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Initial Exploration

of Hybrid Indexes
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The better way:
Use memory more efficiently




Indexes are LARGE

Benchmark % space for index Hybrid Index

TPC-C 98% | =2 34%

Voter 55% — 41%
Articles 34% - 18%
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Our Contributions [SIGMOD’16]
@ The hybrid index architecture

@ The Dual-Stage Transformation
@ Applied to 4 index structures

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
Performance Space
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How do hybrid indexes achieve
memory savings ?

0— Static
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Hybrid Index: a dual-stage architecture

dynamic stage static stage
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Inserts are batched in the dynamic stage

dynamic stage static stage
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Reads search the stages in order
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A Bloom filter improves read performance

@ read >V @2@\
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g Memory-efficient
g Skew-aware
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The Dual-Stage Transformation

dynamic stage static stage
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The Dual-Stage Transformation
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The Dynamic-to-Static Rules
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The Dynamic-to-Static Rules
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2% Compaction: minimize # of memory blocks
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2% Compaction: minimize # of memory blocks
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% Reduction: minimize structural overhead
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% Reduction: minimize structural overhead
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% Reduction: minimize structural overhead
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dynamic stage

static stage
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TPC-C on H -Store
Throughput (txn/s)
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Did we solve this problem?
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Throughput (txn/s)

Yes, we improved the DBMS’s capacity!
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Throughput (txn/s)
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TPC-C on H -Store
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TPC-C on
Memory (GB)

Memory saved

by indexes
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Part | Recap

(‘D The hybrid index architecture GENERAL

@ The Dual-Stage Transformation PRACTICAL

@ Applied to 4 index structures USEFUL

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
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Part li
Concurrent hybrid
iIndexes with non-
blocking merge
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Building Concurrent Hybrid Index?

dynamic stage static stage
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Building Concurrent Hybrid Index?

dynamic stage static stage
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Use concurrent data structures for dynamic-stage

dynamic stage static stage
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Static-stage is perfectly concurrent by default

dynamic stage static stage
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Challenge: efficient non-blocking merge algorithm

dynamic stage static stage
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Merge Algorithm Requirements

@ Non-blocking

- All existing items are accessible during merge
- New items can still enter

Efficient

- Fast
- Boundedtemporary memory use
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Naive Solution 1: Coarse-grained Locking

dynamic stage static stage
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Naive Solution 1: Coarse-grained Locking

dynamic stage static stage
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The intermediate stage unblocks write traffic

dynamic stage static stage
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The intermediate stage unblocks write traffic
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The intermediate stage unblocks write traffic
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How do we unblock reads during merge?
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Naive Solution 2: Full Copy-on-write x
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Key Observation

Merged-in items in the static-stage will NOT be
accessed until the intermediate-stage is deleted

S Merge Incrementally!
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Our Solution: Incremental Copy-on-write with Rapid GC
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Our Solution: Incremental Copy-on-write with Rapid GC
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Our Solution: Incremental Copy-on-write with Rapid GC

Thread-local counters
C,
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Our Solution: Incremental Copy-on-write with Rapid

3

Thread-local counters

1 2 Cmax len
N . . |8
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A Quick Recap of the Merge Algorithm

The intermediate stage separates writes
from the merge process

The incremental merge algorithm with rapid
GC is non-blocking and space-efficient
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What we are building now

Non-blocking Compact
Merge Radix Tree

40



What we are building now

Non-blocking Compact
Merge Radix Tree

40



What we are building now

Non-blocking Compact
Merge Radix Tree

I |C> -

40



\

What we are building now

Non-blocking Compact
Merge Radix Tree

l
—
1[0 —_
|
l

40



What we are building now

Non-blocking Compact
Merge Radix Tree

I |C> -

40



What we are building now

Non-blocking Compact
Merge Radix Tree

I |C> -

40



Part lll
Super-compact
static-stage
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Go “crazy” on space-efficiency

Succinct Data Structures

Z + o(Z), where Z is the information-theoretic lower bound
Still allow for efficient query operations

100011010000101....
rank,(x) = # of 1°s up to position x

select;(x) = position of the x-occurrence of 1
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Encoding Radix Tree
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Memory Savings with the New Encoding

1000 50M email keys
—~ with average
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The Takeaway Message

Hybrid indexes can save the precious memory
resources with minimum performance penailty.
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Toll-Free Hotline:
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YCSB-based Microbenchmark Evaluation

Workload: insert, read/update(50/50)
Key: emalil
Value: 64-bit unsigned integer (pointer)

¢ Single thread
50M entries, 10M queries (Zipf distributed)
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Throughput (txn/s)

Hybrid index provides comparable throughput
Read/Update (50/50) Insert-only
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