3. EMBEDDING IN THE CEPSTRAL DOMAIN

3.1. Why Embeddingin the Cepstral Domain

In recent years, there has been a growing interest in apply-
ing phase space reconstruction to speech recognition [3, 4].
In the classic source-filter model, speech signal is the com-
bined outcome of a sound source (excitation) modulated by
a transfer (filter) function determined by the shape of the
supralaryngeal vocal tract. This model is based on the lin-
ear system theory. So are most traditional speech parame-
terization, such as the linear predictive coding. It has been
argued that phase space reconstruction, as a nonlinear time
series analysis technique, fits better with the nonlinear na-
ture of speech. Using delayed embedding directly on the
time domain signal, various chaotic features (such as corre-
lation dimension and Lyapunov exponents) are extracted as
the basis for recognition. It is reported that although the new
chaotic feature does not outperform the traditional MFCC
(Mel-Frequency Cepstral Coefficients) feature, a combina-
tion of the two tends to improve recognition accuracy.
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Fig. 3. Two Sub-systems in Speech production

Upon closer examination, there are really two systems
involved in speech production (Figure 3): the filtering sys-
tem (as in source-filter model) and the articulatory system.
The coordinated motion of various articulators determines
the shape of the vocal tract, which then filters the sound
source, producing speech signal. Since the ultimate goal of
ASR is to infer the phase space of the articulatory system, it
is more appropriate to start from a representation of the in-
stantaneous vocal tract shape, rather than directly from the
speech signal.

According to the traditional theory, cepstral coefficients
are designed to capture the spectral envelope, which is largely
determined by the shape of the vocal tract [7]. In other
words, cepstrum is a fairly good representation of the vocal
tract characteristics. It gives a reasonable source/vocal tract
separation. Working in the cepstral domain allows us to fo-
cus on the (nonlinear) dynamics of the articulatory system,
whereas the dynamics reconstructed from the time domain
contains the compounding effects of two systems.

3.2. Deltaand Double-delta Features

Delta and double delta features are originally introduced in
[8] to incorporate dynamic information into an ASR sys-
tem:

Ai=—3F;_3—2T; 9—T; 1+Tis1+2Ti12+3Tirs (2)
AN =—3A; 328, 9—A; 1+ A1 +28,0+30,43

where Z; is a 13-dimensional cepstral vector. These fea-
tures lead to significant improvements and have since been
widely used in ASR. The original formular (Eqgn. 2) is a
special case of a more general scheme, where several adja-
cent frames of cepstral vectors are stacked together to form
a super vector (£_g, ¥_s, - -, Zg), then projected down to a
lower dimension space by a linear transform.

It should be clear now that modulo the linear transform,
dynamic features are exactly time-delayed embedding in the
cepstral domain. This leads to a revelation that the incor-
poration of dynamic features has a fundamental meaning,
which is to recover the phase space of the speech production
system, i.e. the time-varying articulatory configuration.



There are several caveats, though. First, we are em-
bedding a vector series, not a scalar time series. This is
equivalent to taking simultaneous measurements of multi-
ple variables of a system and not a problem at all. Sec-
ond, the speech production process is not deterministic. The
existence of measurement noise (environmental noise and
channel distortion) further complicates the picture of the re-
constructed dynamics. Some of the issues are discussed in
[6, 9].

One may argue that after all, delayed embedding is only
a different representation of the data, without introducing
any new information. In the case of speech recognition,
we need to justify any changes at the feature level with re-
spect to the underlying modeling framework. The next sec-
tion will show why time-delayed embedding is essential for
HMMs.

4. TIME-DELAYED EMBEDDING AND HMMS

As many researchers have pointed out, HMMs fail to cap-
ture speech dynamics accurately, due to the conditional in-
dependence assumption: each frame is conditionally inde-
pendent of each other, given the state sequence. Several
alternative approaches have been proposed to compensate
for this weakness, including segmental models, Gaussian
transition models, etc. [10, 11, 12]. Unfortunately, these so-
phisticated models have yet to show improvements over the
seemingly simple HMMs.

Part of the reason is due to the use of time-delayed em-
bedding, i.e. delta and double-delta features. By chang-
ing the feature representation, each feature vector now cov-
ers a window of consecutive frames, rather than a single
frame. Hence, the entity being modeled with HMMs is an
entire segment, typically around 100 milliseconds in dura-
tion, rather than a single frame of ~20 milliseconds. In a
sense, this is segmental modeling in disguise.

The effect of time-delayed embedding on the underlying
model can be more formally established in the following
scenarios.

4.1. Deterministic Dynamic Systems

It is well known that for dynamic systems that can be de-
scribed by differential equations, a set of first order differ-
ential equations is sufficiently general to represent second
or higher order systems.

In the above example of a second order linear oscillator,
it is easy to convert the system equation to a set of first order
differential equations. By introducing a new variable y = &,
equation 1 can be rewritten as

T =y
y = -z

3=

In the phase space of (z,y), this is a first order system.
In the same spirit, first order Markov models can be elevated
to a higher-order model by phase space reconstruction.

4.2. Markov Models

A Markov model of order m is a model where the probabil-
ity at time ¢ depends only on the states of the last m steps.
These last m steps define the state of the system. Hence,
using time-delayed embedding of the past m samples, the
state of the system can be accurately determined.

If the data indeed comes from an m-th order Markov
source, we need m-dimensional embedding to model it prop-
erly with a first order HMM, since now the probability of the
next state (or observation) depends only on the current state
(or observation).

4.3. Hidden Markov Models

Markov models can be thought of as a special case of HMMs
where there is a one-to-one correspondence between states
and observations, i.e. states are not hidden. For HMMs,
we can no longer strictly prove that a first order HMM can
model an mth order source using mth dimensional delayed
embedding. It may be a little difficult here to think of HMMSs
as a generative model in this context. Nonetheless, from
a discriminative point of view, each delay vector contains
more information about the identity of the HMM state than
a single frame.

This is also related to the false nearest neighbor method,
commonly used in nonlinear time series analysis to deter-
mine the minimal sufficient embedding dimension [6]. If
the embedding dimension m is less than the dimensionality
of the original system, the reconstructed dynamics won’t be
a one-to-one image of the original attractor. Instead, “fold-
ing” will occur: points are projected into neighborhoods of
other points to which they don’t belong to. False nearest
neighbor can therefore be used as a test for insufficient em-
bedding dimension.

Similarly, with no embedding or insufficient embedding
dimension, the feature vector in ASR doesn’t carry enough
information to accurately determine the state of the artic-
ulatory system. Hence, embedding empowers a first order
HMM by increasing the mutual information between fea-
ture vectors and their class labels.

5. LINEAR TRANSFORMATION OF THE PHASE
SPACE

A linear transformation of the phase space does not change
the validity of the embedding theorem. It can actually lead
to a better representation of the data. As shown in Fig-
ure 2(d), a strong correlation exists between the delayed



measurements, which is irrelevant to the structure of the sys-
tem dynamics. Derivative coordinates (similar to delta and
double delta) and principal component analysis have been
proposed as alternatives to delayed coordinates [6]. Both
are linear transforms of the original phase space.

5.1. Front-End for Speech Recognition

For speech recognition, however, the situation becomes a
little more complicated. The front-end in a modern ASR
system has many components, some linear and some non-
linear, each serving a different purpose. A discussion on
streamlining various linear transformations can be found in
[13]. In short, there are two key issues in the design of a
front-end. First, dimensionality reduction is inevitable. It
happens at many places in a typical MFCC (Mel-Frequency
Cepstral Coefficients) front-end. Some are easy to recog-
nize, such as LDA (Linear Discriminant Analysis). Some
are less obvious, such as spectral smoothing using the Mel-
scale filterbank, truncating of the cepstrum, as well as the
extraction of the delta and double delta features. While
it makes training more feasible, dimensionality reduction
loses information, and therefore, should be performed with
great care. Second, the front-end needs to accommodate
various assumptions made in the acoustic modeling frame-
work, such as the use of diagonal covariance matrices (in-
stead of full covariance matrices). It turns out that semi-
tied covariance [14] with a single class can be easily imple-
mented as a feature space transform. This is also known as
Maximum Likelihood Linear Transform (MLLT). Recently,
there has been an effort to achieve more sophisticated co-
variance tying, by constraining the inverse covariance ma-
trices to be a linear combination of many rank one matrices
(EMLLT, [15]), or more generally, symmetric matrices [16].
In a sense, the front-end has become an inseparable part of
the acoustic model.

Below, we focus on the derivation of dynamic features
and subsequent linear transforms.

5.2. Experiments

As discussed before, delta and double delta features are sim-
ply a linear transform of the reconstructed phase space. The
traditional approach (Eqn. 2) is shown in Figure 4(a). Fig-
ure 4(b) shows the equivalent representation: a linear pro-
jection of 13 adjacent cepstral frames * into a 39-dimensional
subspace (assuming each cepstral vector has 13 coefficients).
However, as parameters of this linear projection are fixed in
an ad hoc fashion, there is no guarantee that this particu-
lar subspace is optimal. As shown in Table 1, substantial
improvements can be achieved by choosing the linear pro-
jection in a data-driven fashion. In this case, LDA is used

1Six to the left and six to the right, since AA; makes use of A; 3,
which in turns uses Z; 4¢. Ditto for Z; _¢.

to choose a subspace that better differentiates between mul-
tiple phonetic classes.
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Fig. 4. Different Front-End Schemes

AAA Embedding WER (%)

Style Dimension | w/o MLLT | w/ MLLT
traditional 13 21.6 21.2
data-driven 7 20.8 19.2
data-driven 13 20.1 19.0
data-driven 15 - 185

Table 1. Word error rates on 1998 Hub4e (Broadcast News)
eval set 1. Embedding dimension is the number of frames
used to form the super-vector, before LDA is applied.

For a fair comparison, LDA is used in the traditional
front-end as well, in which case it does not reduce the di-
mensionality of the final feature space. Quinphone models
with a comparable number of parameters are used for all
different setups.

Clearly, the data-driven approach outperforms the ad
hoc style (Egn. 2) in choosing a subspace of the phase space.
Using only 7 adjacent frames, the data-driven approach is
already better than the traditional delta and double-delta front-
end. It is also worth noting that a larger embedding dimen-
sion helps, but the gain quickly saturates. As a side note,
there are established ways to choose a good embedding di-
mension as well as delay in nonlinear time series analysis.
Due to the caveats discussed before, plus that we are mainly
concerned with word error rates, it is easier to simply try out
different dimensionalities. MLLT offers a further gain in all
cases. Overall, a 14% WER reduction is obtained.



6. CONCLUSIONS

This paper tries to establish a link between speech recog-
nition and dynamic system research. Viewing speech pro-
duction as a dynamic process, ASR can benefit from the
concept of phase space and phase space reconstruction. The
connection between the delta/double delta features and time-
delayed embedding at the cesptral level is revealed. We also
point out the importance of time-delayed embedding to the
underlying HMM framework. While HMMs may seem to
be unsophisticated, delayed embedding and other changes
to the feature representation makes it much more powerful.
We should bear this in mind when searching for advanced
models beyond HMM. The effect of linear transform in the
phase space is discussed. A properly chosen linear tranform
gives a 14% gain on the Broadcast News task.

The analysis developed in this paper should be applica-
ble to other tasks as well, such as handwriting recognition.
It remains to be seen how far ASR can benefit from the the-
ory and techniques in dynamic system research.
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