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ABSTRACT

In this paper we seek to streamline various operations
within the front end of a speech recognizer, both to reduce
unnecessary computation and to simplify the conceptual
framework. First, a novel view of the front end in terms of
linear transformations is presented. Then we study the in-
variance property of recognition performance with respect
to linear transformations (LT) at the front end. Analysis
reveals that several LT steps can be consolidated into a
single LT, which effectively eliminates the Discrete Co-
sine Transform (DCT) step, part of the traditional MFCC
(Mel-Frequency Cepstral Coefficient) front end. Moreover,
a highly simplified, data-driven front-end scheme is pro-
posed as a direct generalization of this idea. The new setup
has no Mel-scale filtering, another part of the MFCC front
end. Experimental results show a 5% relative improvement
on the Broadcast News task.

1. LINEAR TRANSFORMATIONS IN THE
TRADITIONAL FRONT END

The front end is a relatively independent component of a
speech recognition system. Although the actual acoustic
model parameters depend directly upon front-end parame-
terization, researchers tend to view it as a black box. When
testing several different front ends, the acoustic model struc-
ture is seldom altered: it is simply a matter of plugging in
another front end, re-estimating model parameters, and fi-
nally choosing the one that yields the lowest WER (Word
Error Rate).

It is important to realize, however, that front-end de-
sign and acoustic modeling are closely coupled. Below we
will go through a typical front end commonly seen in most
LVCSR systems, with an emphasis on connections between
the two components:

1. First, the Fourier spectrum is warped to compensate
for gender/speaker differences (Vocal Tract Length
Normalization, or VTLN).

2. The warped spectrum is then smoothed by integrat-
ing over triangular bins arranged along a non-linear

1Here VTLN and ∆, ∆∆ steps are not shown for simplicity.
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Figure 1: A Typical MFCC Front End 1

scale. Mel-scale, the most commonly used one, is
designed to approximate the frequency resolution of
human ear, which is more sensitive at lower frequen-
cies. Normally 30 triangular-shaped filters are used
in JRTk (Janus Recognition Toolkit).

3. The log of the filter-bank output is taken to compress
the dynamic range of the spectrum, so that the statis-
tics of the estimated power spectrum are approxi-
mately Gaussian.

4. Next, cepstral coefficients are obtained by applying
a Discrete Cosine Transform (DCT) to the log filter-
bank outputs. The goal is mostly to achieve a decor-
relation effect so that the subsequent modeling us-
ing diagonal covariance matrices is more valid. Typ-
ically, the first 13 coefficients are retained.

5. Cepstral Mean Normalization (CMN) is commonly
used to normalize for the channel effect, so we can
build a “channel-blind” acoustic model later.

6. Delta and double-delta features are appended to the
MFCC vector to capture speech dynamics.

7. Finally, LDA (Linear Discriminant Analysis) can be
used for dimensional reduction. On top of LDA,
there can be a further diagonalization transform so
that the feature vector fits better with the diagonal
covariance assumption in the acoustic model [4, 3, 6]
. This is also called Maximum Likelihood Linear
Transform (MLLT), which happens to be a special
case of semi-tied covariance matrices [2].



It’s easy to see that many of the operations in Figure 1
are linear transformations (LT). As a matter of fact, except
for FFT and log, everything else is just a linear transforma-
tion. For example, Mel-scale filterbank is a matrix multi-
plied on FFT coefficients. And the same for DCT.

CMN is also linear. However, it differs from the oth-
ers by the fact that it’s not a global LT. It’s either utterance
based or cluster based, meaning that cepstral mean is esti-
mated and subtracted per utterance/cluster, whereas other
LTs are global (condition/class independent).

The simplest delta and double delta feature can be con-
sidered as a linear transformation over the extended vector:
(
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Here x0, x1, x2, · · · denotes a sequence of feature vectors.
There are other variants of the dynamic feature, such as
fitting a linear regression over a window covering several
frames. It is obvious that they fit in the linear transforma-
tion category in the same way.

It’s striking that linear transformation plays such a cen-
tral role in the feature extraction process. As any combina-
tion of linear operations is still linear, one starts to wonder
whether the traditional front end can be simplified. Com-
bining two linear transforms per se is no problem since a
matrix multiplication is all we need. However, if we want
to eliminate, say, DCT entirely, (i.e. from both training and
decoding), we want to ensure that the performance won’t
be affected negatively. At a first glance, this seems to be
the case: since LDA/MLLT is optimized for its own ob-
jective, any linear transformation before them should not
make any difference to the final feature vector.

In the next section, we will formally analyze the invari-
ance property of recognition performance with respect to
linear transformations in the feature space. The simplified
front end is presented in Section 3. In Section 4, we try to
optimize the Mel-scale filtering step — another LT in the
front end. Experiment results are presented in Section 5.

2. INVARIANCE PROPERTIES OF SPEECH
RECOGNIZERS

Under certain modeling schemes, recognition performance
is insensitive to linear transformations in the feature space.
Two important notes:

• The boundary between acoustic model and front end
is not clear cut. From now on, we will consider LDA
and/or MLLT part of the acoustic modeling scheme,
rather than LTs in the feature space, unless stated
otherwise.

• When comparing two different front ends, retraining
is a must. Thus invariance hereafter always means
invariance after retraining.

For a simple example, consider diagonal (not diagonaliza-
tion!) LT, i.e. stretching/compressing each dimension inde-
pendently. Although the measured likelihood will change
for sure, recognition performance won’t be affected under
most modeling schemes. In fact, that is why CMN schemes
need not worry about whether to normalize the variance to
1 or 0.5, so long as it is consistently normalized. But for
general LTs, a detailed discussion is in order, depending on
the particular acoustic modeling scheme:

1. Plain Diagonal-Covariance: invariant only to diago-
nal LT

Diagonal covariance assumes independence among
feature dimensions. Any scaling of a certain dimen-
sion will be absorbed as scaling of the corresponding
variance parameter of the Gaussian:

X ∼ N(µ, σ2) =⇒ aX ∼ N(aµ, (aσ)2)

whereX is a random variable, a is the scaling factor.

However, any transformation beyond scaling, such
as rotation and affine transformation, may result in a
performance difference.

2. Full-Covariance Gaussian: invariant to all LTs

If the ML estimate for feature vector x, x ∈ Rd is
(µ,Σ), after a linear transformation y = Ax, the ML
estimate for y becomes (Aµ,AΣAT ). For any test
vector x,

p(x|µ,Σ) = |A| ∗ p(Ax|Aµ,AΣAT )

It is clear that the likelihood is scaled by a constant
|A|. This will not affect discrimination among mod-
els. Therefore recognition performance won’t be af-
fected, although some hard-wired decoder parame-
ters may need to be adjusted (beam size, language
model weight, etc.)

3. Semi-Tied Covariance / MLLT: invariant to all LTs

Note a full covariance matrix can be decomposed as
a diagonal covariance matrix plus a rotation

Σ = UΣdU
T

where Σd is the diagonal term and U is a rotation
(UUT = I).

By assigning each model a diagonal term and tying
the rotation matrix among models (which may no
longer be a rotation), we get the semi-tied covariance
[2], and/or heteroscedastic LDA [4]. All parameters
are estimated in the ML fashion [3].

As in the full covariance case, linear transformation
in the feature space y = Ax results in

µy = Aµ Σy = AΣAT = AUΣdU
TAT



and

p(x|µ,Σd, U) = |A| ∗ p(Ax|Aµ,Σd, AU)

Thus it is also invariant to LT.

4. Diagonal Covariance + LDA: invariant to all LTs?

LDA was initially introduced as a dimensional re-
duction technique that tries to retain most of the dis-
crimination power in a reduced space.

The criterion for choosing the LDA matrix is

arg max
B

|BΣbB
T |

|BΣwBT |

where Σb is the between-class scatter matrix, Σw is
the within-class scatter matrix.

Note the LDA solution is not unique, i.e. if B is
found to maximize the criterion, AB is also a so-
lution, so long as A is non-singular. In other words,
LDA only defines the optimal subspace, regardless of
any transformation within that subspace. This is ex-
actly why it helps to have an additional diagonaliza-
tion transform on top of LDA. However, given a par-
ticular LDA implementation2 (which usually returns
a single solution), we might expect that the unique-
ness of the transform is guaranteed empirically.

Under this assumption, it’s easy to see that any non-
singular feature space LT A (before LDA) will be
absorbed into the new LDA matrix, yielding exactly
the same feature (and therefore the same model pa-
rameters):

B′ = arg max
B

|BAΣbA
TBT |

|BAΣwATBT |

=⇒ B′A = arg max
B

|BΣbB
T |

|BΣwBT |

3. SIMPLIFYING THE FRONT END

When a chosen modeling scheme is invariant to LTs in
the feature space, we can eliminate unnecessary LTs in the
front end without any loss in recognition accuracy.

It’s easy to see that in the traditional front end, every-
thing after the log can be consolidated into one single LT
(on the extended vector which is a concatenation of several
adjacent frames). Since CMN is not a global LT but rather
cluster-dependent, it can’t be absorbed into the single LT
described above. However, it can be shown that in a series
of LTs, it doesn’t matter where exactly mean subtraction is
done.3

2The LDA algorithm implemented in JRTk is simultaneous diagonal-
ization.

3Variance normalization can not be streamlined in the same way as
mean subtraction. However, this may not be a major problem.

Taking the front end in Figure 1, we can see the net
effect of CMS (Cepstral Mean Subtraction) is to make the
mean of feature vectors equal 0. We can just as well move
the mean subtraction step one step before or after: immedi-
ately after the log, or after LDA. The resulted feature vector
will stay the same.

This property, together with invariance properties es-
tablished above, allows us to consolidate all the LT oper-
ations into a single LT plus mean subtraction, illustrated
below:
FFT→Mel-scale filterbank→ log→ CMS→ LDA/MLLT

In this simplified front end, we don’t even need the con-
cept of DCT, nor that of cepstrum. Of course, if the mod-
eling scheme is diagonal covariance without LDA/MLLT,
the DCT step still makes a difference as it compensates to
a certain extent for the dimensional independence assump-
tion.

4. OPTIMIZING THE FRONT END

The previous section concludes that all the LTs after the log
can be safely consolidated into a single LT. Now we will go
one step further: optimize the front end. As stated above,
mel-scale filterbank is just another LT. Thus the generalized
front end looks like Figure 2. One would naturally start to
question the optimality of mel-scale. After all, it’s moti-
vated perceptually, and is not necessarily consistent with
the overall statistical framework.

Due to the nonlinearity of the log step, it’s not straight-
forward how to optimize this stage (LT A) directly. Instead,
we tried to leave out this stage completely, since the func-
tion it serves, namely smoothing the spectra and reducing
dimensionality, can well be captured in LT C after the log.
And better yet, that LT lends itself to easy optimization in a
data-driven fashion. This leads to a greatly simplified and
unconventional front end: the LLT front end (Figure 3).
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Figure 2: Generalized Front End

Another way to interpret the LLT front end is that LT
A is delayed until after the log, and integrated into LT C.
Note that there are actually more parameters in the system
than before, due to the fact that the LT has to operate on the
raw FFT spectrum rather than its reduced representation.
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Figure 3: The LLT Front End

5. EXPERIMENTS

Experiments are carried out on the 1998 Hub4e evaluation
set 1. The baseline recognizer is a quinphone system with
6000 distributions sharing 2000 codebooks, trained using
JRTk[1]. There are about 105k Gaussians in the system.
VTLN, cluster-based CMN, and a 7-frame context window
are used. LDA is applied to reduce feature dimensionality
to 42, followed by an optional diagonalization transform
(MLLT). All results are first-pass decoding results using a
40k lexicon and a trigram language model.

Table 1 compares the standard MFCC front end (Fig-
ure 1) with the one without DCT. The other subtle differ-
ence between the two is that variance normalization is done
for the former but not the latter. In both cases we used
LDA, but no MLLT.

In Table 2 we compared the LLT front end (Figure 3)
with the MFCC front end. LDA+MLLT are used in both
cases. We see a 5% relative improvement by using the LLT
front end.

System Avg F0 F1 F2 F3 F4 FX
MFCC 21.6 10.2 21.8 31.2 34.3 16.5 31.7
w/o DCT 21.6 10.2 20.7 30.8 36.6 16.3 32.6

Table 1: WER(%) on Hub4e98 Set1 (both without MLLT)

System Avg F0 F1 F2 F3 F4 FX
MFCC 20.0 9.4 21.1 32.6 30.2 15.1 28.3
LLT 19.0 9.2 20.0 29.2 27.5 14.2 27.2

Table 2: WER(%) on Hub4e98 Set1 (both with MLLT)

The improvement should be interpreted as evidence of
the advantage of data-driven methods over their ad hoc coun-
terparts. Although DCT, Mel-scale filtering are eliminated
from explicit calculation, we believe their effects are well
captured (and even optimized) by the LT trained from data.
For DCT, which is mainly used to decorrelate among fea-
ture dimensions, the diagonalization transform is surely do-
ing a much better job; for the Mel-scale filterbank, whose
effect is to smooth the spectrum, we believe it’s delayed
and integrated into the single linear transform after log.

Also, the reason behind having both LDA and MLLT
in the training process is that we don’t have a feasible solu-
tion on how to jointly reduce dimensionality and maximize
likelihood simultaneously.

6. RELATED WORK & CONCLUSION

Like many others, we believe that front-end parameteriza-
tion and acoustic modeling should be considered jointly. In
fact, the necessity of the DCT step has been questioned by
many researchers, for example, [5].

This paper first gave a novel view of the front end in
terms of linear transformation. Then we formally proved
the invariance property and experimentally verified that the
DCT step can be omitted. Last, we proposed a greatly sim-
plified front-end scheme to optimize the Mel-scale filter-
bank.

There is still a lot to do towards optimizing the front
end. For example, the coexistence of LDA and MLLT, each
optimized for a different criterion, definitely calls for a bet-
ter integration. It has been shown that different criteria for
the dimensional reduction stage can lead to better perfor-
mance [5].
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