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Abstract

Informally, steganography refers to the practice of hiding secret messages in communications over
a public channel so that an eavesdropper (who listens to all communications) cannot even tell
that a secret message is being sent. In contrast to the active literature proposing new ad hoc
steganographic protocols and analyzing flaws in existing protocols, there has been very little work
on formalizing steganographic notions of security, and none giving complete, rigorous proofs of
security in any non-trivial model.
My thesis will initiate the study of steganography from a complexity-theoretic point of view. Mod-
elling the communication between two parties as a probabilistic channel, I will introduce several
different steganographic security properties, and for each of these properties, attempt to determine
the necessary and sufficient conditions under which secure steganography is possible.
Furthermore, I propose to investigate the open question “How much information can be safely
encoded by a stegosystem?”[3] by proving an upper bound MAX on the bit rate of any secure, uni-
versal stegosystem; and giving a protocol which achieves rate Ω(MAX), thus providing a universal
stegosystem of approximately optimal rate.



1 Introduction

The scientific study of steganography in the open literature began in 1983 when Simmons [11]
stated the problem in terms of communication in a prison. In his formulation, two inmates, Alice
and Bob, are trying to hatch an escape plan. The only way they can communicate with each other
is through a public channel, which is carefully monitored by the warden of the prison, Ward. If
Ward detects any encrypted messages or codes, he will throw both Alice and Bob into solitary
confinement. The problem of steganography is, then: how can Alice and Bob cook up an escape
plan by communicating over the public channel in such a way that Ward doesn’t suspect anything
“unusual” is going on. Notice how the goal of steganography is different from classical cryptography,
which is about hiding the content of secret messages: steganography is about hiding the very
existence of the secret messages.

Steganographic “protocols” have a long and intriguing history that goes back to antiquity. There
are stories of secret messages written in invisible ink or hidden in love letters (the first character of
each sentence can be used to spell a secret, for instance). More recently, steganography was used
by prisoners and soldiers during World War II because all mail in Europe was carefully inspected
at the time [7]. Postal censors crossed out anything that looked like sensitive information (e.g. long
strings of digits), and they prosecuted individuals whose mail seemed suspicious. In many cases,
censors even randomly deleted innocent-looking sentences or entire paragraphs in order to prevent
secret messages from going through. Over the last few years, steganography has been studied in the
framework of computer science, and several algorithms have been developed to hide secret messages
in innocent looking data.

The main goal of this thesis is to give a rigorous, complexity-theoretic formulation of steganog-
raphy. We define steganographic secrecy in terms of computational indistinguishability, and we
explore steganographic robustness, which deals with the case of active wardens (ones that cross
out innocent-looking sentences or modify the messages just to prevent successful transmission of
secrets). The main contributions of this thesis will be:

• We will show that, relative to an oracle for a given channel distribution, secure private
key steganography exists if and only if one-way functions exist; and in the plain model,
steganography over a given channel is possible only if the channel is efficiently sampleable.

• We will show that, for any channel with sufficient minimum entropy, secure public key cryp-
tography (information-theoretically impossible) exists if trapdoor one-way predicates on dense
domains exist, and secure steganographic key exchange is possible if the Integer Decisional
Diffie-Hellman (DDH) assumption holds.

• We will show that, in the private key setting, robust steganography against reasonably-
bounded adversaries is possible for any efficiently sampleable channel; and in some cases,
our protocol can be employed in a public-key setting.

• We will give an upper bound on the maximum ratio of hidden bits to transmitted bits achiev-
able by a secure steganographic protocol, and a matching (up to a constant factor) lower
bound, resolving an open question first posed by Anderson and Petitcolas[3].

2 Secret-Key Steganography

Secret-key steganography is the most basic setting for steganography: Alice and Bob possess a
shared secret key and would like to use it to exchange hidden messages over a public channel so
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that Ward cannot detect the presence of these messages. Despite the apparent simplicity of this
scenario, there has been little work on giving a precise formulation of steganographic security. Our
goal is to give such a formal description.

Related Work

There has been considerable work on digital steganography. The first International Workshop on
Information Hiding occurred in 1996, with five subsequent workshops, and even books have been
published about the subject. Surprisingly, though, very little work has attempted to formalize
steganography, and most of the literature consists of heuristic approaches: steganography using
digital images, steganography using video systems, etc. A few papers have given information
theoretic models for steganography [4, 8, 10, 12], but these are limited in the same way that
information theoretic cryptography is limited.

2.1 Preliminaries

A function µ : N → (0, 1) is said to be negligible if for every c > 0, for all sufficiently large n,
µ(n) < 1/nc. The concatenation of string s1 and string s2 will be denoted by s1||s2, and when we
write “Parse s as st1||st2|| · · · ||stl” we mean to separate s into strings s1, . . . sl where each |si| = t,
l = d|s|/te, and s = s1||s2|| · · · ||sl. We will let Uk denote the uniform distribution on k bit strings.
If X is a finite set, we let U(X) denote the uniform distribution on X.

2.2 Cryptographic notions

Let E : K × R × P → C be a probabilistic private key encryption scheme, which maps a random
number and an |m|-bit plaintext to a ciphertext. Consider a game in which an adversary A is given
access to an oracle which is either:

• EK for K ← U(K); that is, an oracle which given a message m, uniformly selects random
bits R and returns EK(R,m); or

• $(·) = U|EK(·)|; that is, an oracle which on any query ignores its input and returns a uniformly
selected output of the appropriate length.

Let A(t, q, l) be the set of adversaries A which make q(k) queries to the oracle of at most l(k)
bits and run for t(k) time steps. Define the CPA advantage of A against E as

Advcpa
A,E(k) =

∣∣∣Pr[AEK (1k) = 1]− Pr[A$(1k) = 1]
∣∣∣

where the probabilities are taken over the oracle draws and the randomness of A. Define the
insecurity of E as

InSeccpa
E (t, q, l, k) = max

A∈A(t,q,l)

{
Advcpa

A,E(k)
}
.

Then E is (t, q, l, k, ε)-indistinguishable from random bits under chosen plaintext attack if InSeccpa
E (t, q, l, k) ≤

ε. A sequence of cryptosystems {Ek}k∈N is called indistinguishable from random bits under chosen
plaintext attack (IND$-CPA) if for every PPTM A, Advcpa

A,Ek
(k) is negligible in k.

Let C be a distribution with finite support X. Define the minimum entropy of C, H∞(C), as

H∞(C) = min
x∈X

{
log2

1
PrC [x]

}
.
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We say that a function f : X → {0, 1} is ε-biased if∣∣∣∣ Pr
x←C

[f(x) = 0]− 1
2

∣∣∣∣ < ε .

We say f is unbiased if f is ε-biased for ε a negligible function of the appropriate security parameter.

2.3 Channels

We seek to define steganography in terms of indistinguishability from a certain “usual” distribution
on communications. In order to do so, we must characterize this distribution. We formalize this
with the notion of a channel.

Definition. Let D be an efficiently recognizable, prefix-free set of strings, or documents. A channel
is a distribution on sequences s ∈ D∗.

Any particular sequence in the support of a channel describes one possible outcome of all
communication over this channel. Alternatively, communication on a channel can be regarded as
iteratively drawing from the channel, that is, drawing a document from a distribution consistent
with the history h of already drawn documents, obtained by an appropriate generalization of Bayes’
Rule. This partial draw will be conditional on all past draws and so we can regard a sequence of
partial draws as a draw from the channel. This notion of randomness is similar to Martingale
theory where random variable draws are conditional on previous random variable draws.

Since anyone communicating over a channel can be seen as implicitly drawing from these
marginal channel distributions, we will assume the existence of an probabilistic oracle capable of
doing so. This oracle can draw from the channel in steps and at any point the draw is conditioned
on what has been drawn so far. We let Ch be the marginal channel distribution conditioned on the
history h of already drawn documents; we let Clh denote the marginal distribution on sequences of l
documents conditioned on the history h. When we write “sample x← Ch” we mean that the oracle
should be queried using history h.

We will require that the channel satisfy a minimum entropy constraint for all histories. Specif-
ically, we require that there exist constants b > 0, α > 0 such that

∀h : Pr
C

[h] = 0 or H∞(Cbh) ≥ α .

If a channel does not satisfy this property, then it is possible for Alice to drive the information con-
tent of her channel to 0, so this is a reasonable requirement. If a channel satisfies this requirement,
we say it is always informative (AINF). Note that always informativeness implies an additive-like
property of minimum entropy for marginal distributions, specifically, H∞(Clbh ) ≥ lα .

2.4 Stegosystems

Definition 1. (Stegosystem) A steganographic protocol, or stegosystem, is a pair of probabilistic
algorithms S = (SE, SD). SE takes a key K ∈ {0, 1}k, a string m ∈ {0, 1}∗ (the hiddentext), and a
message history h ∈ D∗. SE(K,m, h) returns a sequence of documents c1, c2, . . . , cl (the stegotext)
from the support of Clh. SD takes a key K, a sequence of documents c1, c2, . . . , cl, and a message
history h ∈ D∗, and returns a hiddentext m. In addition, for all polynomials p(k), there must be a
negligible function µ(k) such that, for sufficiently large k, SE and SD also satisfy the relationship:

∀m ∈ {0, 1}p(k) : Pr
K

[SD(K,SE(K,m, h), h) = m] ≥ 1− µ(k) ,

where the probability is also taken over any coin tosses of SE, SD, and the oracle for C.
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2.5 Steganographic Secrecy

A passive warden, W , is an adversary which plays the following game:

1. W is given access to a probabilistic oracle which samples documents (one at a time) from the
distribution Ch.

2. W is given access to a second oracle which is sampled from one of two distributions: ST (·, ·) or
CT (·, ·). Here a sample from ST draws a key K and responds to ST (m,h) with SE(K,m, h);
a sample from CT responds to queries CT (m,h) with samples from C|SE(K,m,h)|

h . Ward makes
at most q oracle queries totalling l bits.

3. W outputs a bit.

We define W ’s advantage against a stegosystem S by

Advss
W,S,C(k) =

∣∣∣Pr[WST (1k) = 1]− Pr[WCT (1k) = 1]
∣∣∣ ,

where the probabilities are taken over the choice of oracle and the random bits of W . Define the
insecurity of S by

InSecss
S,C(t, q, l, k) = max

W∈W(t,q,l)

{
Advss

W,S,C(k)
}
,

where W(t, q, l) denotes the set of all adversaries which make at most q queries totaling at most l
bits (of hiddentext) and running in time at most t.

Definition 2. (Steganographic secrecy) A Stegosystem S = (SE, SD) is called (t, q, l, k, ε) stegano-
graphically secret against chosen hiddentext attack for the channel C ((t, q, l, k, ε)-SS-CHA-C) if
InSecss

S,C(t, q, l) ≤ ε. A sequence of stegosystems {Sk}k is called steganographically secret against
chosen hiddentext attack (SS-CHA) if Advss

W,Sk,C(k) is negligible in k for every polynomial time
W .

2.6 Construction: Steganographic Secrecy

We now give a protocol which is steganographically secret, for any channel which admits an unbiased
function. The precise security bounds, and not the protocol itself, are the novel aspect of this work:
similar protocol ideas have appeared in the literature[4, 3].

Let f : D → {0, 1} be a public function which has maximum bias ε. Let EK(·, ·) and DK(·)
denote the encryption and decryption functions for a cryptosystem which is indistinguishable from
random bits under chosen plaintext attack. Assume that |EK(m)| ≤ |m|+ κ.

Construction 1. (Secret-key Steganography)

Procedure SS.Encode:
Input: key K, hiddentext m, history h
Let s← EK(m)
Parse s as s1

1||s1
2|| · · · ||s1

l

for i = 1 . . . l do
repeat:
ci ← Ch

until f(ci) = si OR (too many failures)
set h = h||ci

Output: c1, c2, . . . , cl

Procedure SS.Decode:
Input: key K, stegotext c ∈ D∗
Let c = (c1, c2, . . . , cl)
for i = 1 . . . l do

set si = f(ci)
set s = s1||s2|| · · · ||sl.
Output: DK(s)
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Notice that, since any channel which is always informative can be compiled to a channel which
admits a neglibly-biased function, this protocol gives a provably secure stegosystem for any AINF
channel.

Theorem 1. InSecss
SS,C(t, q, l, k) ≤ InSeccpa

E (t+O(kl), q, l, k) + (l + qκ)ε.

Proof. Suppose we are given a program W for distinguishing between the output of construction 1
and the ordinary traffic of the channel, and an oracle for sampling blocks from that channel. We
construct a program A which plays the CPA game — distinguishing an EK oracle from a uniform
$ oracle — with the same advantage as W . A simply runs W , using the encoding procedure
SS.Encode with its oracle in place of calls to EK to respond to W ’s queries. Consider the following
two cases:

• s ← EK(m). Then the stegotexts output by the encoding procedure will be identically
distributed to stegotexts resulting from the normal use of construction 1.

• s← $(m) is chosen uniformly from strings of appropriate length. Then the statistical distance
between the stegotexts output by the encoding procedure and a history-dependent sample
from the channel distribution Ch will be at most (|m| + κ)ε. This follows by the fact that f
has bias at most ε on Ch and the parsed substrings si are uniformly distributed on {0, 1}.

Thus A can simply use the decision of W to gain advantage identical to that of W . More
formally,

Advcpa
E,A(k) =

∣∣∣Pr[AEK (1k) = 1]− Pr[A$(1k) = 1]
∣∣∣

=
∣∣∣Pr[WST (1k) = 1]− Pr[A$(1k) = 1]

∣∣∣
≤

∣∣∣Pr[WST (1k) = 1]− Pr[WCT (1k) = 1]
∣∣∣+ (l + qκ)ε

= Advss
S1,C(W ) + (l + qκ)ε

2.7 Other Results and Extensions

The results in this section were reported at crypto 2002 [6]. In that work, we also prove that,
relative to an oracle for the channel C, secure steganographic protocols exist if and only if one-way
functions exist. The protocol we outline there requires only the ability to draw two independent
samples from (a distribution computationally indistinguishable from) Ch for any h. Notice that,
in the plain model, this condition is also necessary for a secure stegosystem for C, because any
SS-CHA-secure stegosystem in the plain model gives an algorithm capable of drawing samples from
Ch: choose a random key K and output (the first document of) SE(K, 1, h). This observation also
holds for a stegosystem which is only secure against a weaker attack, in which the adversary may
choose the initial history h and thereafter does not control either h or the hiddentexts m being
encoded. My thesis will formally develop this weaker model and prove that in the plain model, the
necessary and sufficient conditions for the existence of secret-key steganography for channel C are
an efficient sampler for C and the existence of one-way functions.
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3 Public-Key Steganography

The results described in the previous section assume that the sender and receiver share a secret,
randomly chosen key. In the case that some exchange of key material was possible before the use
of steganography was necessary, this may be a reasonable assumption. In the more general case,
two parties may wish to communicate steganographically, without prior agreement on a secret
key. We call such communication public steganography. Whereas previous work has shown that
private-key steganography is possible – though inefficient – in an information-theoretic model, public
steganography is information-theoretically impossible. Thus our complexity-theoretic formulation
of steganographic secrecy is crucial to the security of the constructions in this section.

3.1 Related Work

Anderson and Petitcolas [2], and Craver [5], have both previously described ideas for public-key
steganography. This work will differ from theirs in several significant ways:

1. [2] and [5] do not attempt to give rigorous definitions for security, and give only heuristic
arguments for the security of their constructions. In contrast, we will give a rigorous definition
and proof of security for public-key steganography.

2. [2] does not describe any mechanism for generating stegotexts, but simply assumes “the ability
to manipulate some bits of the cover”. Similarly, [5] assumes the existence of a “supraliminal
function” F and the ability to generate a covertext which has F (x) = y for arbitrary y. In
contrast, our model does not assume the existence of a function with non-standard properties,
and is constructive.

3. [2] confuses decoding with detection in its security argument. Thus they do not make clear
what are the requirements on the underlying public-key cryptographic primitives. In contrast,
we state exact requirements and give tight security bounds.

To the best of our knowledge, we are the first to provide a formal framework for public-key steganog-
raphy and to prove that public key steganography is possible (given that standard cryptographic
assumptions hold).

3.2 Public-key Steganography

Definition 3. (Stegosystem) A public-key steganographic protocol, or public-key stegosystem, is
a triple of probabilistic algorithms S = (SG, SE, SD). SG(1k) generates a key pair (PK,SK) ∈
PK × SK. SE : PK × {0, 1}∗ × D∗ → D∗ and SD : SK × D∗ × D∗ → {0, 1}∗ retain the same
behavior, except that SE is keyed by PK and SD is keyed by SK. The stegosystem must satisfy
the standard soundness condition: for every polynomial p(k), there is a negligible function µ(k)
such that for all sufficiently large k,

∀m ∈ {0, 1}p(k) : Pr
(PK,SK)←SG(1k)

[SD(SK,SE(PK,m, h), h) = m] ≥ 1− µ(k)

where the randomization is over any coin tosses of SE, SD, and SG.
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Steganographic Secrecy

We can model steganographic secrecy in the public-key case analogously to steganographic secrecy
for the private-key case; the only significant difference in our basic definitions would be that the
warden should be given the public key generated by Bob. However, the public-key case also allows
the possibility of stronger attacks. For example, the warden can detect the use of steganography
by Bob simply by encoding a message, sending it to Bob and watching his reaction: if he reacts
consistently with receiving the warden’s message, then he is probably decoding messages. Thus
the warden’s goal should be to detect whether a specific pair, Alice and Bob are communicating
steganographically. To protect against such an attack will require that Alice have some secret
differentiating herself from the warden: we will allow Alice to publish a verification key for a
signature scheme and keep the signing key secret. In this model, we will define additional attack
games to the basic chosen-hiddentext attack: the Chosen Stegotext Only attack, the Chosen Exactly
One Attack, and the Chosen Stegotext and Hiddentext attack.

In all of these models, we will continue to model a warden attacking a stegosystem as an efficient
oracle machine which plays an oracle-distinguishing game:

1. W is given access to all public keys and to oracles which sample documents (one at a time)
from the marginal channel distributions CP→Q,h for every pair of parties (P,Q). (This oracle
allows W to learn the covertext distribution on communications between Alice and Bob.)

2. W is given access to a second oracle which is either STatk or CTatk. The oracle ST will model
the case that the pair Alice and Bob are communicating steganographically, while the oracle
CT will model the case that they are not. The exact distributions over STatk, CTatk vary
depending on the attack model. W makes at most q queries totaling l bits to this oracle.

3. W outputs a bit.

We define W ’s advantage against a stegosystem S and channel C, in attack model atk by

Advatk
W,S,C(k) =

∣∣∣Pr[WSTatk(1k) = 1]− Pr[WCTatk(1k) = 1]
∣∣∣ ,

where the probabilities are taken over the choice of oracle and the random bits of W . Define the
insecurity of S in channel C by

InSecatk
S,C(t, q, l, k) = max

W∈W(t,q,l,k)

{
Advatk

W,S,C(k)
}
,

where W(t, q, l) denotes the set of all adversaries which make at most q(k) queries totaling at most
l(k) bits and running in time at most t(k).

Chosen Hiddentext Attack (CHA). In a chosen hiddentext attack, W is allowed to supply hid-
dentexts to Alice, in hopes of detecting whether or not she is using steganography in her communica-
tions with Bob. Thus W hopes to distinguish, for as many chosen messages m as he needs, between
the case that Alice’s communications are drawn from SE(PKB,m, h) or from C|SE(PKB ,m,h)|

A→B,h (where
all m and h are chosen by W ). Formally, we define the following distributions on STcha and CTcha:

• To sample from STcha: draw (PK,SK) ← SG(1k) once, and respond to all queries with
STcha(m,h)← SE(PK,m, h).

• To sample from CTcha: draw (PK,SK) ← SG(1k) once, and respond to all queries with
CTcha(m,h)← C|SE(PK,m,h)|

h .
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Thus, the key pair (PK,SK) is drawn once and fixed, and Ward is allowed to query his oracle with
arbitrary (m,h) pairs. (Note that a chosen hiddentext attack is the steganographic equivalent of a
chosen plaintext attack against an encryption scheme.)

Chosen Stegotext-Only Attack (CSO). A chosen stegotext-only attack models the situation
where Ward wants to determine if Bob is receiving hiddentexts from Alice in particular. Ward is able
to “ask” Bob to decode messages sent to him by observing Bob’s reaction to stegotexts generated
by Ward only. In this case, Ward’s goal is to detect whether Bob is receiving steganography from
Alice by watching Bob’s reaction to stegotexts (allegedly from Alice) generated by Ward himself. If
Bob is not receiving steganography from Alice, he will always output the distinguished message ⊥,
meaning “no reaction.” If Bob is receiving steganography from Alice, he will decode the stegotexts.
(Thus it follows that, for SS-CSO security, SD should normally output ⊥ as well.) This game is
modeled by giving Ward an oracle for SD (rather than an oracle for SE as in the previous case),
and asking Ward to determine if SD is decoding messages that come from Alice. Formally, we
define the following distributions for STcso and CTcso:

• To sample from STcso: draw (PK,SK) ← SG(1k) once, and respond to all queries with
STcso(c, h)← SD(SK, c, h).

• To sample from CTcso: CTcso(c, h) = ⊥.

Note that SS-CSO security is extremely weak, and in general it can be achieved simply by appending
signatures to messages sent in the clear. SS-CSO is thus mainly useful in combination with SS-CHA.

Chosen Exactly-One Attack (CXO). In a chosen exactly-one attack, Ward may both submit
hiddentexts to Alice for encoding, and submit stegotexts to Bob for decoding, but he is prohibited
from accessing both at the same time (i.e., with the same history). This may be the case if for
example they both travel extensively. As in all of our attack models, Ward’s goal is to determine
if the specific pair of Alice and Bob are communicating steganographically. We formally define
the oracle distributions STcxo, CTcxo as follows: First, draw (PK,SK)← SG(1k), and set φ = {}.
Respond to queries using these programs:

STcxo(b ∈ {enc, dec},m, h)
if (b = enc) then:

Sample c← SE(PK,m, h)
Set φ = φ ∪ {h}
return c

else
If h ∈ φ return “”
else return SD(SK,m, h)

CTcxo(b ∈ {enc, dec},m, h)
if (b = enc) then:

Sample c← C|SE(PK,m,h)|
h

Set φ = φ ∪ {h}
return c

else
If h ∈ φ return “”
else return ⊥

Note that InSeccso
S,C(t, q, l, k) ≤ InSeccxo

S,C(t, q, l, k), since any CSO warden can be emulated by a
CXO warden making only (dec, c, h)-queries. Similarly, InSeccha

S,C(t, q, l, k) ≤ InSeccxo
S,C(t, q, l, k).

Chosen Stegotext and Hiddentext Attack (CSH) We formally define the oracle distributions
STcsh, CTcsh as follows: First, draw (PK,SK) ← SG(1k), and set φ = {}. Respond to queries
using these programs:
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STcsh (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample c← SE(PK,m, h)
Set φ = φ ∪ {(c, h)}
return c

else
If (m,h) ∈ φ return “”
else return SD(SK,m, h)

CTcsh (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample c← C|SE(PK,m,h)|
h

Set φ = φ ∪ {(c, h)}
return c

else
If (m,h) ∈ φ return “”
else return ⊥

Thus, in a chosen-stegotext attack, Ward may ask Alice to encode any (message, history) pair of
his choosing, as often as he likes, and may query Bob on any pair (s, h) where s was not a result of
an encoding query for history h. Notice that if Ward can ask Bob to decode any message output
by Alice for the same history it was encoded with, he can detect the use of steganography between
Alice and Bob; this is why we do not allow Ward to query Bob on such stegotexts. This restriction
is roughly analogous to the standard restriction that an adaptive chosen-ciphertext attacker may
not query his decryption oracle on the challenge ciphertext. Advantage and insecurity for SS-CSH
are defined analogously to SS-CXO, except that we count encoding and decoding queries separately
(as qe and qd) as well as counting the number of queries made to random oracles.

3.3 Steganographic Key Exchange

A natural strategy for implementation of Public-key Steganography is to consider the possibility of
Steganographic Key Exchange: Alice and Bob exchange a sequence of messages, indistinguishable
from normal traffic on the channel, and at the end of this sequence, they are able to compute a
shared key. So long as this key is indistinguishable from a random key to the warden, Alice and
Bob can proceed to use their shared key in a secret-key stegosystem. In my thesis, I will formalize
the notion of a Steganographic Key Exchange Protocol (SKEP).

3.4 Results and Extensions

All of the results for this section are work in progress, summarized by a recent submission to crypto

2003 [1]. There we show that any “dense domain” semantically secure public-key cryptosystem
can be used to construct a public-key cryptosystem which is indistinguishable from random bits.
Combining this result with an appropriate signature scheme and Construction 1 gives a public-key
stegosystem which is SS-CXO secure. Furthermore, we show that if the channel C is efficiently
sampleable, we can construct a stegosystem which is SS-CSH secure in the random oracle model,
if trapdoor one-way permutations on the domain {0, 1}k exist. We also show that the Decisional
Diffie-Hellman assumption implies the existence of secure SKEPs, by using a novel application of
the Chinese Remainder Theorem to convert Diffie-Hellman (DH) triples over Z∗P to DH triples over
a prime-order subgroup.

I plan to investigate two extensions to this work:

SS-CSH security without Random Oracles. It would be nice to give a SS-CSH-secure stegosys-
tem in the standard model. The main problem in constructing such a stegosystem seems to be con-
structing a public-key cryptosystem which is indistinguishable from random bits and non-malleable;
I am unaware of a published cryptosystem with proof of security in the standard model which meets
this requirement.

Tighter cryptographic assumptions. All of these constructions require a public-key cryptosys-
tem which is indistinguishable from random bits; such cryptosystems can be constructed from
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dense domain trapdoor predicates, which are (provably) a stronger assumption than the existence
of public-key cryptography. It would be nice to give a tighter condition for the existence of such
cryptosystems.

4 Robust Steganography

Robust steganography will be modelled as a game between Alice and Ward in which Ward is allowed
to make some alterations to Alice’s messages. Alice wins if she can pass a message with high prob-
ability, even when Ward alters her message. For example, if Alice passes a single bit per document
and Ward is unable to change the bit with probability at least 1

2 , Alice can use error correcting
codes to reliably transmit her message. It will be important to state the limitations we impose on
Ward, since otherwise he can replace all messages with a new draw from the channel distribution,
effectively destroying any hidden information. In this section we give a formal definition of robust
steganography with respect to a limited adversary.

We will model the constraint on Ward’s power by a relation R which is constrained to not
corrupt the channel too much. That is, if Alice sends document d, Bob must receive a document d′

such that (d, d′) ∈ R. This general notion of constraint is sufficient to include many simpler notions
such as (for example) “only alter at most 1% of the bits”.

Consider the question of what conditions on the relation R are necessary to allow communication
to take place between Alice and Bob. Surely it should not be the case that R = D × D. Also,
in case there is some document d′ and history h for which

∑
(d,d′)∈R PrCh [d] = 1 then when h has

transpired, Ward can effectively prevent the transfer of information from Alice to Bob by sending
the document d′ regardless of the document transmitted by Alice. Since we model the attacker as
controlling the history h, then, a necessary condition on R and C for robust communication is that

∀h.Pr
C

[h] = 0 or max
y

∑
(x,y)∈R

Pr
Ch

[x] < 1 .

We denote by ∆(R,D) the function maxy
∑

(x,y)∈R PrD[x]. We say that the pair (R, Ch) is δ-
admissible if ∆(R, Ch) ≤ δ and a pair (R, C) is δ-admissible if ∀h PrC [h] = 0 or ∆(R, Ch) ≤ δ. Our
necessary condition states that (R, C) must be δ-admissible for some δ < 1.

We model an R-bounded active warden W as an adversary which plays the following game
against a stegosystem S = (SE, SD):

1. W is given oracle access to the channel distribution C.

2. W is given oracle access to SE(K, ·, ·), and makes at most q queries totaling at most l1 bits
to SE.

3. W presents an arbitrary message m ∈ {0, 1}l2 and history h.

4. W is then given a sequence of documents c = (c1, c2, . . . c`) ← SE(K,m, h), and produces a
sequence s = (s1, . . . , s`) ∈ D`, where (ci, si) ∈ R for each 1 ≤ i ≤ `.

Define the success of W against S by

SuccRW,S(k) = Pr[SD(K, s, h) 6= m] ,

where the probability is taken over the choice of K and the randomness of S and W . Define the
failure rate of S by

FailRS (t, q, l1, l2, k) = max
W∈W(R,t,q,l1,l2)

{
SuccRW,S(k)

}
,
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whereW(R, t, q, l) denotes the set of all R-bounded active wardens that submit at most q(k) queries
of total length at most l1(k), produce a plaintext of length at most l2(k) and run in time at most
t(k).

Definition 4. A sequence of stegosystems {Sk}k∈N is called steganographically robust for C against
R if it is steganographically secret for C and there is a negligible function µ(k) such that for every
PPTM W , for all sufficiently large k, SuccRSk(W ) < µ(k).

4.1 Construction: Robust Stegosystem

In this section we give a stegosystem which is Steganographically robust against any bounding
relation R, under a slightly modified assumption on the channel oracles, and assuming that Alice
and Bob know some efficiently evaluable, δ-admissible relation R′ such that R ⊂ R′. For several
reasons, this stegosystem appears impractical but it serves as a proof that robust steganography is
possible for any admissible relation.

Suppose that the channel distribution C is efficiently sampleable, that is, there is an efficient
algorithm M which, given a uniformly chosen string s ∈ {0, 1}k and history h produces a document
distributed according to Ch (or statistically close to Ch). We will assume that Alice, Bob, and
Ward all have access to this algorithm. Furthermore, we assume Alice and Bob share a key K to
a pseudorandom function; and have a synchronized counter N . Let ` be a robustness parameter.

Construction 2. (Universally Robust Steganography)

Procedure SR.Encode:
Input: K ∈ K, m ∈ {0, 1}, h ∈ D∗
for i = 1 . . . ` do

set ci = M(FK(N,m), h)
increment N
set h = (h, ci)

Output: c1, c2, . . . c`

Procedure SR.Decode:
Input: K ∈ K, c ∈ D∗, h ∈ D∗
Let c = (c1, c2, . . . , c`)
for i = 1 . . . ` do

set h0 = h1 = h
for σ ∈ {0, 1} do

set mσ = M(FK(N,σ), hσ)
set hσ = (hσ,mσ)

increment N
if (∀j.(h0,j , cj) ∈ R′)
then σ = 0; else σ = 1
set h = hσ
Output: σ

Suppose that instead of sharing a key to a pseudorandom function F , Alice and Bob shared two
secret documents d0, d1 drawn independently from Ch. Then Alice could send Bob the message bit
σ by sending dσ, and Bob could recover σ by checking to see if the document he received was related
(by R′) to d0 or d1. Since the adversary is R bounded and (C, R′) is δ-admissible, the probability
of a decoding error — caused either by the adversary, or by accidental draw of d0, d1 — would
be at most δ. Intuitively, Construction 2 simply extends this notion to multiple bits by replacing
the d0, d1 by draws from M(·) with shared pseudorandom inputs; and reduces the probability of
decoding error to δ` by encoding each hiddentext bit ` times.

4.2 Results and Extensions

The results in this section were reported at crypto 2002 [6]. For my thesis I plan to address several
extensions:
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Adversarial model. Currently we have only given a construction which is secure against an
adversary which makes one-for-one substitutions under R. Thus an adversary could defeat our
“robust” stegosystem by breaking one document into two documents of equivalent content, and
such an attack might be reasonable for some document sets D. I plan to investigate the plausibility
of more general adversarial models in which many-for-many substitutions are allowable; hopefully
this will also address other attacks such as partial reordering.

Robust Public Key Steganography. It would be nice if Alice and Bob could robustly commu-
nicate (steganographically) even if they have not previously exchanged secrets. Unfortunately, it
seems difficult to extend the algorithms from this section to a case where Alice and Bob have no
shared secret. Assuming a global PKI for a Diffie-Hellman based public-key cryptosystem in which
all parties use the same group G, Alice and Bob could use static Diffie-Hellman key exchange to
derive a shared secret and under the Decisional Diffie-Hellman assumption use of this secret would
be secure. We can also show how to undetectably “embed” a static Diffie-Hellman PKI into a
“factoring-based” PKI, which would allow robust steganography among strangers who use (most
of the popular) PKI systems currently available. For my thesis, I propose to formalize these results
and investigate other solutions to this problem.

5 Steganographic Bit Rate

The rate of a stegosystem is defined by the (expected) ratio of hiddentext size to stegotext size. In
general this is a function of the security parameter k, the channel C, and the history h. For a given
history h, the rate of the stegosystem described in Section 2 is upper-bounded by Ed←Ch [1/|d|]. The
previously best known upper-bound on any stegosystem is 1; finding a tighter upper bound has been
an open question in steganography [3]. I propose to give a tight bound for the case of a universal
stegosystem, in the presence of a bit-oracle for the channel. In this section we will sketch a method
to prove an upper bound for a stegosystem running in T steps for any channel. In particular, for
messages m where |m| ≤ | log T |, we show that H∞(C|SE(m,h)|

h ) ≥ |m|; it is straightforward that
if the only access a stegosystem has to Ch is black-box then the rate cannot improve for longer
messages. We will also sketch a stegosystem which achieves rate Ω(MAX), bounding the optimal
rate to within a constant factor.

5.1 Upper bound: MAX = H∞(Cbh)/b

We exhibit a chosen-history, chosen-hiddentext distinguisher for any black-box stegosystem (SE, SD)
which encodes ` > H∞(Cbh) bits of hiddentext in b documents of stegotext non-negligibly often.

First, note that if SE is an efficient stegosystem (i.e. runs in time polynomial in k) has no
information about C outside a bit oracle for C, then we may restrict our attention to ` = O(log k).
This is because SE works by accessing C as a black box, so it cannot generate strings in support
of Cbh except by sampling, and cannot sample on criteria based on ` = ω(log n) bits in polynomial
time.

Suppose we have a specific history h such that SE encodes `+ 1 bits by samples from Cbh, and
H∞(Cbh) = `. (If such histories occur non-negligibly often then we can find one by sampling from
an oracle for SE; if they do not then the rate of the stegosystem doesn’t exceed H∞(Cbh)) Since
H∞(Cbh) = `, we know there is at least one b-document string, s∗, which has probability 2−` under
Cbh, and no other string has more probability mass than s∗. Now, if SE were deterministic, then
we would have that

Pr[SE(m) = s∗ : m← U`+1] ≤ 2−(`+1) ,
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by the unique decoding property. Even if SE is randomized, then for any fixed random bits r, we
have

Pr[SE(m; r) = s∗ : m← U`+1] ≤ 2−(`+1) .

But then by an averaging argument, there must be some m∗ ∈ {0, 1}`+1 with Pr[SE(m∗) = s∗] <
2−(`+1). In contrast, a covertext oracle CT will have Pr[CT (m) = s∗] = 2−`, for any m ∈ {0, 1}∗.
This gap is wide enough to detect with high confidence, given poly(2`) chosen hiddentext samples.
And since we have restricted to ` = O(log k) this yields a polynomial-time distinguisher between a
covertext oracle and a stegotext oracle.

It is straightforward to extend this attack to the case that SE is stateful rather than randomized,
and to known-plaintext, known-history attacks.

5.2 Achieving rate Ω(MAX)

Imagine we are given an algorithm L which, given r and h returns the least integer l satisfying
H∞(Clh) ≥ r. Armed with this function we can construct a stegosystem which encodes log k bits of
hiddentext in L(4 log k, h) stegotext documents, with probability 1− 1

k , as follows. Assume FK is a
pseudorandom function. To encode the message m ∈ {0, 1}log k under history h, set l = L(4 log k, h),
and draw n = k3/2 samples s1, . . . , sn from Clh. If there are no collisions in s1, . . . , sn, send the
lowest numbered si such that FK(si) = m, or if there is none, draw a new sample s← C lh and send
s. Likewise, if there are i 6= j with si = sj , choose a new s ← C lh and transmit s. To decode the
stegotext s ∈ Dl, compute FK(s).

Informally, this procedure is secure because, in the case that there are no collisions, the proce-
dure which replaces FK with a randomly chosen function has distribution identical to a procedure
which randomly chooses a new function after each si is drawn; in such case the output distribution
is identical to Clh. In case there are collisions, the encoding procedure’s output is again identical
to the channel distribution. Thus a distinguisher for the encoding procedure is a distinguisher for
FK .

The procedure fails when either it finds no si such that FK(si) = m, which happens for a random
function with probability (1 − 1

k )k
3/2 ≤ e−

√
k < 1/2k, or when a collision occurs, which happens

with probability at most
(
n
2

)
2−H∞(Clh) < n2

2k4 = 1/2k. Thus the procedure fails with probability at
most 1/k.

Finally, the function L(r, h) can be efficiently estimated for r = O(log k) by repeated sampling
from C1

h, C2
h, . . . , C

db/αer
h . By encoding messages in a Reed-Solomon code over GF (2log k) with error

bound
√
k and using the counter techniques in [6] we can achieve rate 1−o(1)

4 MAX with negligible
error rate.

5.3 Further extensions

The results in this section represent work in progress. I plan to investigate several extensions:

Bound Tightening. The technique in the previous section can be extended to achieve rate
(1

2 − ε)MAX for any ε > 0, but because of the need to avoid collisions, 1
2 is an upper bound on

the competitive ratio acheivable through this technique. I plan to investigate other techniques to
further tighten these bounds.

Decoding without sampling. Our standard model assumes that Alice (and Ward) can sample
from C, but Bob cannot. Thus requiring Bob to do so is cumbersome. A possible approach is to
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somehow encode the block lengths chosen by Alice in the stegotext, at some (hopefully constant
factor) expense to the rate.

Improved upper-bound proof. The given upper-bound relies on the fact that an efficient
stegosystem must have the same rate for messages of super-logarithmic length as for messages of
logarithmic rate. It may be possible to give a more elegant proof of the upper bound using extractor
[9] bounds. In particular, it is worth noting that the decoding algorithm for a stegosystem (SE, SD)
acts as an extractor-like function for some distributions; in particular SDK(·) extracts entropy from
the distribution SEK(U). However, it is not immediately obvious how to extend this to a general
extractor and apply the extractor bounds.

Non-universal stegosystems. Also of interest is the question of what rate is achievable given
some (nonuniform) information about C. For example, given a perfect compression scheme for
sequences from C, we can achieve the Shannon capacity of C. Can we (efficiently) approximate this
rate given an approximate compression scheme? What is the “cost of universality?”

6 Timeline

I propose to spend one year investigating the various extensions proposed in this document and
completing the write-up of these results. This timeline calls for a defense in July 2004.
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