Reducing the Storage Overhead of
Main-Memory OLTP Databases with

Hybrid Indexes

Huanchen Zhang
David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin Ma, Rui Shen

PARALLEL DATA LABORATORY

Carnegie Mellon Carnegie Mellon University
Parallel Data Laboratory

Part |
Initial Exploration

of Hybrid Indexes
[SIGMOD’16]

Hi=

OO0

AYou are running out of memory

Hi=

D00

Buy more 0 ?

i
il

0

AYou are running out of memory

Throughput

Memory (GB)

510]3¢

2{0] .4

TPC-C on H -Store

Memory Limit = 5GB

Ve e NV W
0 2M 4M 6M 8M
Transactions Executed
N\ |
Disk tuples
In-memory tuptes
Indexes

10M

The better way:
Use memory more efficiently

Indexes are LARGE

Benchmark % space for index Hybrid Index

TPC-C 98% | =2 34%

Voter 55% — 41%
Articles 34% - 18%

10

Our Contributions [SIGMOD’16]
@ The hybrid index architecture

@ The Dual-Stage Transformation
@ Applied to 4 index structures

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
Performance Space

— 30-70% §

11

Throughput (txn/s)

60K

2{0] .4

Did we solve this problem?

A

[

0 2M A\ 6M

”~N

£ Stay tuned

Transactions Executed

8M

10M

12

How do hybrid indexes achieve
memory savings ?

0— Static

13

Hybrid Index: a dual-stage architecture

dynamic stage static stage

14

Inserts are batched in the dynamic stage

dynamic stage static stage

15

Reads search the stages in order

O,

\c

dynamic stage static stage

16

A Bloom filter improves read performance

@ read >V @2@\

dynamic stage static stage

17

g Memory-efficient
g Skew-aware

dynamic stage

static stage

18

The Dual-Stage Transformation

dynamic stage static stage

19

The Dual-Stage Transformation

dynamic stage static stage

19

The Dynamic-to-Static Rules

;f Compaction

(XD Reduction

B Compression

20

The Dynamic-to-Static Rules

;f Compaction

(X) Reduction

E Compression

20

11| 12

10

10

TN N

21

2% Compaction: minimize # of memory blocks

4

11

12

21

2% Compaction: minimize # of memory blocks

3 415]6 71819 10111112
C d \ h i1k | | m] n
e| f| g

21

% Reduction: minimize structural overhead

9

\

NS

\ | N
718

11

12

j

22

% Reduction: minimize structural overhead

31619
’ ,‘ \
/// // ,, \\
Pid / I \
7’ / 1 \
L’ ’ , \
’ \
// / I \
// / I \
A | 2 4 P
112|314 |5|]6|7|18]|]9]|10|11]|12
alblc]|d \ h]i]j|Kk m]| n
e| fleg

22

% Reduction: minimize structural overhead

31619
’ ,‘ \
, \
// // l' \
Pid / I \
7’ / 1 \
PR / | \
/ \
// / I \
// / I \
r's | 2 4 P
112|314 |5|]6|7|18]|]9]|10|11]|12
alb|lc]|d \ hli]|]j|Kk m]| n
e| f|g

22

dynamic stage

static stage

23

dynamic stage

static stage

23

TPC-C on H -Store
Throughput (txn/s)

60K

2{0] .4

Did we solve this problem?

B+tree

A

[

0 2M A\ 6M

Transactions Executed

8M

10M

24

Throughput (txn/s)

Yes, we improved the DBMS’s capacity!

B+tree
60K ‘mw‘,
A
20K HM
0] 2M 4 M 6M 8M 10M
Hybrid
60K o= VAW A MWW N\
20K V }t

Transactions Executed

24

Throughput (txn/s)

TPC-C on H -Store

Memory (GB)

60K pe———~ e e\ B+tree
0] 4
60K Hybrid

0 2M 4M 6M 8M 10M
8 B+tree PV el b
DISKTUpPIres
4 In=memory tuptes
Indexes
8
4

Transactions Executed 25

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

B+tree

20K

0 2M AM 6M 8M 10M
8 B+tree Pl t ol
DISKTUpPIres
4 In=memory tuptes
Indexes
8

Transactions Executed 25

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

60K |

B+tree

20K

60K P~

Hybrid

20K

10M

Indexes

Transactions Executed

25

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

60K |

20K

20K

B+tree

Indexes

Transactions Executed

25

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

60K |

20K

20K

10M

B+tree
60K “%fvvvvé Hybrid
8M
Disk-tuptes
In=memory tuptes
Indexes

Transactions Executed

25

TPC-C on
Memory (GB)

Memory saved

by indexes

2M

9

oM

Larger working
set in memory — throughput

Higher

B+tree

Indexes

N

Transactions Executed

25

Part | Recap

(‘D The hybrid index architecture GENERAL

@ The Dual-Stage Transformation PRACTICAL

@ Applied to 4 index structures USEFUL

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)

26

Part li
Concurrent hybrid
iIndexes with non-
blocking merge

40%.0%!‘0\‘ L4
L ——————————

27

Building Concurrent Hybrid Index?

dynamic stage static stage

28

Building Concurrent Hybrid Index?

dynamic stage static stage

28

Use concurrent data structures for dynamic-stage

dynamic stage static stage

29

Static-stage is perfectly concurrent by default

dynamic stage static stage

30

Challenge: efficient non-blocking merge algorithm

dynamic stage static stage

31

Merge Algorithm Requirements

@ Non-blocking

- All existing items are accessible during merge
- New items can still enter

Efficient

- Fast
- Boundedtemporary memory use

32

Naive Solution 1: Coarse-grained Locking

dynamic stage static stage

33

Naive Solution 1: Coarse-grained Locking

dynamic stage static stage

33

The intermediate stage unblocks write traffic

dynamic stage static stage

34

The intermediate stage unblocks write traffic

O
ﬁ\Y&

dynamic stage Intermediate stage static stage

34

The intermediate stage unblocks write traffic

@

dynamic stage Intermediate stage static stage

34

How do we unblock reads during merge?

@

Intermediate stage static stage

35

Naive Solution 2: Full Copy-on-write x

@ ®

Intermediate stage static stage

36

Key Observation

Merged-in items in the static-stage will NOT be
accessed until the intermediate-stage is deleted

S Merge Incrementally!

37

Our Solution: Incremental Copy-on-write with Rapid GC

parent

new old

38

Our Solution: Incremental Copy-on-write with Rapid GC

parent

When can we safely
reclaim the garbage?

new old

38

Our Solution: Incremental Copy-on-write with Rapid GC

parent

‘ When can we safely
reclaim the garbage?

I 2

ne

38

Our Solution: Incremental Copy-on-write with Rapid GC

parent

‘ When no thread still
holds a reference to it!

I 2

ne
38

Our Solution: Incremental Copy-on-write with Rapid GC

Thread-local counters
C,

eS8
9 2 2

parent
22

‘ When no thread still
holds a reference to it!

new old
38

Our Solution: Incremental Copy-on-write with Rapid

3

Thread-local counters

1 2 Cmax len
N . . |8

++C, = MAX(C,,C,.,) + 1

parent

22

I G =6 anditiont: still
Oyifis=gerbagetagt

38

new old

A Quick Recap of the Merge Algorithm

The intermediate stage separates writes
from the merge process

The incremental merge algorithm with rapid
GC is non-blocking and space-efficient

39

What we are building now

Non-blocking Compact
Merge Radix Tree

40

What we are building now

Non-blocking Compact
Merge Radix Tree

40

What we are building now

Non-blocking Compact
Merge Radix Tree

I |C> -

40

\

What we are building now

Non-blocking Compact
Merge Radix Tree

l
—
1[0 —_
|
l

40

What we are building now

Non-blocking Compact
Merge Radix Tree

I |C> -

40

What we are building now

Non-blocking Compact
Merge Radix Tree

I |C> -

40

Part lll
Super-compact
static-stage

41

Go “crazy” on space-efficiency

Succinct Data Structures

Z + o(Z), where Z is the information-theoretic lower bound
Still allow for efficient query operations

100011010000101....
rank,(x) = # of 1°s up to position x

select;(x) = position of the x-occurrence of 1

42

Encoding Radix Tree

a

$ab
a| Inra
$] iio

i$n

$$

0

100
100010
10001
010

11

10

1000
10000100
100101010
101010
1010

43

Memory Savings with the New Encoding

1000 50M email keys
—~ with average
M 800
— length = 20 bytes
. 600
o 84%
= 400
Q
= 200

) i

ART Our Encoding

44

The Takeaway Message

Hybrid indexes can save the precious memory
resources with minimum performance penailty.

45

Toll-Free Hotline:

\;\ 1-844-88-CMUDB

Back-up Slides

Latency (ms)
B+tree Hybrid
50% 10 10

99% o0 52
MAX 115 611

YCSB-based Microbenchmark Evaluation

Workload: insert, read/update(50/50)
Key: emalil
Value: 64-bit unsigned integer (pointer)

¢ Single thread
50M entries, 10M queries (Zipf distributed)

Memory (GB)

0

Hybrid index saves memory

30 — 70%

B+tree Masstree Skip List ART

[l Original
B Hybrid

Throughput (txn/s)

Hybrid index provides comparable throughput
Read/Update (50/50) Insert-only

aM B Original
B Hybrid

>
=

