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ABSTRACT 
To better understand the content of multimedia, a lot of research 
efforts have been made on how to learn from multi-modal feature.  
In this paper, it is studied from a graph point of view: each kind of 
feature from one modality is represented as one independent graph; 
and the learning task is formulated as inferring from the 
constraints in every graph as well as supervision information (if 
available).  For semi-supervised learning, two different fusion 
schemes, namely linear form and sequential form, are proposed.  
For each scheme, it is derived from optimization point of view; 
and further justified from two sides: similarity propagation and 
Bayesian interpretation.  By doing so, we reveal the regular 
optimization nature, transductive learning nature as well as prior 
fusion nature  of the proposed schemes, respectively.  Moreover, 
the proposed method can be easily extended to unsupervised 
learning, including clustering and embedding.  Systematic 
experimental results validate the effectiveness of the proposed 
method. 

Categories and Subject Descriptors 
H.3.1 [INFORMATION STORAGE AND RETRIEVAL]: 
Content Analysis and Index. 

General Terms: Algorithms, Theory, Experimentation. 

Keywords: Multi-modality analysis; graph model; regularized 
optimization; similarity propagation; Bayesian interpretation. 

1. INTRODUCTION 
In multimedia content analysis, much research effort has been 
made to utilize the multi-modal feature to better understand the 
multimedia content in recent years, which benefits from the 
following fact: the representation for the data point can be 
naturally split into two or more independent modalities [1, 3, 5, 6, 

8, 11, 24, 25].  For example, Web page can be represented by its 
plain text as well as the anchor text; video can be represented by 
visual, audio, and caption track; digital image can be represented 
by color feature and texture feature; Web image can be 
represented by content feature and its text annotation.  A lot of 
research demonstrates that by properly fusing the evidence from 
each modality, better understanding could be achieved than only 
using one modality or simply treating all representation as one 
modality.* 

According to the different learning tasks, existing work in multi-
modality learning can be classified into three categories: 
supervised learning, semi-supervised learning, and un-supervised 
learning. 

Tradition methods mainly focus on supervised learning task.  
According to at which level fusion takes place, they can be further 
classified into two categories: fusion at feature level and fusion at 
output level [8].  The work in [5] belongs to the first category, in 
which textual and visual features are concatenated into one single 
index vector for Web image retrieval.  On the other hand, it has 
been recognized that fusion on output level generally outperforms 
the former [6, 8, 11].  Many fusion strategies can be adopted in 
this case, including linear combination, min-max aggregation, 
voting production combination etc [14, 19].  Among them, one 
most widely used strategy is linear combination [11, 14].  
However, as pointed out by [25], linear combination has its own 
theoretical limitation.  To address this issue, by treating the output 
of each classifier as a new kind of feature, the authors in [24] 
proposed a non-linear fusion method named super-kernel.  
However, the unlabelled data is still not explored. 

To leverage the unlabelled data in the training stage, semi-
supervised learning has been applied into multi-modality learning.  
One of the most widely used methods in this category is Co-Train 
[3].  The authors in [3] justified Co-Train in the Probably 
Approximately Correct (PAC) framework, provided that two 
modalities are compatible and un-correlated.  The authors in [7] 
applied Co-Train in Web image annotation and retrieval.  
However, in real applications, the two assumptions of Co-Train 
(compatibility and un-correlation) are not always satisfied.  An 
important variant of Co-Train is Co-EM [9, 17], which uses the 
hypothesis in one modality to probabilistically label the sample in 
the other modality.  The authors in [17] argue that Co-EM is 
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closer to theoretical assumptions in [3] than Co-Train.  However, 
as pointed out by [26], Co-EM is just a technical design and its 
convergence is not proved. 

To cluster objects with heterogeneous features, some researchers 
have extended existing clustering methods to multi-modality 
version.  For example, the authors in [23] proposed a 
reinforcement clustering algorithm; the authors in [13] extended 
existing DBSCAN algorithm to multi-modality; the authors in [2] 
extended EM to Multi-View EM based on mixture model.  
Compared with supervised learning, unsupervised learning in 
multi-modality seems not to be fully explored.  

On a more general level, there are two key issues in multi-
modality learning for any learning task: 1) how to learn within 
each modality; 2) how to fuse the evidence across each modality.  
It can be seen that most of existing work in multi-modality 
learning is based on vector model. 

More recently, graph based learning method has attracted more 
and more research attention in both learning society and 
multimedia community.  For unsupervised learning task, spectral 
clustering has shown its superiority in many applications.  For 
example, the authors in [27] proposed Locality Preserving Cluster 
(LPC) algorithm for clustering images and demonstrated its 
advantage over traditional methods.  In [4], the authors applied 
Laplacian Eigen-Map [1] to hierarchically cluster Web image 
search result.  For semi-supervised learning task, the authors in 
[10] applied a recent developed manifold ranking algorithm in 
content based image retrieval (CBIR) in the scenario of query by 
example (QBE).  By exploring the relationship among all images 
in the database, the authors showed that it outperforms the state-
of-art techniques in CBIR.  The authors in [20] further extend the 
manifold ranking algorithm to image retrieval in the scenario of 
query by keyword (QBK). 

Inspired by the success of [4, 10, 20, 27], in this paper, we take a 
further step on graph based methods and explore their extensions 
in multi-modality learning task.  From graph point of view, each 
kind of feature from one modality is represented as one 
independent graph and the learning task is formulated as inferring 
from the constraints in every graph as well as supervision 
information (if available). 

For semi-supervised learning, both classification and retrieval in 
QBK are considered.  Based on different optimization strategies, 
two different fusion schemes, namely linear form and sequential 
form, are proposed.  While in the linear form, all the constraints 
are fused simultaneously, they are considered sequentially in the 
sequential form.  For each scheme, both closed solution and 
iterative solution are developed, providing the later converges to 
the former.  To reveal the transductive nature as well as prior 
probability fusion nature, the proposed schemes are further 
justified from two sides: similarity propagation and Bayesian 
interpretation, respectively.  By doing so, we will show that the 
difference between linear form and sequential form actually comes 
from 1) the different optimization strategy they adopt; 2) the 
different manner they spread and fuse similarity through graphs; 
and 3) the different way they fuse the prior probability. 

On the other hand, the proposed method can be viewed as 
similarity matrix learning or graph Laplacian learning from multi-
modality.  Thus, by feeding the learnt matrix into some existing 

spectral clustering or embedding algorithms, the proposed method 
can be naturally extended to un-supervised learning. 

The main contribution of this paper is summarized as follows: 

1) Make a systematic investigation on graph based methods in 
terms of their extension in multi-modality learning.  Both 
semi-supervised and un-supervised learning are investigated; 

2) For semi-supervised learning, propose two different schemes.  
For each scheme, it is derived from optimization point of 
view and further justified from two sides: similarity 
propagation and Bayesian interpretation; 

3) For un-supervised learning, extend a spectral clustering 
algorithm to multi-modality; extend a spectral embedding 
algorithm to multi-modality. 

The organization of this paper is as follows.  In Section 2, we 
make a short review on the related work. The proposed method for 
semi-supervised learning task is presented in Section 3.  Its 
extension to unsupervised task is provided in Section 4.  In 
Section 5, we provide systematic experimental results which 
demonstrate the effectiveness of our method.  Finally, we 
conclude the paper in Section 6. 

2. RELATED WORK 

2.1 Manifold Ranking Algorithm 
The manifold ranking algorithm is a graph based semi-supervised 
learning algorithm [30, 31].  It has two versions for different tasks: 
to rank data points and to predict the labels of unlabeled points. 
For the task of predicting the labels of unlabeled data points, it can 
be formulated as: given a set of points 

{ }1 1, , , , , m
l l nx x x xχ += ⊂K K �  and a label set 

{ }1, ,cζ = L , the first l  points  ( )ix i l≤  are labeled as iy ζ∈ ; 

and the remaining points ( 1 )ux l u n+ ≤ ≤  are to be labeled. 

Define a n c×  labeling matrix 1[ , , ]cY Y Y= L  with 1ijY =  if ix  is 

labeled as iy j=  and 0ijY =  otherwise; define a  n c×  
matrix F  corresponding to a classification on the dataset χ  by 
labeling each point ix  with arg maxi j c ijy F≤= .  The procedure of 
predicting labels can be summarized as the follows [30]: 
 

Algorithm 1 Manifold ranking algorithm 

1. Let ( , , 1, , )ijW W i j n= = L  an n n×  affinity matrix. 

2. Symmetrically normalize W by 1/ 2 1/ 2S D WD− −=  in 
which D is the diagonal matrix with ( ),i i -element equal 
to the sum of the ith row of W. 

3. Iterate ( ) ( ) ( )1 1F t SF t Yα α+ = + −  until convergence, 

where α  is a parameter in [ )0,1  and ( )0F Y= . 

4. Let *F  denote the limit of the sequence ( ){ }F t .  Label 

each point ix  with *arg maxi j c ijy F≤= . 
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An intuitive description of the above algorithm is: a weighted 
graph is first formed which takes each data point as a vertex; a 
positive score is assigned to each label while zero to the remaining 
points; all the points then spread their scores to the nearby points 
via the weighted graph; the spread process is repeated until a 
global stable state is reached, and all the points will have their 
own scores according to which they will be labeled. 

2.2 Application in Image Retrieval 
In [10, 20], the authors have applied the above algorithm to image 
retrieval in the scenario of QBE and QBK, respectively.  In both 
works, the authors showed that their algorithms outperform the 
state-of-art techniques.  The key points of [10, 20] are briefly 
summarized as follows: 

♦ In the initial query stage in the scenario of QBE, there is only 
one query in the label set (in this case, F  is an 1n ×  ranking 
vector).  The resultant ranking score of an unlabeled image is 
in proportion to the probability that it is relevant to the query, 
with large ranking score indicating high probability.  For QBK, 
the keyword model, indicating the relevant score of each 
image with each keyword, is constructed from the initial labels 
and step 4 in algorithms 1 is ignored for soft annotation 
purpose.  The initial retrieval result is given by sorting the 
image in the descending order of its relevant score with 
respect to the query.  

♦ In relevance feedback (both in QBE and QBK), if the user 
only marks relevant examples, the algorithm can be easily 
generalized by adding these newly labeled images into the 
query set; on the other hand, if examples of both labels are 
available, they are treated differently: relevant images are also 
added to the query set, while for irrelevant images, the authors 
designed three schemes based on the observation that positive 
examples should make more contribution to the final ranking 
score than negative ones. 

♦ To maximally improve the ranking result, the authors also 
developed three active learning methods for selecting images 
in each round of relevance feedback.  Namely, 1) to select the 
most positive images; 2) to select the most informative images; 
and 3) to select the most positive and inconsistent images. 

3. GRAPH BASED SEMI-SUPERVISED 
LEARNING IN MULTI-MODALITY 

First, we address the graph based semi-supervised learning in 
multi-modality, including classification and retrieval in the 
scenario of QBK.  After a brief statement of notation and problem 
definition, we will propose two different fusion schemes from 
optimization point of view, and further justify them from both 
similarity propagation point of view and Bayesian interpretation. 

3.1 Notation and Problem Definition 
We use the same notations as those in Algorithm 1, except that 
each data point has more than one kind of feature (one modality 
for one kind of feature).  Without losing generality, we suppose 
each data point ix  has two kinds of feature: 

,a b
i i ix x x= ( 1,2, , )i n= L , where a

ix  and b
ix  denote the feature 

vector constructed from modality a  and b , respectively. 

Let ( ), , 1,2, ,a a
ijW W i j n= = L  be an n n×  affinity matrix 

constructed from ( 1,2, , )a
ix i n= L , where a

ijW  denotes the 

similarity between ix  and jx  measured from modality a .  

Normalize aW  by 1 2 1 2( ) ( )a a a aS D W D− −= , where aD  is the 
diagonal matrix with ( ),i i -element equal to the sum of the ith row 

of aW ; 

Let bW , bD , and bS  be defined similarly as above, except that 
they are constructed from modality b ; 

Let Y  be an n c×  labeling matrix with 1ijY =  if ix  is labeled as 

iy j=  and 0ijY =  otherwise; iY  is a 1 c×  labeling vector for 
data i ; 

Let F  be an n c×  vectorial function, where ijF  denotes the 
relevance of data i  belonging to class j , with a larger value 
indicating higher relevance.  iF  is a 1 c×  classification vector for 
data i . 

With the above notation, the learning task is to infer the vectorial 
function F  from aW , bW  and Y  as Eq.1. 

{( , , ); ( , , ); }a a a b b bW D S W D S Y F→  (1) 

Once F  is obtained, a classification decision on the dataset χ  
can be made by labeling each point ix  with arg maxi j c ijy F≤= .  
For retrieval task in the scenario of QBK, the relevance score of 
the data point ix  with respect to the query q  is given by i iqS F= .  
The initial retrieval result is given by sorting the data points in the 
decreasing order of their relevance scores. 

To best fuse the information of aS , bS  and Y  to improve 
classification or retrieval performance, a ‘good’ vectorial function 
F  should be as consistent as possible with these information, that 
is to say, if two points ( ix  and jx ) are measured as similar by aS  

or bS , they should receive similar classification vectors in F  ( iF  
and jF ) and vice versa.  On the other hand, if a data point ix  is 

within the initial label set, its classification vector iF  should be as 
consistent as possible with the initial labeling vector iY .  In the 
following two subsections, we will present two different fusion 
schemes based on different optimization strategies, respectively. 

3.2 Linear Fusion Scheme 
In this scheme, the constraints from aS , bS  and Y  are fused 
simultaneously by a weighted sum.  To meet this end, we 
formulate a regularized optimization framework by defining the 
following cost function with respect to F , which is a direct 
extension of [30]: 
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The first, second and third items on the right hand side of Eq.2 
correspond to the constraints from aS , bS  and Y , respectively.  
The trade-off among these constraints is captured by the 
regularization parameters ,µ η  and ε , where 0 , , 1µ η ε< <  
and 1µ η ε+ + = . 

Eq. 2 can be re-written in a more concise form as follows: 

( ) ( ) ( ) ( ) ( ) (3)T a T b TQ F F I S F F I S F F Y F Yµ η ε= − + − + − −  

With the above optimization criterion, the optimal vectorial 
function *F  is achieved when ( )Q F  is minimized: 

* arg min ( )
F

F Q F=  (4) 

Differentiating ( )Q F  defined by Eq. 3 with respect to F  leads to 

the following optimal vectorial function *F   (Linear Form): 
* 1(1 )( )a bF I S S Yµ η µ η −= − − − − ⋅  (5) 

Although the closed form is achieved, in some practical cases, the 
iterative form might be more preferable.  We also develop an 
iterative version in Eq. 6: 

( 1) ( ) ( ) (1 )
(0) (6)

a bF t S F t S F t Y
where F Y

µ η µ η+ = + + − −
=

By a similar analysis as in [30, 31], the relationship between 
closed form and iterative form can be given as: 

* lim ( )
t

F F t
→∞

=  (7) 

3.3 Sequential Fusion Scheme 
Different from linear scheme, in this scheme, the constraints from 

aS , bS  and Y  are fused sequentially.  In this case, we can 
formulate the following two-stage optimization problem: 

(8) 
1
*

1 1

* *
2 1 1
*

2 2

( ) ( ) (1 )( ) ( )

arg min ( )

( ) ( ) (1 )( ) ( )

arg min ( )

T a T

F
T a T

F

Q F F I S F F Y F Y
F Q F

Q F F I S F F F F F
F Q F

µ µ

η η

= − + − − −

=

= − + − − −

=

 

(9) 

Eq. 8 (Stage 1) defines an optimal *
1F  by considering the 

constraints from aS  and Y ; while Eq. 9 (Stage 2) defines an 
optimal *

2F  by considering the constraints from bS  and *
1F .  The 

final classification or retrieval decision can be made based on *
2F .  

The trade-off between aS  and Y  is captured by the regularization 
parameters µ ; while the trade-off between bS  and *

1F  is captured 
by the regularization parameter η , where 0 , 1µ η< < . 

Solving the optimization problem defined by Eq. 8 and 9 leads to 
the following optimal vectorial function *

2F   (Sequential Form): 

* 1 1
2 (1 )(1 )( ) ( )b aF I S I S Yµ η η µ− −= − − − − ⋅  (10) 

Like in linear form, the iterative form for *
2F  can be given as : 

2 2 2 2

2

( 1) ( ) ( ) ( ) (1 )(1 )
(0) (11)

a b b aF t S F t S F t S S F t Y
where F Y

µ η µη µ η+ = + − + − −
=

 

And the relationship between the iterative form and linear form 
can be given as: 

*
2 2lim ( )

t
F F t

→∞
=  (12) 

3.4 Similarity Propagation 
Using Taylor expansion and omitting the constant coefficient 
(1 )µ η− −  of Eq.5,: 

{ } { }

1

0

* ( )

( ) (13)

( ) ( )

a b

b a i

i

b a b b a a b a

F I S S Y

S S Y

Y S Y S Y S S Y S Y S S Y S Y

µ η

η µ

η µ η η µ µ η µ

−

∞

=

= − − ⋅

= +

= + + + + + + +

∑
L

 

Similarly, the optimal solution for sequential form as Eq. 10 can 
be re-written as: 

*
2

0 0

0 0

( ) ( )

( ) ( )

b i a j

i j

b i a j

i j

F S S Y

S S Y

η µ

η µ

∞ ∞

= =

∞ ∞

= =

=

=

∑ ∑

∑∑
 (14) 

From the above equations, we can grasp the idea of the proposed 
method from a transductive learning point of view.  Both *F  and 

*
2F  can be regarded as the sum of a series of infinite terms.  The 

first term is simply the score of initial labels Y , the second term is 
to spread the scores of the initial labeled points to their nearby 
points by the two graphs; the third term is to further spread and 
fuse the scores, and so on.  Thus the effect of un-labeled points is 
gradually incorporated; and the evidence from two modalities is 
fused at each step by weighted sum. 
Comparing Eq. 13 and 14, it can be seen that the difference of the 
two proposed schemes lies in the ways they propagate and fuse the 
similarity by the two graphs.  For linear form, the second term in 
Eq. 13 is to spread the scores of the initial labeled points to their 
nearby points by the two graphs aS  and bS  respectively, and then 
fuse the results by weighted sum; the third term is to further 
spread and fuse the scores, and so on.  For sequential form, every 
item in Eq. 14 denotes 1) spreading initial label Y  through aS  by 
arbitrary steps and then 2) spreading the result through bS  by 
arbitrary steps. 

3.5 Bayesian Interpretation 
Following [28], we present a Bayesian interpretation for the 
proposed schemes.  In this way, we will reveal the prior fusion 
nature of the proposed schemes.  Moreover, we will show that the 
difference between linear form and sequential form also comes 
from different way they fuse the prior. 
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Let ( )P F  denotes the prior probability of F , and ( | )P Y F  be 
the conditional probability of Y .  Then the optimal F  estimation 
can be given by MAP: 

* arg max{log( ( | )) ( )}

arg min{ log( ( | )) ( )}
F

F

F P Y F P F

P Y F P F

= +

= − −
 (15) 

As in [28], the conditional probability is assumed as: 

21( | ) exp( )P Y F F Y
Z

ε= − −  (16) 

where Z  is a normalization constant and ε  is a scaling factor. 

The prior ( )P F  is also assumed as in [28], except that in multi-
modality, we have two possible distributions: ( ( )aP F  from 
modality a  and ( )bP F  from modality b ) 

1( ) exp{ ( ) }

1( ) exp{ ( ) }

T a
a

T b
b

P F F I S F
Z

P F F I S F
Z

= − −

= − −
 (17) 

By fusing ( )aP F  and ( )bP F  properly, we can obtain the final 
distribution of ( )P F . 

The first fusion strategy is the same as [8].  (For detailed 
discussion for this fusion assumption, refer to [8]): 

[ ] [ ]1( ) ( ) ( )

1 exp{ ( ) ( ) }

a b

T a T b

P F P F P F
Z

F I S F F I S F
Z

µ η

µ η

=

= − − − −
 (18) 

Substituting Eq.16 and Eq. 18 into Eq. 15, will lead to exactly the 
same optimization criteria as Eq. 3, based on which linear form as 
Eq. 5 can be derived. 
On the other hand, if we take the following fusion strategy as Eq. 
19, and substitute Eq. 16 and Eq. 19 into Eq. 15, we will get the 
optimization criteria as Eq 20. 

exp{ ( ) ( ) }1( )
exp{ ( ) ( ) }

T a T b

T b a

F I S F F I S FP F
Z F I S I S F

µ η
η µ

− − − −=
− − −

 (19) 

*

2

arg min{ ( ) ( )

( )( ) }

T a T b

F

T b a

F F I S F F I S F

F I S I S F F Y

µ η

ηµ ε

= − + −

− − − + −
 (20) 

Suppose 1µ η ηµ ε+ − + = , the solution for the above equation is 
given as follows: 

* 1

1

( )
(1 )(1 )( )( )

a b b a

b a

F I S S S S Y
I S I S Y

ε µ η ηµ
µ η η µ

−

−

= − − +

= − − − −
 (21) 

Note that this solution is exactly the same as the sequential form 
as in Eq. 10.  Moreover, Eq. 20 can be viewed as the regularized 
optimization criteria for sequential form.  In this way, sequential 
form actually can be optimized in one stage as linear form. 

4. GRAPH BASED UN-SUPERVISED 
LEARNING IN MULTI-MODALITY 

Define 
a bS SS µ η
µ η

+′ =
+

, and α µ η′ = +  in Eq. 5, the closed form 

solution for linear form is converted to:  
* 1(1 )( )F I S Yα α −′ ′ ′= − −  (22) 

Similarly, if we define 2

a b b aS S S SS µ η µη
µ η µη
+ −′ =

+ −
 and 

2α µ η µη′ = + −  in Eq. 15, the closed form solution for sequential 
form is converted to:  

* 1
2 2 2 2(1 )( )F I S Yα α −′ ′ ′= − −  (23) 

Both Eq. 22 and 23 have exactly the same form as the original 
manifold ranking algorithm [30, 31].  In this way, the proposed 
algorithm can be viewed as an extension of manifold ranking 
algorithm in terms of new normalized similarity matrix learning.   

Moreover, in [29], the graph Laplacian is defined as I S∆ = − .  
Thus, the proposed algorithm can be also viewed as graph 
Laplacian fusion from multi-modality, with linear form: 

a bS SI µ η
µ η

+′∆ = −
+

 (24) 

and with sequential form as: 

2

a b b aS S S SI µ η µη
µ η µη
+ −′∆ = −

+ −
 (25) 

Note that such similarity learning or Laplacian fusion is actually 
independent on the label information Y .  Based on this 
observation, the proposed algorithm can be further extended to un-
supervised learning by feeding the new normalized similarity 
matrix or graph Laplacian to some existing spectral methods. 
In this paper, the spectral clustering algorithm in [16] is adopted 
for clustering task; while Laplacian Eigen-Map in [1] is used for 
embedding task.  They are briefly summarized in algorithm 2 and 
3, respectively. 
 

Algorithm 2 Clustering from multi-modality 

1. Define 
a b

new S SS µ η
µ η

+=
+

 (linear form), or  

a b b a

new
S S S SS µ η µη

µ η µη
+ −=

+ −
 (sequential form); 

2. Form the matrix X  by staking the k  largest eigen-  
vectors of newS : 1 2[ ]kX x x x= L ; 

3. Normalize X so that each row of X has unit length; 

4. Treat each row X of as a data point in kR ; and 
cluster them into k  clusters using K-means; 

5. Assign the original data point i to class j  if and 
only if the thi  row of X  belongs to cluster j  
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Algorithm 3 Embedding from multi-modality 

1. Define new�  by Eq. 24 (linear form), or  Eq. 25 
(sequential form); 

2. Form the matrix X  by staking the k  smallest eigen-  
vector of new� : 1 2[ ]kX x x x= L ; 

3. Normalize X so that each row of  X has unit length; 
4. The embedding of original data point i  in Rk is the 

thi  row of X. 

Note that in algorithm 3, we made a modification to the 
optimization criteria of the original Eigen-Map algorithm [1] by: 

{ }1
arg min ( 1,2, , )Tx xi i

i

T new
i i

x
x x i k

=
=� L  (26) 

5. EXPERIMENTAL RESULTS 

5.1 Experimental Design 
Three datasets are used in the experimental evaluation: 

i) Web Page.  This dataset is a subset of WebKB from [22].  
1051 Web pages are classified into two categories: 230 
for ‘course’ and 821 for ‘non-course’.  Every Web page 
is represented by two modalities: plain text (modality a ) 
and in-link anchor text (modality b ).  It has been used 
to evaluate the performance of Co-Train [3]. 

ii) Corel5000.  This dataset consists of 5,000 Corel images.  
The images are categorized into 50 groups, each having 
100 images.  Images belonging to the same group are 
considered to be relevant.  Every image is represented 
by two modalities: pyramid wavelet texture feature [15] 
(modality a ) and color histogram [18] (modality b ). 

iii) Web Image.  9046 images are crawled from Web.  Every 
image is manually annotated by 1 to 3 keywords from a 
pre-defined keyword list.  There are totally 48 keywords 
in the keyword list, including ‘Bear’, ‘Dinosaur’, ‘Orb’, 
‘People’, ‘Flower’, ‘Shell’ etc.  Every image is 
represented by two modalities: the surrounding text1 of 
the given image (modality a ) and a combination of 
low-level feature as listed in table 1 (modality b ). 

Table 1. Feature combination for content modality 

Feature Name Dimension 

color histogram [18] 36 Dim. 

color correlogram [12] 144 Dim. 

Tamura feature [21] 20 Dim. 

pyramid wavelet texture feature [15] 24 Dim. 
 
To construct the graph from image content modality (low-level 
feature for both Corel5000 and Web image), 1L  distance is 
adopted to define the edge weights in the graph as Eq. 27, since it 
                                                                 
1 We use the same method as in [7] to extract the surrounding text 

of the given image. 

can better approximate the perceptual difference between two 
images than other popular Minkowski distances when using either 
color or texture representation or both [10]: 

� ( )
1

exp
m

ij il jl l
l

W x x σ
=

= − −∏  (27) 

where ilx  and jlx  are the lth dimension of ix  and jx  respectively; 

m is the dimensionality of the feature space; and lσ  is a positive 
parameter that reflects the scope of different dimensions and is set 
to 1 in this paper. 
On the other hand, to construct the graph for text modality 
(surrounding text for Web image; plain text and in-link anchor 
text for Web page), the feature vector is weighted by TF/IDF [7] 
and the edge weight is defined by dot product: 

� 
1

m

ij il jl
l

W x x
=

= ⋅∑  (28) 

where ilx  and jlx  are the same as in Eq. 27 except that they 
represent text feature. 
For all learning tasks, the proposed method (LIN for linear form 
and SEQ for sequential form) is compared with 1) using modality 
a  only (AM), 2) using modality b  only (BM), 3) using both 
modality a  and b  as one modality (AB-OM). 

5.2 Experimental Results for Semi-supervised 
Learning 
Both classification and image retrieval in the scenario of QBK are 
evaluated in this part.  For both learning tasks, a small portion of 
data points are randomly selected from the dataset and manually 
labeled.  In order to perform a systematic evaluation, we vary the 
size of training data, i.e. the number of initial manually labeled 
data points, and compare the average classification error or 
retrieval accuracy.  Considering the randomness of the selection of 
initial labels, we run 10 times of labeling and training; and the 
average result is recorded. 
Note that if sequential form is adopted, we need to determine the 
sequence of modality a  and modality b  (determining using 

b aS S  or a bS S  in Eq. 10).  For simplification, we can substitute 
b aS S  in Eq. 10 by 1 ( )

2
b a a bS S S S+ .  However, in all of our 

experiments, we find that this sequence does not change the 
comparative results.  Since our main concern in this paper is the 
comparative performance of the proposed schemas, we simply use 

b aS S  in Eq. 10 for all the datasets. 

The regularized parameter for label information is fixed at 0.01, 
which is the same as in [10].  In this way, there is actually one 
remaining regularized parameter µ  ( 0.99µ η+ =  for linear form 
and 0.99µ η µη+ − =  for sequential form).  A parametric study is 
conducted on µ  using linear form.  The range of µ  to achieve 
satisfactory performance as well as the final value used in the 
experiments for different dataset is listed in table 2.  In sequential 
form, we use the same value of µ  as in linear form for the sake of 
simplicity. 
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Table 2. Parametric study on µ  

Dataset Satisfactory Range Final Value 

Web Page 0.2 0.8µ≤ ≤  0.5µ =  

Corel 5000 0.1 0.5µ≤ ≤  0.3µ =  

Web Image 0.2 0.8µ≤ ≤  0.5µ =  
 
Dataset i (Web Page) is used to evaluate the classification 
performance.  The classification error vs. training data curve is 
shown in Figure 1.  The compared schemes use manifold ranking 
algorithm [30] for classification purpose.  It can be seen from the 
figure that in most cases, using more feature does help to reduce 
the classification error.  However, when training data size (the 
number of initial manually labeled data points) is 5, 65 or 100, 
AB-OM can not even beat AM or BM, indicating that using more 
feature as one modality actually causes performance deterioration 
in these cases.  On the other hand, both proposed schemes 
outperform the other three in all cases.  For example, when using 
20 training data, the average classification errors for AB-OM, LIN, 
SEQ are 18.6%, 15.3%, 8.1%, respectively.  Comparing LIN and 
SEQ, it can be seen that sequential form always outperforms linear 
form by a large margin. 
Both Dataset ii  and Dataset iii  are used to evaluate the retrieval 
performance in the scenario of QBK.  The average precision of top 
20 retrieved images (P20) vs. training data size (the number of 
initial manually labeled data points) is shown in Figure 2.  The 
average precision vs. scope is shown in Figure 3 when training 
data size is fixed at 100.  The compared schemes use the algorithm 
in [20] to build the keyword model.  For Corel5000, using two 
kinds of feature together always outperforms using only one of 
them in all cases.  Comparing AB-OM, LIN and SEQ, it can be 
seen that treating all feature as two modalities (both LIN and SEQ) 
always outperform treating them as one modality (AB-OM), with 
SEQ achieving the highest accuracy.   
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Figure 1. Systematic comparison of classification error 
under different sizes of training data 
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(a) Corel5000 dataset 
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(b) Web Image dataset 

Figure 2 P20 vs. training data size 
 

For Web Image, it can be seen from Figure 2(b) that treating all 
feature as one modality (AB-OM) starts to cause performance 
degradation when training dataset size is greater than 200.  In all 
cases, both the proposed schemes outperform the other three.  Un-
like in Corel5000, LIN is slightly better than SEQ for Web Image. 

868



  

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80 90 100

Scope

Pr
ec

is
io

n

AM BM AB-OM

LIN SER

 
(a) Corel5000 dataset 
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(b) Web Image dataset 

Figure 3 Precision vs. scope when training data size is 100 
 

5.3 Experimental Results for Un-supervised 
Learning 
Both clustering and embedding are evaluated in this part.  When 
sequential form is adopted, the normalized similarity matrix or 
graph Laplacian might not be symmetrical.  To address this issue, 
we add a pre-processing step in Algorithm 2 and 3: 

1 [ ( ) ]
2

1[ ( ) ]
2

new new new T

new new new T

S S S← +

← +� � �

 (29) 

2 classes are randomly selected form the Dataset ii  dataset and 
fed into Algorithm 2.  To perform a systematic evaluation, we run 
selecting and clustering 20 times and the average result is recorded.    
The compared schemes are fed into spectral clustering algorithm 
[16].  For all clustering algorithms, the reduced dimension (such 
as k  in algorithm 2) is empirically set equal to the cluster number.  
As in [27], the accuracy (AC) and normalized mutual information 

(MI) are used for performance evaluation.  (For detailed 
discussion of AC and MI, refer to [27].) 
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(a) Accuracy 
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(b) Normalized mutual information 

Figure 4. Clustering result vs. regularized parameter µ  

 
The results vs. the regularized parameter µ  are shown in Figure 4.  
It can be seen from the figure that using two kinds of feature 
together always outperforms using only one of them in all cases.  
For accuracy, both LIN and SEQ outperform using two kinds of 
feature as one modality (AB-OM) when 0.1 0.7µ≤ ≤ .  For 
normalized mutual information, while SEQ outperforms AB-OM 
when 0.1 0.5µ≤ ≤ , LIN remains best in all situations. 

Dataset ii  is used to evaluate embedding performance.  The 
regularized parameter µ  is set to 0.5 for both LIN and SEQ.  
After embedding by Algorithm 3, the image is indexed by its 
embedding.  Then, we use each image in the database as a query, 
and average the results over the 5,000 queries.  The precision vs. 
scope curve for different schemes when embedding dimension is 
set 10 and 100 is shown in Figure 6.  Again, the proposed two 
schemes outperform the other three.  For example, when the 
embedding dimension is fixed at 10, using only color feature or 
texture feature, P20 is 6.15% (AM) and 11.3% (BM), respectively; 
using color feature and texture feature as one modality, P20 is 
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13.2% (AB-OM); while P20 is 16.5% and 16.8% for LIN and 
SEQ, respectively. 
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(a) Embedding dimension is set 10 
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(b) Embedding dimension is set 50 

Figure 5. Precision vs. scope for Corel5000 embedding 

6. CONCLUSION 
In this paper, we have made an investigation on graph-based 
learning methods in terms of their extension in multi-modality.  
For semi-supervised learning, two different fusion schemes, linear 
form and sequential form, are proposed.  For each scheme, it is 
derived from optimization point of view and further justified from 
two sides: similarity propagation and Bayesian interpretation.  By 
doing so, we reveal the regular optimization nature, transductive 
learning nature as well as prior fusion nature  of the proposed 
schemes, respectively.  Also, we show that the difference between 
the two schemes actually comes form 1) the different optimization 
strategy they adopt; 2) the different manner they spread and fuse 
similarity through graphs; and 3) the different way they fuse the 
prior probability. Moreover, the proposed method can be easily 
extended to unsupervised learning, including clustering and 
embedding.  The effectiveness of the proposed method is justified 
by systematic experiments.  In further work, we will 1) explore the 
working conditions of the two proposed schemes from a 
theoretical point of view; 2) investigate a more principled way to 
determine the regularized parameter; and 3) compare its 

performance with some existing multi-modality learning 
algorithms, such as Co-Train, super-kernel etc. 
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