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Part I
Initial Exploration 
of Hybrid Indexes
[SIGMOD’16]
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You are running out of memory
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You are running out of memory
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Buy more ?

You are running out of memory
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The better way:
Use memory more efficiently
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Indexes are LARGE
Benchmark % space for index

TPC-C

Voter

Articles

58%
55%
34%

Hybrid Index

34%
41%
18%
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Our Contributions [SIGMOD’16]
The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures
- B+tree
- Masstree
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- Skip List
- Adaptive Radix Tree (ART)

Performance Space
30 – 70%
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How do hybrid indexes achieve
memory savings ?
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dynamic stage static stage

Hybrid Index: a dual-stage architecture 
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dynamic stage static stage

write merge

Inserts are batched in the dynamic stage 
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dynamic stage static stage

Reads search the stages in order 
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dynamic stage static stage

read

A Bloom filter improves read performance 
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dynamic stage static stage

read

write merge

Memory-efficient

Skew-aware
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dynamic stage static stage

merge

The Dual-Stage Transformation 
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dynamic stage static stage

merge

The Dual-Stage Transformation 
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Compaction

Reduction

Compression

The Dynamic-to-Static Rules 
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Compaction

Reduction

Compression

The Dynamic-to-Static Rules 
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Compaction: minimize # of memory blocks   
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Compaction: minimize # of memory blocks   
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Reduction: minimize structural overhead
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Reduction: minimize structural overhead



dynamic stage static stage

merge

The merge routine is a blocking process 
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dynamic stage static stage

merge
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?
The merge routine is a blocking process 

Size %
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Take	Away:
Larger	working	
set	in	memory

Higher	
throughput

Memory	saved	
by	indexes



Part I Recap 

The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures

GENERAL 

PRACTICAL 

USEFUL 

26

- B+tree
- Masstree

- Skip List
- Adaptive Radix Tree (ART)



Part II
Concurrent hybrid 
indexes with non-
blocking merge
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dynamic stage static stage

write merge

Building Concurrent Hybrid Index?
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dynamic stage static stage

write merge

Building Concurrent Hybrid Index?
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Use concurrent data structures for dynamic-stage 

dynamic stage static stage

write merge
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Static-stage is perfectly concurrent by default

dynamic stage static stage

write merge
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Challenge: efficient non-blocking merge algorithm 

dynamic stage static stage

write merge



Merge Algorithm Requirements

Efficient
- Fast
- Bounded temporary memory use

Non-blocking
- All existing items are accessible during merge
- New items can still enter
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Naïve Solution 1: Coarse-grained Locking

dynamic stage static stage

write merge
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Naïve Solution 1: Coarse-grained Locking

dynamic stage static stage

mergewrite
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The intermediate stage unblocks write traffic
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The intermediate stage unblocks write traffic
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The intermediate stage unblocks write traffic
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static stage

merge

Intermediate stage
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How do we unblock reads during merge?



Naïve Solution 2: Full Copy-on-write

static stage

merge

Intermediate stage
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Key Observation

Merged-in items in the static-stage will NOT be 
accessed until the intermediate-stage is deleted

Merge Incrementally!
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Our Solution: Incremental Copy-on-write with Rapid GC

oldnew

parent
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oldnew

parent

When can we safely 
reclaim the garbage?
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Our Solution: Incremental Copy-on-write with Rapid GC



oldnew

parent

When no thread still 
holds a reference to it!
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Our Solution: Incremental Copy-on-write with Rapid GC
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When no thread still 
holds a reference to it!

38

Our Solution: Incremental Copy-on-write with Rapid GC

Thread-local counters
C1 C2 C3 Cn



oldnew

parent

When no thread still 
holds a reference to it!

Thread-local counters
CmaxCmax Cmin

GC Condition:
Cmin > garbage tag

++Ci = MAX(Ci , Cmax) + 1
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Our Solution: Incremental Copy-on-write with Rapid GC

C1 C2 C3 Cn



A Quick Recap of the Merge Algorithm

The intermediate stage separates writes 
from the merge process

The incremental merge algorithm with rapid 
GC is non-blocking and space-efficient
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What we are building now

Compact 
Radix Tree

Non-blocking

Merge
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What we are building now

Compact 
Radix Tree

Non-blocking

Merge
Bwtree

40



What we are building now

Compact 
Radix Tree

Non-blocking

Merge
Skiplist
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What we are building now

Compact 
Radix Tree

Non-blocking

Merge
Masstree
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Part III
Super-compact 
static-stage
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Go “crazy” on space-efficiency

42

Succinct Data Structures
- Z + o(Z), where Z is the information-theoretic lower bound
- Still allow for efficient query operations

rank1(x) = # of 1’s up to position x

select1(x) = position of the x-occurrence of 1 

100011010000101…



Encoding Radix Tree
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Memory Savings with the New Encoding
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The Takeaway Message

45

Hybrid indexes can save the precious memory 
resources with minimum performance penalty.
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Toll-Free Hotline:
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YCSB-based Microbenchmark Evaluation 

Workload: insert, read/update(50/50)

Key: email 

Value: 64-bit unsigned integer (pointer) 

Single thread

50M entries, 10M queries (Zipf distributed) 
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