
Reducing the Storage Overhead of
Main-Memory OLTP Databases with

Hybrid Indexes
Huanchen Zhang

David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin Ma, Rui Shen

PARALLEL DATA LABORATORY
Carnegie Mellon University

2

3

4

Part I
Initial Exploration
of Hybrid Indexes
[SIGMOD’16]

5

You are running out of memory

6

You are running out of memory

6

Buy more ?

You are running out of memory

6

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
TPC-C on -Store

7

M
em

or
y

(G
B)

Disk tuples
In-memory tuples
Indexes

4

8

0

Memory Limit = 5GB

8

The better way:
Use memory more efficiently

9

Indexes are LARGE
Benchmark % space for index

TPC-C

Voter

Articles

58%
55%
34%

Hybrid Index

34%
41%
18%

10

Our Contributions [SIGMOD’16]
The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures
- B+tree
- Masstree

11

- Skip List
- Adaptive Radix Tree (ART)

Performance Space
30 – 70%

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)
Did we solve this problem?

TP
C-

C
on

-S
to

re

Stay tuned

12

How do hybrid indexes achieve
memory savings ?

13

Static

dynamic stage static stage

Hybrid Index: a dual-stage architecture

14

dynamic stage static stage

write merge

Inserts are batched in the dynamic stage

15

dynamic stage static stage

Reads search the stages in order

16

dynamic stage static stage

read

A Bloom filter improves read performance

17

dynamic stage static stage

read

write merge

Memory-efficient

Skew-aware

18

~	~	~	~~	~	~	~

dynamic stage static stage

merge

The Dual-Stage Transformation

19

dynamic stage static stage

merge

The Dual-Stage Transformation

19

Compaction

Reduction

Compression

The Dynamic-to-Static Rules

20

Compaction

Reduction

Compression

The Dynamic-to-Static Rules

20

2 4

4

1 2

a b

6 8 10

3 4

c d

5 5

e f

5 6

g h

7 8

i j

9 10

k l

11 12

m n

21

2 4

4

1 2

a b

6 8 10

3

c

4

d

5 5

e f

5

g

6

h

7

i

8

j

9

k

10

l

11

m

12

n

Compaction: minimize # of memory blocks

21

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

21

Compaction: minimize # of memory blocks

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

Reduction: minimize structural overhead

22

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

22

Reduction: minimize structural overhead

2 4

4

1 2

a b

6 8 10

3 4

c d

5 5

e f

5 6

g h

7 8

i j

9 10

k l

11 12

m n

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

22

Reduction: minimize structural overhead

dynamic stage static stage

merge

The merge routine is a blocking process

23

dynamic stage static stage

merge

23

?
The merge routine is a blocking process

Size %

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)
Did we solve this problem?

TP
C-

C
on

-S
to

re

B+tree

24

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

60K

20K

Yes, we improved the DBMS’s capacity!
TP

C-
C

on
-S

to
re

B+tree

Hybrid

24

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

25

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

25

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

25

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

25

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

25

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

25

Take	Away:
Larger	working	
set	in	memory

Higher	
throughput

Memory	saved	
by	indexes

Part I Recap

The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures

GENERAL

PRACTICAL

USEFUL

26

- B+tree
- Masstree

- Skip List
- Adaptive Radix Tree (ART)

Part II
Concurrent hybrid
indexes with non-
blocking merge

27

dynamic stage static stage

write merge

Building Concurrent Hybrid Index?

28

dynamic stage static stage

write merge

Building Concurrent Hybrid Index?

28

29

Use concurrent data structures for dynamic-stage

dynamic stage static stage

write merge

30

Static-stage is perfectly concurrent by default

dynamic stage static stage

write merge

31

Challenge: efficient non-blocking merge algorithm

dynamic stage static stage

write merge

Merge Algorithm Requirements

Efficient
- Fast
- Bounded temporary memory use

Non-blocking
- All existing items are accessible during merge
- New items can still enter

32

Naïve Solution 1: Coarse-grained Locking

dynamic stage static stage

write merge

33

Naïve Solution 1: Coarse-grained Locking

dynamic stage static stage

mergewrite

33

The intermediate stage unblocks write traffic

static stage

merge

dynamic stage

write

34

The intermediate stage unblocks write traffic

static stage

merge

dynamic stage

write

Intermediate stage

freeze

34

The intermediate stage unblocks write traffic

freeze

static stage

merge

dynamic stage

write

Intermediate stage

34

static stage

merge

Intermediate stage

35

How do we unblock reads during merge?

Naïve Solution 2: Full Copy-on-write

static stage

merge

Intermediate stage

36

Key Observation

Merged-in items in the static-stage will NOT be
accessed until the intermediate-stage is deleted

Merge Incrementally!

37

Our Solution: Incremental Copy-on-write with Rapid GC

oldnew

parent

38

oldnew

parent

When can we safely
reclaim the garbage?

38

Our Solution: Incremental Copy-on-write with Rapid GC

oldnew

parent

When can we safely
reclaim the garbage?

38

Our Solution: Incremental Copy-on-write with Rapid GC

oldnew

parent

When no thread still
holds a reference to it!

38

Our Solution: Incremental Copy-on-write with Rapid GC

oldnew

parent

When no thread still
holds a reference to it!

38

Our Solution: Incremental Copy-on-write with Rapid GC

Thread-local counters
C1 C2 C3 Cn

oldnew

parent

When no thread still
holds a reference to it!

Thread-local counters
CmaxCmax Cmin

GC Condition:
Cmin > garbage tag

++Ci = MAX(Ci , Cmax) + 1

38

Our Solution: Incremental Copy-on-write with Rapid GC

C1 C2 C3 Cn

A Quick Recap of the Merge Algorithm

The intermediate stage separates writes
from the merge process

The incremental merge algorithm with rapid
GC is non-blocking and space-efficient

39

What we are building now

Compact
Radix Tree

Non-blocking

Merge

40

What we are building now

Compact
Radix Tree

Non-blocking

Merge

40

What we are building now

Compact
Radix Tree

Non-blocking

Merge

40

What we are building now

Compact
Radix Tree

Non-blocking

Merge
Bwtree

40

What we are building now

Compact
Radix Tree

Non-blocking

Merge
Skiplist

40

What we are building now

Compact
Radix Tree

Non-blocking

Merge
Masstree

40

Part III
Super-compact
static-stage

41

Go “crazy” on space-efficiency

42

Succinct Data Structures
- Z + o(Z), where Z is the information-theoretic lower bound
- Still allow for efficient query operations

rank1(x) = # of 1’s up to position x

select1(x) = position of the x-occurrence of 1

100011010000101…

Encoding Radix Tree

43

a

$ab

lnra

iio

i$n

$$

0

100

100010

10001

010

11

10

1000

10000100

100101010

101010

1010

a

$ a b

$ l n r $ a

$ i

i

o

n

i

$

$ $

$

44

Memory Savings with the New Encoding

0

200

400

600

800

1000
M

em
or

y
(M

B)

ART Our Encoding

84%

50M email keys
with average
length = 20 bytes

The Takeaway Message

45

Hybrid indexes can save the precious memory
resources with minimum performance penalty.

1-844-88-CMUDB

Toll-Free Hotline:

44

Back-up Slides

Latency (ms)

50%
99%
MAX

10
50
115

Hybrid

10
52
611

B+tree

YCSB-based Microbenchmark Evaluation

Workload: insert, read/update(50/50)

Key: email

Value: 64-bit unsigned integer (pointer)

Single thread

50M entries, 10M queries (Zipf distributed)

B+tree Masstree Skip List ART
0

4

8
M

em
or

y
(G

B)
Hybrid index saves memory

Original
Hybrid

30 – 70%

0

8M

16M

Th
ro

ug
hp

ut
 (t

xn
/s

)
Hybrid index provides comparable throughput

Original
Hybrid

Read/Update (50/50)
4M

2M

0

Insert-only

