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Abstract. We consider the aggregation problem in radio networks: �nd
a spanning tree in a given graph and a con�ict-free schedule of the edges
so as to minimize the latency of the computation. While a large body of
literature exists on this and related problems, we give the �rst approxi-
mation results in graphs that are not induced by unit ranges in the plane.

We give a polynomial-time Õ(
√
dn)-approximation algorithm, where d is

the average degree and n the number of vertices in the graph, and show
that the problem is Ω(n1−ε)-hard (and Ω((dn)1/2−ε)-hard) to approxi-
mate even on bipartite graphs, for any ε > 0, rendering our algorithm
essentially optimal. We target geometrically de�ned graph classes, and
in particular obtain a O(logn)-approximation in interval graphs.

1 Introduction

Wireless sensor networks consist of autonomous sensors that typically monitor
physical or environmental conditions. They use wireless communication to co-
operatively aggregate the recorded data and forward it to a central location,
the sink. The information desired is commonly in the form of a compressible
function, such as �max� or �average�, in which in-network processing can be
used to speed up the processing and greatly reduce transmission energy. At the
same time, interference from simultaneous transmissions must be managed for
successful reception.

In this paper, we consider the data aggregation problem in general graphs,
or radio networks. The objective is to minimize the latency, or the longest time
it takes for any message to reach the sink. The task is two-fold: a) to construct a
directed spanning tree, an in-arborescence, and b) to form a con�ict-free schedule
of the transmissions (the edges) that obeys the ordering of the arborescence. A
schedule is con�ict free if whenever a node is to receive a message, none of its
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other neighbors also transmit (causing interference), and a node can transmit to
only one of its neighbors at a time.

This problem, which we dub Radio Aggregation Scheduling (Ras), has been
widely studied under the name Minimum Latency Aggregation Scheduling in the
wireless networking literature. Most of the existing works consider the setting
where nodes are points in the plane with a �xed transmission radius, which cor-
responds to the case of unit disc graphs (UDG). It is, however, well known that
wireless environments are always much more complicated [1, 21] � unless oper-
ating in vacuum in outer space. One popular approach in recent years has been
to switch to the SINR model of interference, which is known to add more realism.
However, its standard form also makes strong assumptions about the geometric
nature of communicability and interference and thus ignores the unpredictability
seen in practice. To go beyond these assumptions, we initiate here the study of
aggregation in more pessimistic models, starting with general graphs. To em-
phasize the distinction of using graphs rather than planar positions, we refer to
the problem as Ras.

By reversing the direction of the aggregation process, we can also view it as
a broadcasting problem where:

1. [one-on-one] a node can only talk to one other node at a time, while
2. [interference from neighbors] a node can hear from its neighbor only if none

of its other neighbors transmit.

We refer to this communication model as the radio-unicast model. It relates
closely to two other classic broadcasting problems: telephone broadcast, where
(1) holds but there are no con�icts from other neighbors (in essence, modeling
aggregation in wired networks); and radio broadcast, where (2) holds, but a node
can transmit to all its neighbors in the same time slot. As we shall see, however,
Ras is signi�cantly harder to solve in general than either of these problems.

In the telephone model, in each communication round, the successful trans-
missions form a (directed) matching. In the radio-unicast model, successful trans-
missions form what we call a Ras-legal matching (see Sec. 2 for precise de�ni-
tions). For any two edges (s1, r1) and (s2, r2) in a Ras-legal matching connecting
senders s1, s2 to receivers r1, r2, it is required that neither (s1, r2) nor (s2, r1)
are edges contained in the input graph, thus excluding all potential interference.
This is closely related to the notion of an induced matching. A matching is in-
duced if the edges of the subgraph induced by the matched vertices are precisely
the edges of the matching. A Ras-legal matching hence lies somewhere between
a matching and an induced matching, see Fig. 1.

Previous Work on Ras. All previous works on Ras consider the setting where
nodes are points located in the plane with unit length transmission radii [7, 26, 25,
3, 15] 4. This corresponds to the study of Ras in unit disc graphs, which has been
shown to be NP-complete [7]. All algorithms known for unit disc graphs compute
aggregation schedules of lengths Θ(Diam+∆), where Diam is the diameter of

4 In [15], unit interval graphs as well as grids and tori are considered, which are all
subclasses of unit disc graphs.
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Fig. 1. Left: A matching is a subset of vertex-disjoint edges. Center: The edges of
the graph induced by the vertices of an induced matching are precisely the edges of
the induced matching. Right: In a Ras-legal matching, every receiver is connected to
precisely one sender.

the input graph and ∆ the maximal degree. Since every aggregation schedule
is of length at least Diam, these algorithms constitute O(∆)-approximation
algorithms which only give trivial approximation guarantees in graphs with large
maximum degree (e.g. if ∆ = Θ(n)). Despite the considerable e�ort put into the
study of Ras on unit disc graphs, no better approximation ratios are known.

One di�culty in obtaining improved approximation ratios in unit disc graphs
is to bound the length of an optimal aggregation schedule OPT in terms of
properties of the input graph. For instance, in unit interval graphs, it is known
that OPT = Ω(Diam + ω(G)), where ω(G) is the clique number (size of the
largest clique) of the input graph [15]. It is also known how to compute an
aggregation schedule of length O(Diam + ω(G)), which hence constitutes an
O(1)-approximation algorithm (in [15], a 2-approximation is obtained). No in-
teresting bounds on OPT are known for unit disc graphs or any other non-trivial
graph class.

Our Contributions. We initiate a systematic study of Ras, starting with
general graphs. We prove that it is NP-hard to approximate Ras within a factor
of n1−ε (Theorem 4) and (dn)1/2−ε (Corollary 1) even in bipartite graphs,
for any ε > 0, where n is the number of vertices of the input graph and d is

the average degree. On the positive side, we present a Õ(
√
dn)-approximation5

algorithm for sparse general graphs (Theorem 5), almost matching our lower
bound.

Next, we are interested in whether improved algorithms can be obtained for
geometrically de�ned graph classes that contribute to metric-sensitive models
of actual wireless environments. We focus here on interval graphs. They can
be seen as one-dimensional projections of disc graphs that capture the aspect
of di�erent radii, and we present a highly non-trivial O(log n)-approximation
algorithm (Theorem 6). The key part of our analysis is the identi�cation of
subgraphs that provide interesting lower bounds on the length of an optimal
aggregation schedule.

Further Related Work. Aggregation problems have been extensively studied
in the wireless literature; see the surveys [12, 17]. As previously mentioned, Ras

5 We use the notation Õ(.), which equals the usual O(.) notation where all poly-
logarithmic factors are ignored.
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has been considered in unit disc graphs [7, 26, 25, 3, 15] and O(∆)-approximation
algorithms are known. Furthermore, it has also been shown that, in unit disc
graphs, if the interference radius is strictly larger than the transmission radius,
then constant factor approximations can be obtained [25]. Optimal algorithms
are known for grids and tori [14]. In trees, Ras is equivalent to the telephone
broadcast problem, which has a textbook dynamic programming solution [19,
Prob. 6.16]. This exhausts the list of previous work known on Ras.

A di�erent setting for aggregation problems is where the nodes are located at
points in the plane and can use power control to reach any other node. Kessel-
man and Kowalski [18] showed that aggregation can then be achieved in O(log n)
slots. If interference and transmissions follow the geometric SINR model, Mosci-
broda and Wattenhofer [23] showed that poly-logarithmic slots su�ce, which
was improved to optimal O(log n) [16].

For broadcast in the radio model, Chlamtac and Weinstein [8] proved the �rst
upper bound of O(Diam · log2 n), with Diam being the diameter of the graph,
which was improved to O(Diam · log n+ log2 n) soon afterwards by Bar-Yehuda
et al. [5]. The best bound known on the number of rounds, O(Diam + log2 n),
given by Kowalski and Pelc [22], is optimal in light of results of Alon et al. [2]
and Elkin and Kortsarz [10].

The �rst approximation for telephone broadcast was an additive O(
√
n) ap-

proximation [20]. This was improved to a multiplicative O(log2 n)-factor by [24],
and then to O(log n) in [4]. The best approximation known for the problem is
O(log n/ logOPT ) [11], which is O(log n/ log log n), since OPT ≥ log2 n always
holds. The best lower bound known is a factor 3− ε, given in [9].

Outline of the Paper. We give formal de�nitions of our problems in Sec. 2.
Then, in Sec. 3, we present our hardness results for general graphs, and in Sec. 4,
we present our algorithm for sparse general graphs. Finally, in Sec. 5, interval
graphs are discussed.

Due to space restrictions, the proofs of lemmas, theorems, claims and obser-
vations marked by (*) can be found in the appendix.

2 Problem De�nition and Notations

Radio Aggregation Scheduling. We are given as input a graph G = (V,E)
and a node s ∈ V which is the sink node of the aggregation problem. We view
G as a bidirected graph, i.e., all edges appear directed in both directions.

We seek a schedule, which is a sequenceM1,M2, . . . ,Mt of directed matchings
in G. The union ∪iMi of these matchings induces a directed spanning tree (in-
arborescence) A directed toward s. Each matching Mi corresponds to a set of
transmissions that can be successful simultaneously; namely, each matching must
be Ras-legal in G: if (u, v), (w, z) ∈ Mi then (u, z), (w, v) 6∈ E(G). Finally,
the edges of A occur in the matchings in order of precedence induced by the
arborescence: if (u, v) ∈Mi and (v, w) ∈Mj then i < j. Namely, a node can only
forward its message once it has heard from all of its children. Then an optimal
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solution to the Radio Aggregation Scheduling problem (Ras) is a schedule of
minimal length.

Broadcasting in the Radio-unicast Model. Since reversing the slots of an
aggregation schedule gives a broadcast, and vice versa, both viewpoints can be
used to tackle Ras. In the broadcast version of the problem, node s ∈ V is the
source node and holds a message that is to be sent to all other nodes V \ {s} in
the graph. In each round, we seek a Ras legal matching between the informed
nodes (those that know the message) and the uninformed nodes (those that
don't know the message yet). Initially, there is only a single informed node, the
source node s. When an uninformed node receives the message, it joins the set
of informed nodes and can serve as a sender in upcoming rounds. We denote this
communication model where each round induces a Ras-legal matching as the
radio-unicast model. An optimal solution to the broadcasting problem then is a
broadcasting schedule that informs all nodes in the minimal number of rounds.

It turns out that the broadcasting perspective of Ras is more convenient
when presenting our algorithms. All our algorithms solve the broadcasting prob-
lem in the radio-unicast model.

Notation. Let G = (V,E) be the input graph. Unless stated di�erently, n
denotes the number of vertices of G, d the average degree, ∆ the maximum
degree, and Diam the diameter. Those quantities may also appear as functions,
e.g. ∆(H), d(H) and Diam(H) denote the respective quantities of graph H.

We write distG(u, v) for the number of hops between nodes u and v in graph
G. Let NG(u) denote the set of neighbors of vertex u in G, and for a set S of
vertices, let NG(S) = (∪u∈SNG(u)) \ S. We write degG(u) the degree of u in
G. Furthermore, for a graph G, we denote its vertex set by V (G) and its edge
set by E(G). Given a subset of vertices U ⊆ V , we denote the subgraph of G
induced by the vertices U by G[U ].

3 Approximation Hardness of Ras

In this section, we prove that Ras is hard to approximate within factors n1−ε

(Theorem 4) and (dn)1/2−ε (Corollary 1), for every ε > 0. Before giving our lower
bound construction, we introduce further required notations and de�nitions.

Further De�nitions.We denote the chromatic number of a graphG with χ(G),
and the independence number (size of a maximum independent set) with α(G).
Our lower bound construction relies on semi-induced matchings and a speci�c
graph product that we discuss �rst.

A matching is called an induced matching if there is no edge from one end-
point of an edge in the matching to an endpoint of another edge in the matching.
The semi-induced matching has a general de�nition (see [6]) but we only give
the de�nition for bipartite graphs that is simpler and all we need.

De�nition 1 (Semi-induced Matching). Let G = (U, V,E) be a bipartite
graph with a total ordering u1, . . . , un of U . A semi-induced matching is a match-
ing so that if (ui, a) and (uj , b) are in the matching and i < j, then there is no
edge between uj and a.
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Let Im(G) be the size of the largest induced matching of G and Sim(G) the size
of the largest semi-induced matching. Observe that Im(G) ≤ Sim(G), for any
graph G.

Next, we make use of the following graph product:

De�nition 2 (Inclusive Graph Product). The inclusive graph product of
G = (V,E) and H = (V ′, E′), denoted by G ∨H, has vertices {(xG, xH) | xG ∈
V, xH ∈ V ′}. A pair of vertices (xG, xH) ∈ V (G ∨H) and (yG, yH) ∈ V (G ∨H)
is connected i� (xG, yG) ∈ E or (xH , yH) ∈ E′.

We denote Gk = G ∨G ∨ . . . ∨G when there are k copies of G. This graph has
nk vertices.

The following equalities are folklore for the speci�c product we chose:

χ(Gk) = χ(G)k, (1)

α(Gk) = α(G)k . (2)

Intermediate Problem: Induced Matching Cover. We shall consider a
problem on bipartite graphs that is closely related to Ras. Given a bipartite
graph B = (U, V,E), let ImCov(B) denote the minimum number of induced
matchings that together contain (or cover) all the vertices of V . Suppose that
nodes U are informed and nodes V are uninformed. Then, it takes precisely
ImCov(B) rounds in order to inform V . This is summarized in Observation 1.

Observation 1 (*) Let B = (U, V,E) be a bipartite graph. Suppose all the
vertices in U know the message. Then, the minimum number of rounds it takes
to inform V in the radio-unicast model equals ImCov(B).

Lower Bound Construction. In order to prove our hardness result, we will use
the construction of Feige and Kilian [13] which shows that it is hard to determine
whether a graph G on n vertices has small chromatic number χ(G) ≤ nε (�yes
instance�) or has a small independence number α(G) ≤ nε (�no instance�), for
any ε > 0.

Let G be a graph on n vertices as used in the construction of Feige and
Kilian. From G, using a construction similar to the one in [6], we will construct
a bipartite graph Be(G

k) on Θ(nk) vertices so that:

ImCov(Be(G
k)) ≤ χ(G), and (3)

Im(Be(G
k)) ≤ k · n+ α(G)k. (4)

Suppose now that one bipartition of Be(H
k) is informed and the other one is

uninformed. Then, if G is a �yes instance� (i.e. it has small chromatic number),
the whole graph can be informed quickly using Inequality 3 and Observation 1.

Suppose now that G is a �no instance� (i.e. it has small independence num-
ber). Then, by Inequality 4, Im(Be(G

k)) is small, too. Using the obvious relation-
ship ImCov(Be(G

k)) ≥ |V (Be(G
k))|/Im(Be(G

k)), we conclude that ImCov(Be(G
k))

is large which implies that informing the whole graph takes many rounds.
The previous gap-reduction argument is made rigorous in the following. To

this end, for a graph G, we �rst de�ne the graph Be(G).
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De�nition 3. Given a graph G = (V,E), the graph B(G) = (V, V̄ , EB) is a
bipartite graph with a copy of V on each side. There is an edge (v, ū) ∈ EB if
(v, u) ∈ E. The graph Be(G) results from B(G) by adding the edges {(v, v̄) : v ∈
V }.

Next, we prove Inequalities 3 and 4 in Claim 2 and Claim 3, respectively.

Claim 2 (*) Let G = (V,E) be a graph. Then, Be(G) = (V, V̄ , E′) can be
decomposed into χ(G) induced matchings that are pairwise disjoint and together
contain all of V̄ , i.e., ImCov(Be(G)) ≤ χ(G).

Claim 3 (*) Let G be a graph, k an integer. Then, Im(Be(G
k)) ≤ k ·n+α(G)k.

Finally, we prove our hardness results in Theorem 4 and Corollary 1.

Theorem 4. The Ras problem is hard to approximate on bipartite graphs within
a factor of N1−δ, for any δ > 0, where N is the number of vertices.

Proof. We use the gap reduction of Feige and Kilian [13]: for any ε > 0, it is hard
to distinguish between the case (�yes� instance) when a graph G is nε-colorable,
i.e., when χ(G) ≤ nε, and the case (�no� instance) when there is no independent
set of size at least nε, i.e., α(G) < nε.

Let ε be such that 1/ε = 2d1/δe, and let k = 1/ε. Consider Be(G
k) =

(Vk, V̄k, Ek) and let Hk be the graph obtained by adding to Be(G
k) a complete

binary tree of depth O(log |Vk|) whose set of leaves contains Vk. Hk is clearly
bipartite, too. We show that it is hard to approximate the number of rounds in
a Ras schedule of Hk.

Suppose that the root of the binary tree is the source node of the broadcast
problem. Let OPT denote the length of a shortest broadcast schedule. Observe
that informing the nodes of the complete binary tree, and thus also the nodes in
Vk, requires only O(log n) slots. Informing V̄k after Vk has been informed takes
ImCov(Be(G

k)) rounds, by Obs. 1. Thus, OPT = ImCov(Be(G
k)) +O(log n).

If G is a yes-instance, χ(G) ≤ nε, so by Claim 2 and Inequality 1,

ImCov(Be(G
k)) ≤ χ(Gk) = χ(G)k ≤ nkε = n ,

and hence
OPT = ImCov(Be(G

k)) +O(log n) = O(n) .

If G is a no-instance, α(G)k ≤ nkε = n, so by Claim 3, Im(Be(G
k)) = O(n),

and

OPT ≥ ImCov(Be(G
k)) ≥ |Vk|

Im(Be(Gk))
= Ω(nk−1) .

The ratio between the bounds for the two cases is Ω(nk−2). Recalling that
the size of Hk is given by N = |Hk| = Θ(nk), we get that the approximation

hardness is Ω(nk−2) = Ω(N/n2) = Ω(N1− 2
k ) = Ω(N1−δ). ut
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Corollary 1 (*). The Ras problem is hard to approximate on bipartite graphs

within a factor of (dN)
1
2−δ, for any δ > 0, where N is the number of vertices.

Corollary 1 renders our Õ(
√
dn)-approximation algorithm that we present in

the next section essentially best possible.
The graphs used in the proofs of Theorem 4 and Corollary 1 have a diameter

of O(log n). By adding additional edges, their diameters can be reduced to 2.
This shows that unlike in the radio model, broadcasting in the radio-unicast
model is no easier in graphs of low diameter.

4 Õ(
√
dn)-approximation Algorithm

We now present a Õ(
√
dn)-approximation algorithm for Ras in general graphs

G = (V,E) with average degree d. We consider the broadcasting perspective in
the radio-unicast model. Before presenting our algorithm, we discuss simulation
results that allow us to reuse existing algorithms designed for the telephone and
the radio models.

Simulation Between Models.We derive now (rather straightforward) bounds
on Ras schedules, utilizing its relationship to better studied broadcast problems.

Recall that in the telephone model, there are no con�icts if two neighbors of
a node both transmit. However, a node can only transmit to one of its neighbors
in a given round. In the radio model, when a node transmits, its message goes to
all of its neighbors. However, an uninformed neighbor receives the message only
if exactly one of its neighbors is transmitting in that round.

Our problem shares the unicast transmission rule with the telephone model
and the reception con�icts with the radio model. Algorithms for these models
can be simulated in our models.

Lemma 1. A round in the radio (telephone) model can be simulated in ∆ (2∆−
1) rounds in the unicast-radio model, respectively.

Proof. Suppose a set S of nodes transmits in a given round in the radio model.
Assume without loss of generality that the neighbors of each node are ordered
in an arbitrary order. We can then simulate it with ∆ rounds, where in round i,
each node in S forwards the message to its i-th neighbor.

Suppose a directed matching M that corresponds to the transmissions in of
a round in the telephone model. For each edge e ∈M , there are at most 2(∆−1)
edges in M within distance 2 in G. We can color the edges in M ��rst-�t� using
2∆− 1 colors so that each color class induces a Ras-legal matching. ut

Simulating the algorithm of Kowalski and Pelc for radio broadcast [22], and
using Lemma 1, we obtain the following corollary.

Corollary 2. There is a polynomial-time algorithm for Ras that computes an
aggregation schedule of length O(∆(Diam+log2 n)) and thus constitutes a O(∆+
∆ log2(n)/Diam)-approximation algorithm.
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In the previous corollary, we used the fact that Diam is a trivial lower bound
on the length of an optimal schedule. In light of the hardness results in Sec. 3,
this bound is close to best possible.

Complete binary trees with degrees at least log2 n provide examples show-
ing that the O(∆(Diam + log2 n)) bound of Corollary 2 generally cannot be
improved.

Center Selection. Our algorithm uses as a subroutine solutions to a classic
facility location problem. In Center Selection, we are given a graph G =
(V,E), a set X ⊆ V of possible sites for centers, a set C ⊆ V of clients, and a
parameter k. We wish to �nd a set S ⊆ X of k centers, such that the maximum
distance from a client to the nearest center is minimized. For a set of centers
S ⊆ X, let ρ(G,S,C) := maxv∈C distG(v, S) be the covering radius of S in G.
The objective of Center Selection is to �nd an S ⊆ X of cardinality k which
minimizes ρ(G,S,C).

A greedy algorithm, which we denote by Greedy-CS(G,X,C, k), gives a
3-approximation to this problem. 6

Lemma 2 (*). Greedy-CS is a 3-appr. algorithm for Center Selection.

Ras scheme. In Algorithm 1, we present an algorithm for the broadcast prob-
lem in the radio-unicast model. We assume that the optimal value OPT (length
of a shortest broadcast scheme) is known by the algorithm. This can be en-
sured e.g. by running the algorithm multiple times trying the di�erent values
{log n, . . . , n} for OPT and returning the best solution (log n is an obvious lower
bound).

Let s ∈ V be the source node. To keep the presentation simple, we assume

that degG(s) ≥
√
dn. If this is not the case, then we �rst inform an arbitrary

node s′ of degree at least
√
dn in at most OPT rounds which then takes the role

of s. Clearly, the length of a minimum length schedule of the modi�ed instance
with source s′ is at most by OPT longer than the length of a minimum length
schedule with source node s. Hence, by solving the instance with source node s′,
we may lose an additive 2·OPT term. However, since our obtained approximation
factor is polynomial, this factor is negligible. Last, if no node of degree at least√
dn exists, then we simply apply the simulation result of Corollary 2, and we

immediately obtain an Õ(
√
dn)-approximation algorithm.

First, our algorithm informs the large-degree nodes, i.e., nodes L of degree

at least K =
√
dn. The number of large degree nodes is bounded by |L| ≤ K,

as otherwise the degree sum of the graph would be greater than K2 = dn =
2|E(G)|. Thus, by transmitting serially on shortest paths (with no transmissions
occurring simultaneously), the nodes in L can be informed in time O(K ·OPT ).
In order to inform the small-degree nodes V \L, we simulate the radio-broadcast
algorithm of [22] on the subgraph G[C], where C = V \L. To make this work in

6 While the result is surely well known, we were not aware of a reference for this
particular version, and thus include the algorithm and a proof in the appendix for
completeness.
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Algorithm 1 Broadcast in the radio-unicast model for sparse general graphs

Require: G = (V,E) input graph, let K =
√
dn; s source node of degree at least K

1: Let L← {v : degG(v) ≥ K}, C = V \ L, and X = N(L) ∩ C
2: Inform the nodes in L sequentially along shortest paths from s
3: Let S ← Greedy-CS(G[C], X,C,K ·OPT )
4: Inform all nodes in S using single hops from L
5: Simulate the radio broadcast algorithm of [22] on G[C] until all nodes are informed

the desired number of rounds, we have to ensure that for each node in C, there is
an informed node within distance O(OPT ) in G[C]. In the following lemma, we
show that the set S found by the greedy center selection algorithm guarantees
this property.

Lemma 3. Each node in C is within distance at most 3 ·OPT from a node in
S in the induced subgraph G[C], i.e., ρ(G[C], S, C) ≤ 3 ·OPT.

Proof. Let Q be the set of nodes in C that are informed (directly) by nodes in
L in the optimal broadcasting scheme. At most |L| of them can be informed
in a single round, so |Q| ≤ |L| · OPT ≤ K · OPT . The nodes v ∈ C \ Q must
then all satisfy distG[C](v,Q) ≤ OPT and thus ρ(G[C], Q,C) ≤ OPT . The
center selection algorithm Greedy-SC positions K ·OPT ≥ |Q| nodes, that by
Lemma 3 yields a 3-approximation of the covering radius, giving ρ(G[C], S, C) ≤
3 · ρ(G[C], Q,C) ≤ 3 ·OPT . ut

The previous lemma is the main ingredient of the analysis of our main result:

Theorem 5 (*). There is a polynomial time randomized approximation algo-

rithm for Ras with approximation factor Õ(
√
dn).

5 Interval Graphs

Let G = (V,E) be an interval graph. For an interval v ∈ V , denote by l(v)
and r(v) its left and right boundaries. For x, y ∈ R, let G[x, y] denote the sub-
graph of G induced by the intervals that are entirely contained in [x, y], that is,
V (G[x, y]) = {v ∈ V : l(v) ≥ x and r(v) ≤ y}. Furthermore, denote by len(v)
the length of interval v. We write lmax for the length of a longest interval in G.
W.l.o.g., we assume that all interval boundaries are integers in {1, . . . , 2n}, and
all interval boundaries are distinct (every interval graph has such a representa-
tion).

Before presenting our algorithm, we show that the clique number of an in-
terval graph G (the size of a largest clique in G) provides a lower bound for the
length of an optimal schedule. This lemma is similar to Lemmas 2 and 3 of [14].

Lemma 4 (*). OPT ≥ ω(G)/2.
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Next, our algorithm relies on the subroutine Diam-path(G) that, given a
connected interval graph G, returns a shortest-distance path that dominates all
vertices of G.

Diam-path(G). Let u1 ∈ V (G) be the interval with smallest left boundary,
and let u2 ∈ V (G) be the interval with largest right boundary. Let Vp ⊆ V (G)
be the subset of proper intervals, that is, the set of intervals v ∈ V (G) that are
not contained in another interval. In other words, v ∈ Vp if, and only if, there is
no v′ ∈ V (G) with l(v′) < l(v) < r(v) < r(v′). Since all interval boundaries are
distinct, both u1 and u2 are proper intervals and hence in Vp. Diam-path(G)
returns a shortest path from u1 to u2 in the graph G[Vp]. This �diameter path�
has length at most Diam(G).

Algorithm. Similar to our algorithm for sparse general graphs, we assume that
the value of OPT is known. Furthermore, assume that the input graph G is
connected. We will decompose G hierarchically as follows. Let G1 = G and
let P1 = Diam-path(G1). Furthermore, for integers i ≥ 1, let Ui ⊆ V be the
subset of intervals whose lengths are contained in (( 1

2 )ilmax, (
1
2 )i−1lmax]. Then,

we de�ne the subgraph H1 = G[V (P1)∪U1] consisting of intervals of the largest
length class plus a diameter path, where V (P1) denotes the intervals contained
in path P1. As P1 is a diameter path, V (P1) can be informed in Diam(G) time.
In Lemma 5, we will argue that the subgraph H1 is 4-claw-free7, and, using this
property, we will show in Lemma 6 that U1 can be informed in O(OPT ) rounds.
Thus, overall in O(OPT ) rounds, the nodes V (H1) are informed.

Next, given the subgraph Gi, we de�ne inductively Gi+1 ⊆ Gi to be the sub-
graph induced by the set of yet uninformed intervals, that is, Gi+1 = G[V (Gi) \
V (Hi)]. Let Pi+1 be a collection of diameter paths of the connected compo-
nents of Gi+1 as computed by Diam-path, and let Hi+1 = Gi+1[V (Pi+1) ∪
(Ui+1 ∩ V (Gi+1))] consisting of yet uninformed intervals of length class i+1 and
a collection of diameter paths, where V (Pi+1) denotes the intervals contained
in the diameter paths Pi+1. Similar as before, once V (Pi+1) has been informed,
by Lemma 6, we can inform V (Hi+1) in O(OPT ) time. The key part of our
argument is that V (Pi+1) can be informed by V (Pi) in O(OPT ) time, which is
proved in Lemma 7. Our argument shows that given an interval v ∈ V (Pi), there
are at most O(OPT 2) intervals in V (Pi+1) that intersect with v, and we prove
that they can be informed in O(OPT ) time. Thus, for every i, the nodes V (Hi)
can be informed in O(OPT ) rounds.

As lmax ≤ 2n and every interval is of length at least 1, there are O(log n)
length classes. Hence, in O(log(n)·OPT ) rounds, all nodes V (G) can be informed.

Analysis. We are going to prove the following theorem:

Theorem 6. There is a polynomial-time algorithm for Ras in interval graphs
with approximation factor O(log n).

The theorem follows from the previous description of the algorithm together
with the main Lemmas, Lemma 6 and Lemma 7. In Lemma 6, we show that

7 A graph is 4−claw-free, if it doesn't contain the complete bipartite graph K1,4 as an
induced subgraph.
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nodes V (Hi) can be informed in O(OPT ) rounds if nodes V (Pi) are informed,
and in Lemma 7, we show that nodes V (Pi) can be informed in O(OPT ) rounds
if V (Pi−1) are informed.

We �rst state simple observations about the employed quantities in our al-
gorithm.

Observation 7 All intervals in subgraph Gi are of length at most ( 1
2 )i−1lmax.

Observation 8 No interval in V (Hi) \ V (Pi) contains an interval of Pi, that
is, for every v ∈ V (Hi) \ V (Pi) there is no u ∈ V (Pi) such that l(v) < l(u) <
r(u) < r(v).

Observation 8 follows by construction of Pi. The path Pi is constructed via
algorithm Diam-path which only chooses proper intervals.

Next, we show that the graphs Hi do not contain K1,4 as an induced sub-
graph.

Lemma 5 (*). For any i, the subgraph Hi is 4-claw-free.

Last, we prove the main lemmas, Lemma 6 and Lemma 7, that show that the
subtasks of our algorithm can all be performed in O(OPT ) rounds.

Lemma 6. Suppose that the vertices of Pi have been informed. Then, V (Hi)
can be informed in O(OPT ) rounds.

Proof. We color the vertices of Pi alternately with four colors, where each color
is used on every fourth vertex. Since Pi is a diameter path, nodes with the same
color must have disjoint neighborhoods. Processing the colors in sequence, the
nodes of each color inform their neighbors in Hi in parallel. Since Hi is 4-claw-
free, each node has at most 3ω(Hi) ≤ 3ω(G) ≤ 6 · OPT neighbors, and using
Lemma 4, the lemma follows. ut

Lemma 7. Nodes Di+1 can be informed by nodes Di in O(OPT ) rounds.

Proof. Let φi+1 : Di+1 → Di be a mapping so that φi+1(v) = u ⇒ u ∈ N(v).
Next, produce a 4-coloring of Di with color classes D1

i , . . . , D
4
i , as in the proof of

Lemma 6. Iterate now through the color classes Dj
i . In each iteration, all nodes

u ∈ Dj
i inform the nodes φ−1i+1(u) simultaneously as follows: Let C1 . . . Ck denote

the connected components of G[φ−1i+1(u)]. Node u informs every OPT -th interval
of every connected component Cj . If |Cj | < OPT then an arbitrary interval of
Cj is informed. Thus, u requires O(k + |φ−1i+1(u)|/OPT ) rounds. In Claim 9, we

will prove that k = O(OPT ) and |φ−1i+1(u)| = O(OPT 2).

Claim 9 (*) |φ−1i+1(u)| = O(OPT 2) and the number of components of G[φ−1(u)]
is O(OPT ).

Thus, the previous step requires O(OPT ) rounds. Next, the informed nodes of
φ−1i+1(u) inform the uninformed nodes of φ−1i+1(u). Since φ−1i+1(u) is a collection

of paths, and since for every uninformed node of φ−1i+1(u) there is an informed
node within distance OPT , this step clearly can be done in O(OPT ) rounds.
This completes the proof. ut
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A Missing Proofs

Observation 1 Let B = (U, V,E) be a bipartite graph. Suppose all the vertices
in U know the message. Then, the minimum number of rounds it takes to inform
V in the radio-unicast model equals ImCov(B).

Proof. Consider a Ras-legal matching that contains the edges (x, a) and (y, b),
where x, y ∈ U and a, b ∈ V . Note that it is required that (x, b), (y, a) 6∈ E
and hence the Ras-legal matching is an induced matching. Conversely, given an
induced matching, all the vertices in V in the matching receive the message as
there is no interference. ut

Claim 2 Let G = (V,E) be a graph. Then, Be(G) = (V, V̄ , E′) can be de-
composed into χ(G) induced matchings that are pairwise disjoint and together
contain all of V̄ , i.e., ImCov(Be(G)) ≤ χ(G).

Proof. Let C1, C2, . . . , Cχ(G) be the color classes of G. For i ≥ 1, de�ne a match-
ing Mi between Ci and their copies C̄i using the edges (v, v̄), for each v ∈ Ci.
Note that since Ci is an independent set, Mi is an induced matching. By def-
inition, the matchings M1,M2, . . . ,Mχ(G) are vertex disjoint and cover all the
vertices. ut

Claim 3 Let G be a graph, k an integer. Then, Im(Be(G
k)) ≤ k · n+ α(G)k.

Proof. We will use the following inequalities, which appear as Lemma 5.3 and
Corollary 5.1 in [6], respectively.

Sim(Be(G)) ≤ Sim(B(G)) + α(G), (5)

Sim(B(Gk)) ≤ k · Sim(B(G)). (6)

Applying (5) to Be(G
k), followed by Inequality 6 and Inequality 2 gives

Sim(Be(G
k)) ≤ Sim(B(Gk)) +α(Gk) ≤ k ·Sim(B(G)) +α(G)k ≤ k ·n+α(G)k .

The claim then follows from the relationship Im(G) ≤ Sim(G) (that holds for
any graph G). ut

Corollary 1 The Ras problem is hard to approximate on bipartite graphs
within a factor of (dN)

1
2−δ, for any δ > 0, where N is the number of vertices.

Proof. Consider the graphHk from the proof of Theorem 4, and let n = |V (Hk)|.
Let m = |E(Hk)|. Let Ĥd be the graph obtained from Hk by adding a complete
binary tree with Θ(m/d) vertices to the graph and connect the root of the binary
tree to the source node.

Then, N = |V (Ĥd)| = n+Θ(m/d) = Θ(m/d), while the number of edges is
m + Θ(m/d) = Θ(m(1 + 1/d)). The average degree of Ĥd is hence Θ(d). Note
that the introduced binary tree can be informed in Θ(log(m/d)) = Θ(log(n/d))
rounds. Since in any graph OPT = Ω(log n), the introduced binary tree hence
doesn't change the hardness of Ras and it is still hard to approximate it within
a factor of n1−ε. Since dN = Θ(m) = O(n2), the problem is also hard to ap-
proximate within (dn̂)(1−ε)/2. ut
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Theorem 5 There is a polynomial time randomized approximation algorithm

for Ras with approximation factor Õ(
√
dn).

Proof. Suppose that OPT is known to the algorithm. Recall from above that
|L| ≤ K. As any node can be informed in OPT time along a shortest path,
the set L is informed in time OPT ·K (Line 2). The center selection algorithm
Greedy-SC chooses K ·OPT centers S that are adjacent to L in G. Informing
those in Line 4 takes time at most K · OPT , since each requires only a single
transmission from a node in L.

Consider now the graph G[C]. By construction, the maximum degree in G[C]
is at most K. As shown in Lemma 3, the distance in G[C] from an arbitrary
node to an informed node (a node in S) is at most 3 ·OPT . Suppose we form the
graph H consisting of G[C] along with a new node s′ that is adjacent to all the
nodes in S. By the above argument, the diameter of H is O(OPT ), so the radio
broadcast algorithm of [22] uses O(Diam(H) + log2 |V (H)|) = O(OPT + log2 n)
rounds to broadcast information from s′. Running the algorithm on H when all
the nodes in S have been informed will certainly not take more time. Thus, we
can apply our radio broadcast simulation of Lemma 1 to obtain a Ras broadcast
on G[C] in time O((OPT + log2 n)K) = Õ(OPT ·K). ut

Lemma 4 OPT ≥ ω(G)/2.

Proof. Let C be a largest clique of size ω(G) and let x ∈ R such that for every
u ∈ C : l(u) ≤ x ≤ r(u), that is, every interval of the clique intersects x. Suppose
for the sake of a contradiction that three intervals of C are informed in the same
round, that is, there are distinct informed intervals u1, u2, u3 ∈ V and distinct
uninformed intervals v1, v2, v3 ∈ C such that, for i ∈ {1, 2, 3}, ui informs vi.
This implies that for every i, vi is adjacent to ui but not to {u1, u2, u3} \ {ui}.
As the intervals v1, v2, v3 all intersect the point x, one of the three intervals vi,
i ∈ {1, 2, 3} is so that min{l(vj) : j 6= i} < l(vi) < r(vi) < max{l(vj) : j 6= i}.
Then, however, at least one interval vj with j 6= i is also adjacent to ui, a
contradiction. Thus, at most two intervals of C are informed in the same round
which proves the lemma. ut

Lemma 5 For any i, the subgraph Hi is 4-claw-free.

Proof. V (Hi) consists of the intervals of the diameter path Pi, and a subset of
Ui. As the lengths of intervals in Ui di�er at most by a factor of 2, the subgraph
of Hi induced by the vertices V (Hi) ∩ Ui cannot induce a 4-claw. Next, by
Observation 8, no interval of Pi is contained in any interval of Ui. Thus, a 4-claw
in Hi could potentially only exist if an interval v ∈ Pi had four independent
neighbors in V (Hi) ∩ Ui. This, however, implies that len(v) ≥ 2 ·min{len(u) :
u ∈ V (Hi) ∩ Ui} + 2, since two of the four intervals have to be fully contained
in v and the other two have to overlap. The bound can be bounded from below
by 2 · ( 1

2 )ilmax + 2 = ( 1
2 )i−1lmax + 2, a contradiction to Observation 7. Hence,

Hi is 4-claw-free. ut
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Claim 9 |φ−1i+1(u)| = O(OPT 2) and the number of components of G[φ−1(u)] is
O(OPT ).

Proof. Let u1, . . . , uq denote the intervals of φ
−1
i+1(u) ordered from left to right.

Since u3 does not intersect with u1 and u1 intersects with u, u3 is entirely
contained in u. By a similar argument, uq−2 is entirely contained in u. Hence,
all intervals u3, . . . , uq−2 are entirely contained in u.

Let x be the left boundary of u3, and let y be the right boundary of uq−2.
Then, y − x ≤ len(u) ≤ ( 1

2 )i−1lmax, where the second inequality is due to
Observation 7.

Consider now the graph G[x, y]. Note that as y − x ≤ len(u) ≤ ( 1
2 )i−1lmax,

none of the nodes of
⋃
j≤i−1 Uj are contained in V (G[x, y]). Furthermore, as for

every j, Pj consists of proper intervals in Gj , none of the intervals
⋃
j≤i Pj are

included in u and hence in V (G[x, y]). Thus, the only nodes outside V (Gi+1) that
could potentially be contained in G[x, y] are nodes of Ui. Let V

′ = G[x, y] ∩ Ui.
Let C1, . . . , Ck be the components of G[x, y] − V ′. Those components have

to be informed by the nodes N(V (G[x, y]) − V ′). Note that for every w ∈
N(V (G[x, y]) − V ′), either w ∈ V ′, w intersects x, w intersects y, or w in-
tersects both x and y. The key of our argument is that at most four8 intervals
of N(V (G[x, y])− V ′) can inform intervals of V (G[x, y]− V ′) simultaneously in
one round. To see this, observe �rst that it is impossible that two intervals that
both intersect x (or y) simultaneously inform two intervals of V (G[x, y] − V ′)
(see left side of Figure 2). Then, since every interval of V ′ is of length at least
( 1
2 )ilmax and hence at least of length 1

2 (y − x), at most 2 intervals of V ′ may
inform intervals of V (G[x, y]− V ′) simultaneously (see right side of Figure 2).

Fig. 2. Left: Illustration of the fact that two intervals a, b intersecting x cannot inform
two intervals u, v of G[x, y] simultaneously since either u or v is adjacent to both a and
b (in the illustration, u is adjacent to a, b). Right: No three intervals a, b, c of G[x, y] of
sizes at least 1

2
(y − x) can inform three intervals u, v, w of G[x, y] simultaneously (in

the illustration, v is adjacent to both a and b).

Thus, in OPT rounds, at most 4 · OPT intervals of V (G[x, y] − V ′) can be
informed. This immediately proves the second part of the lemma, that is, the
number of components of G[φ−1i+1(u)] is O(OPT ).

To prove the �rst part, for the sake of a contradiction, suppose that |φ−1i+1(u)| >
C ·OPT 2 for a large enough C. Since G[φ−1i+1(u)] is a collection of paths and the

8 By a more precise argument, three can also be argued. Any constant is enough for
our purposes.
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fact that at most 4 ·OPT intervals of φ−1i+1(u) have been informed by nodes out-

side V (G[x, y]−V ′), there exists a node v ∈ φ−1i+1(u) that has not been informed

by V \ φ−1i+1(u) and is at distance at least C · OPT 2/(4 · OPT ) = C · OPT/4
from an informed node. As C is chosen large enough, this implies that more
than OPT rounds are required to inform v, a contradiction. Hence, we have
φ−1i+1(u) = O(OPT 2). ut

B Center Selection Algorithm

We believe that the following algorithm together with Lemma 2 are well-known.
However, since we couldn't �nd a reference for this particular version of the center
selection problem, we include the algorithm and its analysis for completeness.

Algorithm 2 Center Selection algorithm Greedy-CS(G,X,C, k)

Require: Graph G = (V,E), potential sites for centers X ⊆ V , clients C ⊆ V , number
of centers to be placed k

1: S ← {an arbitrary node in C}
2: for i = 1 . . . k − 1 do

3: c← argmaxc′∈C dist(c
′, S)

4: x← argminx′∈X dist(x
′, c)

5: S ← S ∪ {x}, X ← X \ {x}
6: end for

7: return S

Lemma 2 Greedy-CS is a 3-approximation algorithm for Center Selec-
tion.

Proof. Let r = ρ(G,S,C) be the covering radius of the set S as computed by
Greedy-SC. Let S∗ denote an optimal solution and let r∗ = ρ(G,S∗, C) be its
covering radius.

First, suppose that there are two centers x1, x2 ∈ S with dist(x1, x2) ≤ 2
3r.

W.l.o.g. suppose that x1 was inserted into S before x2. Consider the iteration
when x2 was inserted and denote by c the client that was chosen in this iteration
in Line 3. Since c was chosen, we have dist(c, x1) ≥ r. Using this fact and the
assumption dist(x1, x2) ≤ 2

3r, by the triangle inequality, we obtain dist(x2, c) ≥
1
3r. Note that x2 is the node that minimizes the distance to c, and thus we have
r∗ ≥ dist(x2, c) which implies r∗ ≥ 1

3r and proves the lemma for this case.
Assume now that for every two centers x1, x2 ∈ S, we have dist(x1, x2) ≥ 2

3r.
Let x ∈ S be any node and denote by c the selected client when x was inserted
into S. Then, dist(x, c) ≤ r∗. As c is covered in S∗ within distance r∗, there exists
an x′ ∈ S∗ s.t. dist(x, x′) ≤ 2r∗. Suppose that r > 3r∗. Under this assumption
and using the fact that two centers x1, x2 ∈ S are at least a distance 2

3r apart,
there exists an injective mapping φ : S → S∗ so that dist(x, φ(x∗)) ≤ 2r∗. As
|S| = |S∗|, this mapping is a bijection. This, however, implies that r ≤ 3r∗, a
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contradiction. Hence, the assumption that r > 3r∗ was wrong and we deduce
that r ≤ 3r∗ which proves the lemma. ut
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