
Operations Research Letters 44 (2016) 784–789
Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Minimizing the maximum flow time in batch scheduling
Sungjin Im a,∗, Hoon Oh b, Maryam Shadloo a

a University of California at Merced, Merced, CA, United States
b Rutgers University-Camden, Camden, NJ, United States

a r t i c l e i n f o

Article history:
Received 27 May 2016
Received in revised form
29 September 2016
Accepted 29 September 2016
Available online 6 October 2016

Keywords:
Batch scheduling
Broadcast scheduling
Maximum flow time
Approximation
Resource augmentation

a b s t r a c t

We consider the maximum flow time minimization problem in batch scheduling, which is a capacitated
version of broadcast scheduling. In this setting, n different pages of information are available at the server
which receives requests from clients over time for specific pages. The server can transmit atmost one page
p at each time to satisfy a batch of requests for the same page p, up to a certain capacity Bp. In this paper
we give the first (1 + ϵ)-approximations for this problem with arbitrarily small resource augmentation,
using either more capacity or more speed.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In batch scheduling, there is a server that stores n different
unit-sized pages of information. Each client submits to the server
a request ρ at time rρ asking for a specific page pρ . The server
can transmit at most one page p at each time to satisfy up
to Bp outstanding requests of the same page p simultaneously;
the capacity Bp can be different for each page. Processing a
batch of requests together is a popular method to increase the
server’s throughput. Not surprisingly, batch scheduling appears in
various forms in numerous applications, not only in server–client
scheduling, but also in manufacturing lines; for pointers of the
applications, see [7].

Broadcast scheduling is a special case of batch scheduling
which has received considerable attention in theoretical computer
science. The only difference is that in broadcast scheduling there
is no limit on the number of requests the server can aggregate at
a time, i.e. Bp = ∞ for all p. In other words, batch scheduling is a
capacitated version of broadcast scheduling. However, as discussed
in [2], capacities are often present in practice. For example, there
could be a limit on the number of clients a server can serve at a
time.

What makes batch/broadcast scheduling algorithmically chal-
lenging is that the scheduler could aggregate more requests by

∗ Corresponding author.
E-mail addresses: sim3@ucmerced.edu (S. Im), ho62@rutgers.edu (H. Oh),

mshadloo@ucmerced.edu (M. Shadloo).

http://dx.doi.org/10.1016/j.orl.2016.09.016
0167-6377/© 2016 Elsevier B.V. All rights reserved.
waiting for other requests arriving in the future for the same page.
While the server can increase throughput by doing so, it makes
earlier arriving requests wait longer, thereby making the clients
submitting those requests unhappy. Such a tradeoff becomesmore
challenging in batch scheduling since the scheduler also has to fac-
tor in batch sizes. A request ρ’s flow time is defined as its comple-
tion time Cρ minus its arrival time rρ and measures how long the
request waits since its arrival until its completion time. When re-
quests compete to get served earlier, a popular way of combining
the flow time of individual requests is to consider flow time objec-
tives such as total flow time or the maximum flow time.

In this paper, we study the objective of minimizing the
maximum flow time, i.e. maxρ(Cρ − rρ) in the batch scheduling
setting. In broadcast scheduling, First-In-First-Out (FIFO) is known
to be a 2-approximation [3,5]. At each time, the algorithm FIFO
transmits the page of an outstanding request with the earliest
arrival time; notice that FIFO is in fact an online algorithm since
it does not need to know requests arriving in the future. It was
subsequently shown that no online algorithms can be better
than 2-competitive [3,4]. The open question whether there exists
a better than 2-approximation was recently answered in [7],
which gave a PTAS using a variant of α-point rounding and
dynamic programming (DP). The work in [7] essentially closed
the complexity of the problem in broadcast scheduling since the
problem was already known to be strongly NP-hard [3].

The main goal of this paper is to understand the complexity
of the maximum flow time objective in batch scheduling, which
captures capacity constraints commonly appearing in practice.
A recent work shows that FIFO is still 2-competitive in batch

http://dx.doi.org/10.1016/j.orl.2016.09.016
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.09.016&domain=pdf
mailto:sim3@ucmerced.edu
mailto:ho62@rutgers.edu
mailto:mshadloo@ucmerced.edu
http://dx.doi.org/10.1016/j.orl.2016.09.016

S. Im et al. / Operations Research Letters 44 (2016) 784–789 785
scheduling [6] as it is in broadcast scheduling. Our work started
from the question if there exists a better than 2-approximation in
batch scheduling.

1.1. Our result

Our main result is the first (1 + ϵ)-approximations with
arbitrarily small resource augmentation. We consider two types
of resources augmented, capacity and speed. In the capacity
augmentation model, the algorithm is allowed to satisfy up to
(1 + δ)Bp requests of page p by one transmission of page p
and is compared against the optimal scheduler subject to the
original capacity Bp for every p. In this model, if the algorithm’s
objective is at most c times the optimum for all inputs, we say that
the algorithm is a (1 + δ)-capacity c-approximation. We believe
that capacity augmentation model is reasonable since capacities
are specified only approximately in practice when capacities are
large—if all capacities are constants, we obtain a PTAS without any
resource augmentation; see Section 2.2.

In the speed augmentation model, both the algorithm and the
optimal scheduler are subject to the same capacities, but the
algorithm is given an extra speed. If it is given 1 + δ speed, it
is allowed to make one additional transmission than the optimal
scheduler in every ⌊1/δ⌋ time steps. In this model, we say the
algorithm is a (1 + δ)-speed c-approximation if the algorithm’s
objective is at most c times the optimum for all inputs. Speed
augmentation is widely considered in the scheduling literature [8].

Theorem 1. Let m denote the number of requests. For minimizing the
maximum flow time in batch scheduling, for any ϵ > 0 and δ > 0,
we have the following approximations:

1. [Section 2.3] a (1 + δ)-capacity (1 + ϵ)-approximation with

running time mO


1
ϵ4δ2


; and

2. [Section 2.4] a (1+ δ)-speed (1+ ϵ)-approximation with running

time mO


1
ϵ3δ
·log(1/(ϵδ))


.

We also show how to obtain a quasi-polynomial time approxi-
mation scheme (QPTAS) without using any extra resources in Sec-
tion 2.1. Currently, we do not know how to obtain a true PTAS,
which we leave as an open problem.

1.2. Overview of our approach

At a high level, we closely follow the PTAS framework used
in [7] for broadcast scheduling, which combines DP and a variant of
α-point rounding. We discuss how we modify each part to obtain
our result in batch scheduling. We first discuss the rounding part.
The rounding part is used when the optimum, opt is large, say
opt ≥ Ω(logm) where m is the number of requests. A standard
linear programming (LP) used in broadcast scheduling is the
following: variable xp,t denotes howmuch page p is transmitted at
time t , andwe need constraints that (i) page pmust be transmitted
within opt time steps after every time the page is requested, and
(ii) at most one page can be transmitted at each time. In batch
scheduling, we need to add more constraints to factor in capacity
constraints. For every page p and every interval I = [t1, t2], we
ensure that (i′) at least ⌈mp,I/Bp⌉ transmissions are made for page
p during [t1, t2 + opt], where mp,I is the number of requests made
during I for page p. This new constraint, together with (ii), turns
out to be necessary and sufficient conditions for a feasible integral
solution to correspond to a schedule with the maximum flow time
at most opt.

We use the same variant of the α-point rounding used in [7].
We give a quick overview of the rounding scheme explaining how
it works well with the new LP constraint. After solving the LP,
we obtain a fractional solution {xp,t} and would like to round
it. A standard α-point rounding picks a random value αp from
[0, 1] uniformly and independently for each page p, then attempts
to transmit page p at the first time t when the accumulative
transmission of page p, i.e.


t ′≤t xt ′p becomes greater than αp

plus each non-negative integer. Note that a new transmission of
page p is made before the LP solution accumulates another unit
of transmissions of page p. Hence due to the constraint (i), we
obtain a temporary schedule with themaximum flow time at most
opt. However, the temporary schedule may be infeasible since it
may make too many transmissions during a short interval, which
translates into a large increase of the objectivewhen it is converted
into a feasible schedule. Roughly speaking, a large number of
pages/random variables result in a large variance in congestion.
To overcome this issue, [7] partitioned pages into O(opt) groups
and used only one random variable of the maximum value at most
1 for each group, therefore was able to have a small congestion
over all intervals w.h.p. The new rounding kept the key property
that a new transmission of page p is made before the LP solution
accumulates another unit of transmissions of page p. Thus, the
new constraint (i′) we use for batch scheduling ensures that the
rounding scheme makes enough transmissions in the temporary
schedule while using a small number of random variables. The
rounding can be de-randomized using the method of pessimistic
estimators [9].

We now discuss the DP part which is used when opt =
O(logm). It is easy to see that in an optimal solution, the number
of distinct pages of requests alive at a time is at most opt. Using
this observation, if Bp = O(1) for all p, one can obtain an optimal
schedule via a DP that keeps track of the number of outstanding
requests for each page. In the capacity augmentation model, by
adding some dummy requests and using an appropriate scaling,
we reduce the general problem to the case where all capacities are
constants. In the speed augmentation model, we use a different
idea. We make an extra transmission of page p before we have
too many possibilities for the number of alive requests of the page
p—the transmission is used to simplify the number. Here we
carefully decide which pages to transmit using extra speed since
we are allowed to make only one extra transmission in every 1/δ
time steps.

1.3. Related work

In batch scheduling, [6] studied online algorithms for flow
time objectives. Specifically, [6] showed O(1)-speed O(1)-capacity
O(1)-competitive algorithms for the total flow time objective and
the more general ℓk-norms of flow time. As mentioned before, [6]
also showed that FIFO is 2-competitive for themaximum flow time
objective. For the best offline results on flow time objectives in
broadcast scheduling, see [1,7].

1.4. Notation and organization

Let T := maxρ rρ + m be the last time we need to consider
in our schedule. In other words, any ‘reasonable’ algorithm can
complete all requests by time T . As observed in [7], one can assume
w.l.o.g. that T = O(m2). This is because if there is an idle time
period of length more than m, one can break the instance into
two disjoint instances since the earlier arriving requests can be
satisfied by any reasonable algorithm before the other requests
arrive. We will show algorithms with running time polynomial (or
quasi-polynomial) inm and T , whichwill imply the desired results.

For notational convenience, we will use a model that is slightly
different from but equivalent to the previously studied models.
At each time, first a set of requests arrive, and then a page is
transmitted to satisfy requests that have arrived but have not been

786 S. Im et al. / Operations Research Letters 44 (2016) 784–789
satisfied/completed. Note that in this model a request may have
flow time0. This is not a problem in the study of themaximum flow
time objective since we can solve the problem optimally when the
optimum is a constant; see Section 2.1. Our algorithm can be easily
adapted to the previously studied models.

Consider an arbitrary schedule. We let At denote the set of re-
quests alive at time t . Whenwe say that a request ρ is alive at time
t , we mean that it is just after we make a transmission at the time.
We say that a page p is alive at time t if there is a request in At
for the page. For a set R of requests, let P(R) denote the pages re-
quested by a request in R. Thus, P(At) refers to the set of pages alive
at time t . Let R(·) denote the set of requests satisfying the condition
specified in the subscript. For example, Rr≤t is the set of requests
arriving by time t .

Using a standard binary search we can assume w.l.o.g. that we
know the value of the optimum, opt. We consider the two cases,
opt = O(1

ϵ3
log T) and opt = Ω(1

ϵ3
log T) in Sections 2 and 3,

respectively.

2. Case opt = O(1/ϵ3) log T

In this section we handle the case when opt = O(1/ϵ3) log T
using the (DP). We first study simpler cases when opt = O(1)
or maxp Bp = O(1) as a warm-up while observing that we can
solve the general case optimally in quasi-polynomial time. Then,
we proceed to give polynomial time algorithms for the general case
in the capacity and resource augmentation models in Sections 2.3
and 2.4, respectively. As we will see in Section 3, the running time
of our algorithms will be dominated by that of the DPs we show in
this section.

2.1. Warm-up: opt = O(1)

We show that we can solve the problem optimally when opt =
O(1). We say that a set of requests alive at time t , At , is achievable if
there is a feasible schedule up to time t where all requests in Rr≤t ,
except exactly At , are satisfied by time t and have flow time atmost
opt, and At ⊆ Rt−opt<r≤t ; requests arriving by time t− optmust be
satisfied by time t . Clearly, it must be the case that |P(At)| ≤ opt
since we have to satisfy all requests in At within opt time steps. Let
At be a collection that includes all possible At . We want to bound
|At |. By expressing At as the number of requests for each page in
P(At), we have that |At | ≤ m2opt. This is because |P(At)| ≤ opt,
each page in P(At) has at most m possibilities, and there can be at
mostm alive requests for each page p.

We construct a DP table with entries {DP(t, At)}t,At∈At where
At ⊆ Rt−opt<r≤t ; note that At can only include requests that have
been waiting for less than opt times steps since their arrival. From
the above discussion, the table size ismanageable, atmostm2opt

·T .
Each entry DP(t, At) has value either true or false, and is set to true
if and only ifAt is achievable.We can fill out theDP table as follows:
DP(t, At) is true if and only if there is an entry DP(t − 1, At−1)

with true value such that we can obtain At by removing up to Bp
requests of a certain page p from At−1 ∪ Rr=t . The time needed to
fill out the entire table is only poly(m) factor larger than the DP
table size. Notice that there is a schedule with the maximum flow
time at most opt if and only if DP(T ,∅) is true—such a schedule,
if it exists, can be recovered using a standard traceback method.
Therefore, the case that opt = O(1) can be solved optimally. Note
that the table size T · m2opt is quasi-polynomial in m in the worst
case when opt = O(log T), thus we can get a QPTAS for the general
case, together with the PTAS for the case that opt = Ω(log T)

which we will present in Section 3.
2.2. Warm-up: B := maxp Bp = O(1)

In this case wemake another observation to reduce the number
of possibilities of P(At)—our argument in the previous section only
gives a very loose upper bound ofmopt, which is not useful since opt
is no longer a constant. Note that |P(Rt−opt<r≤t)| ≤ 2opt since all
requests inRt−opt<r≤t must be satisfied during (t−opt, t+opt]. Also
we know P(At) ⊆ P(Rt−opt<r≤t). Thus, the number of possibilities
of P(At) is upper bounded by 22opt

= 4opt. Now for a fixed P(At),
we would like to count the number of possible {np,t}p∈P(At) where
np,t is the number of requests of page p alive at time t . Knowing
that


p∈P(At) np,t ≤ Bopt and |P(At)| ≤ opt, the number of

possibilities of {np,t}p∈P(At) is at most


Bopt+opt
opt


≤ 2(B+1)opt; see

Proposition 1. Therefore, we have |At | ≤ 2(B+3)opt. Since B = O(1)
and opt = O(logm) for any fixed ϵ, we have a poly-sized DP table
which we can complete in polynomial time.

Proposition 1. Let z1, z2, . . . , zk be variables which can take non-
negative integer values. The number of {zi}i∈[k] satisfying the

inequality
k

i=1 zi ≤ L is


L+k
k


≤ 2L+k.

2.3. General case under capacity augmentation

In this section we give a (1 + ϵ)-approximation for the case
opt = O(1

ϵ3
log T) assuming that our algorithm can handle (1+ δ)

larger batches than the optimal scheduler. Our main idea is to
cluster requests of the same page to reduce the general case to
the constant B case, which we already know how to solve. To
streamline our presentation, we assume that 1/ϵ, 1/δ and ϵopt are
all integers; the last assumption is w.l.o.g. since we can solve the
case when opt = O(1) optimally.

We take the following two preprocessing steps to simplify the
instance. We say a time t is a grid time if it is an integer multiple
of ϵopt.

1. Shift each request ρ’s arrival time to the right to the closest grid
time, i.e. ϵopt


rρ

ϵopt


.

2. Consider each page p with Bp ≥
2
δλ

where λ := δϵ/4: Let
B′p be the largest integer no greater than Bp that is an integer
multiple of 1/λ; note that B′p ≥

2
δλ
. Round up mp,t , the number

of requests arriving for each page p at time t , to the nearest
integer multiple of λB′p, i.e. λB

′
p


mp,t
λB′p


. Replace Bp with 4(1+δ)

ϵδ

andmp,t with


mp,t
λB′p


(scaling down Bp and mp,t).

Note that we have B := maxp Bp ≤
8

ϵδ2
after the above

modifications. Recall that T = O(m2) and we have shown that the

DP is of size atmost T ·2(B+3)opt
= mO(1

ϵ4δ2
). This shows the running

time in the capacity augmentation model claimed in Theorem 1.
It now remains to show that the above reduction is valid. It

is obvious that the first modification increases the optimum by
at most ϵopt since delaying the entire optimal schedule by ϵopt
is a feasible schedule for the modified instance. For notational
convenience, assume that there is a schedule with the maximum
flow time at most opt for this modified instance; this is w.l.o.g. due
to the asymptotic bounds claimed in the theorem.

We now show that even after we increase mp,t for some
pages in the second modification, the optimal objective does not
increase when strengthened with (1 + δ) capacity augmentation.
The schedule will remain the same except that it may have to
satisfy more requests for page p by one transmission, namely up
to (1 + δ)B′p. To see this, consider a transmission of page p. Say
the transmission is made at time t . The transmission satisfies some

S. Im et al. / Operations Research Letters 44 (2016) 784–789 787
requests arriving during [t − opt, t]. Here we let the transmission
satisfy the extra requests of page p we added during [t − opt, t].
Hence in the worst case, the number of requests it should satisfy is
at most λB′p(

1
ϵ
+1)+Bp ≤

δ
2B
′
p+B′p+1/λ ≤ (1+δ)B′p; there are at

most 1/ϵ+1 grid times during the interval, requests arrive only at
grid times after the first modification, and at most λB′p requests of
page p are added at each grid time. Further, note that since we only
increased mp,t , a schedule for the modified instance can be easily
translated into one for the original instance without increasing the
maximum flow time.

Finally, we briefly discuss whywe can replace Bp with 4(1+δ)

ϵδ
for

some pages p. Note that the number of requests of page p arriving
at time t ,mp,t and (1+δ)B′p are both integermultiples of λB′p. What
this means is that the number of requests for page p alive at each
time is always an integermultiple of λB′p. Hencewe can scale down

the numbers by a factor of λB′p; notice that
(1+δ)B′p

λB′p
=

4(1+δ)

ϵδ
.

2.4. General case under speed augmentation

In this section we give a (1 + ϵ)-approximation for the case
opt = O(1

ϵ3
log T) assuming that our algorithm can make one

additional transmission in every 1/δ time steps. Assume that
ϵ, δ ≤ 1/10. For simplicity, assume that 1/δ, 1/ϵ, and ϵδopt are
all integers. We also assume w.l.o.g. that requests arrive and are
satisfied only at grid times (integer multiples of ϵopt), and at most
ϵopt transmissions are made at each grid time. As observed in [7],
this will increase the approximation factor by a factor of at most
(1 + 2ϵ). We assume that there is a schedule with the maximum
flow time opt; this is w.l.o.g. due to the asymptotic bound claimed
in Theorem 1. Since we have (1 + δ)-speed augmentation, we are
allowed tomake up to (1+ δ)ϵopt transmissions at each grid time.

In the speed augmentation model, we cannot add a small num-
ber of requests at every grid time for each alive page to simplify the
instance as we did in the capacity augmentation model. This is be-
cause even an extra request may force the algorithm to make one
more transmission, but we only have (1+ δ)-speed augmentation.

The key idea is to make an extra transmission of page p before
the number of possibilities of np,t becomes unaffordable. Here np,t
denotes the number of requests of page p that are alive at time t
in a certain schedule in consideration; this is different from mp,t
which denotes the number of requests arriving at time t for page
p. When we make a transmission of page p at time t using speed
augmentation (this is one of the ϵδopt extra transmissions made
at each grid time), we ensure that Bp | np,t (np,t is divisible by
Bp) after the transmission. At each time, at most one transmission
will be made using speed augmentation for each page. Thus we
can assume that at each grid time we first make ϵopt ‘regular’
transmissions and then at most ϵδopt ‘extra’ transmissions. A
regular transmission of a page is used to satisfy as many requests
of the page as possible in FIFO fashion. In contrast, we use an extra
transmission of page p only to have Bp | np,t .

We now describe howwe find the extra pages we will transmit
using speed augmentation. We will mark some pages at each grid
time andwill make an extra transmission of page p at time t if page
p is marked at the time. To describe the marking procedure, we
need to defineWp for each page p. We say that two requests ρ and
ρ ′ for the same page p are adjacent if rρ ≠ rρ′ and no requests
arrive for page p between times rρ and rρ′ . We can assume w.l.o.g.
that any two adjacent requests ρ and ρ ′ for the same page arrive
within opt time steps since otherwise, no transmission of page p
can satisfy requests arriving no later than ρ and those arriving no
earlier than ρ ′ simultaneously; herewe assumed rρ < rρ′ . For each
page p, define Wp := [min{rρ : pρ = p},max{rρ : pρ = p} + opt],
which we call page p’s window. Notice that we can assume w.l.o.g.
that the optimal schedule transmits page p only duringWp. We are
now ready to describe the marking procedure.
Marking procedure: Consider times in increasing order. There is a
queueQt containing all pages p such that t ∈ Wp. Each page p ∈ Qt
is associated with its most recent marking time up. At each grid
time t , up ← t if the page has not been requested yet. At each grid
time t , we choose up to δϵopt pages with the smallest up and let
up ← t for such pages p.

Lemma 1. Let τp,t denote the latest (grid) time no later than t when
p is marked. For any time t and any page p such that t ∈ Wp, we have
t − 3opt/δ < τp,t ≤ t.

Proof. For the sake of contradiction, let t∗ be the first time t such
that for some page p, t ∈ Wp and page p is not marked at any
time during I = (t − 3opt/δ, t]. Note that we make 3optmarkings
during I . A crucial observation is that no page is markedmore than
once during I sincewhen a page q ismarked, its latestmarking time
uq will become greater than up and page p is not marked during
(t−3opt/δ, t]. Let Q denote the set of pagesmarked during I . Note
that |Q | ≥ 3opt. Let t1 := t − 3opt/δ be the start time of I . Note
that for any q ∈ Q , t1 ∈ Wq. This is because otherwise either q
has not been requested till time t1, thus uq is greater than up, or
all requests of page qmust have been completed before time t1. In
either case, q ∉ Q . Hence any page q in Q is requested during [t1−
opt, t1], meaning that all pages in Q must be transmitted during
[t1 − opt, t1 + opt] at least once. Since at most (1 + δ)(2 + ϵ)opt
transmissions can be made during the interval and |Q | ≥ 3opt, we
have a contradiction. �

The following lemma implies that there exists a (1 + δ)-speed
schedule with a good structural property that is as good as the
optimal schedule. The proof immediately follows by applying
Lemma 1 to the optimal schedule.

Lemma 2. There exists a (1+ δ)-speed schedule with the maximum
flow time at most optwhere for any p and t, if np,t > 0, then there is
a time t − 3opt/δ < t ′ ≤ t such that Bp | np,t ′ . Further, at each grid
time t, the schedule makes an extra transmission of page p if and only
if p is marked at the time t.

As before, we count |At |, the number of possibilities of At at
each time t , which we can reduce using Lemma 2.

Lemma 3. For any t, |At | ≤ (144
ϵ2δ2

27/δ)opt.

Proof. Fix a time t and p ∈ P(At). By Lemma 1, τp,t can have at
most 3

ϵδ
different values. Let τ ′p,t be the latest time t ′ no later than

t such that Bp | np,t ′ . Note that τp,t ≤ τ ′p,t . By definition of τ ′p,t , we
know that at least one request is alive for page p at each timeduring
(τ ′p,t , t]. This implies that every transmission of page pmadeduring
(τ ′p,t , t] satisfies exactly Bp requests, meaning that np,τ ′p,t

and zp, the
number of transmissions of page pmadeduring (τ ′p,t , t]determines
np,t .

Let N(·) denote the number of possibilities of what is inside the
parentheses. We first upper bound N(P(At)). Note that P(At) ⊆
P(Rt−opt<r≤t), and |P(Rt−opt<r≤t)| ≤ 2(1 + δ)opt ≤ 4opt. Hence
we have N(P(At)) ≤ 24opt. Now we bound N({τ ′p,t}p∈P(At)) for each
fixed P(At). As mentioned before, each τ ′p,t can have at most 3

ϵδ

different values. Hence, N({τ ′p,t}p∈P(At)) ≤ (3
ϵδ

)2opt for each fixed
P(At); note that |P(At)| ≤ (1 + δ)opt ≤ 2opt since all pages
alive at time t must be transmitted at least once by time t + opt.
Since τ ′p,t ≥ t − 3opt/δ, we have that


p∈P(At) zp ≤ 3(1 +

δ)opt/δ ≤ 6opt/δ. For each fixed P(At), by Proposition 1, we have
that N({zp}p∈P(At)) ≤ 26opt/δ+2opt

≤ 27opt/δ; recall that δ ≤ 1/10.
Hence |At | ≤ 24opt

· (9
ϵ2δ2

)opt · 27opt/δ
= (144

ϵ2δ2
27/δ)opt. �

788 S. Im et al. / Operations Research Letters 44 (2016) 784–789
The DP used here is slightly different from the ones used in
the previous sections since we have to decide the ϵ(1 + δ)opt
transmissions we make at each grid time. Let Pt denote the multi-
set of pages we transmit by regular transmissions at time t . Let
t ′ = t − ϵopt. Each entry DP(t, At) is set to true if and only if
there are At ′ and Pt such that At is achieved from At ′ ∪ Rr=t by
transmitting pages in the multi-set Pt and rounding down np,t to
the nearest integermultiple of Bp,t for each page p that ismarked at
time t . From the proof of Lemma 3, it is easy to see that the number
of possibilities of Pt is upper bounded by 24opt

· 27opt/δ
≤ 28opt/δ;

here we did not optimize this loose bound. Therefore, we conclude
that the running time of the DP is at most (144

ϵ2δ2
215/δ)opt, in which

small poly(m) factors are omitted due to the asymptotic bound of
O(1

ϵ3
log T) on opt. An elementary calculation gives the running

time claimed in Theorem 1 for the speed augmentation model.

3. Case opt ≥ (1/ϵ3) log T

We consider the following integer programming problem that
determines if there is a feasible schedule with the maximum flow
time of at most opt. Let mp,I :=


t∈I mp,t . See Section 2.4 for the

definition ofmp,t and Wp.
t1≤t≤t2+opt

xp,t ≥ ⌈(mp,[t1,t2]/Bp)⌉ ∀p, t1 ≤ t2 ∈ [T] (1)
p

xp,t ≤ 1 ∀t ∈ [T] (2)

xp,t = 0 ∀p, t ∉ Wp; xp,t ∈ {0, 1} ∀p, t ∈ [T].

Lemma 4. The above IP exactly captures the maximum flow time
problem in batch scheduling. In other words, there exists a one-to-one
mapping between a feasible solution to the IP and a feasible schedule
with the maximum flow time at most opt.

Proof. We will first discuss what each constraint captures. The
first constraint ensures that all requests must be completed within
opt time steps. The second constraint states that at most one
page can be transmitted at each time. The third implies that no
transmission ismade if it cannot be used to satisfy a request within
opt time steps.

The claimed one-to-one mapping is naturally defined from
what xp,t is meant to encode: xp,t = 1 if and only if page p is
transmitted at time t , and requests for the same page are satisfied
in FIFO order. To establish the one-to-one mapping, first consider
an arbitrary schedule σ with the maximum flow time at most opt.
Then, we know that to satisfy requests arriving during [t1, t2] for
page p, we need to transmit page p at least ⌈mp,[t1,t2]/Bp⌉ times
during [t1, t2+opt], which is exactly what the first constraint says.
It is obvious that {xp,t} derived from σ satisfies other constraints.

We now show the opposite direction. Let {xp,t} be an arbitrary
feasible solution to the IP and σ the schedule corresponding to the
IP solution. We show that every request has flow time at most opt
in σ . Let Cρ denote the time when ρ is completed/satisfied. For the
sake of contradiction, let ρ∗ be a request with flow time greater
than opt, that has the earliest completion time. Let p = pρ∗ . Let t ′
be the latest time t before Cρ∗ such that a transmission of page p at
time t satisfied less than Bp requests; if the timedoes not exist, let t ′
be the first timewhen a request arrives for page p, minus 1. Clearly,
any request arriving by time t ′ is satisfied by time t ′ and has flow
time at most opt by the definition of ρ∗. We use the first constraint
with t1 = t ′ + 1 and t2 = rρ∗ . We know that mp,[t1,t2] requests
arrive during [t1, t2] for page p, and we transmit page p during
[t1, t2+opt], ⌈

mp,[t1,t2]
Bp
⌉ times. Note that each transmission satisfies

exactly Bp requests by the definition of t ′ and t1. This means that
ρ∗ must be satisfied by time t2 + opt, which is a contradiction to
the assumption that ρ∗ has flow time greater than opt. �
We relax the IP by replacing the last constraints with xp,t ≥ 0.
Let us call the resulting LP as LPMaxFlow. We solve LPMaxFlow and
let x∗p,t denote the optimal fractional solution. As mentioned, we
use the rounding scheme developed in [7]. For completeness, we
summarize the rounding scheme and explain how it works for
batch scheduling.

Pages are partitioned into groups G such that all pages in the
same group g ∈ G have disjoint windows. It was shown in Lemma
2.2 in [7] that 2opt groups are enough for this partition using the
structural property that any two ‘adjacent’ requests of a page p
must be made within opt − 1 time steps. Here, we get a slightly
looser bound, |G| ≤ 2opt + 1 because in this paper we allow
a request to be eligible to be satisfied upon its arrival, hence we
can only have that any two ‘adjacent’ requests of a page pmust be
made within opt time steps; see the definition ofWp in Section 2.4.
However, the remaining analysis in [7] remains exactly the same
since constants were not optimized there.

For each group g ∈ G, define a cumulative amount of trans-
mission made by the fractional solution. Formally, define y∗g,t :=

p∈g


t ′≤t x
∗

p,t ′ . Now for each group g , pick αg from [0, 1] uni-
formly at random. We will obtain a tentative schedule σtemp and
transform it to σfinal. In σtemp, all requests are satisfied within opt
time steps, andmore than one transmission can bemade at a time.
In σtemp, for each group g , we transmit a page p ∈ g at the earliest
time t when y∗g,t − αg ≥ k for each non-negative integer k. The
grouping is done so that for any time t , there is at most one page
p ∈ g with x∗p,t > 0. Then we transform σtemp into the final feasible
schedule σfinal by rescheduling transmissions in FIFO fashion. More
precisely, we keep the order of transmissions, breaking ties arbi-
trarily, and ensure that every transmission should bemade no ear-
lier in σfinal than σtemp. Also it is ensured that σfinal make atmost one
transmission at each time. We will show that the integral solution
corresponding to σfinal is feasible to the IP with opt replaced with
(1 + 6ϵ)opt w.h.p., meaning that it represents a feasible schedule
with the maximum flow time at most (1+ 6ϵ)opt.

Proposition 2 immediately follows by observing that the LP
solution x∗ transmits page p by at least ⌈

mp,[t1,t2]
Bp
⌉ units during

[t1, t2 + opt], and the rounding scheme guarantees to make
one transmission of page p before the fractional solution x∗
accumulates another unit of transmission of the page p.

Proposition 2. The IP solution corresponding to σtemp satisfies the
constraint (1).

We complete the analysis by showing that w.h.p. no request’s
flow time increases toomuch in the transformation from σtemp into
σfinal. It was shown in [7] that the increase in the objective is upper-
bounded by the global overflow, maxI OF(I) where Qtemp(I) is the
number of transmissions made in σtemp during time interval I and
OF(I) := max{Qtemp(I) − |I|, 0}. In words, OF(I) measures how
manymore transmissions are attempted tomake during I than are
allowed.

We now upper-bound the overflow during each fixed interval
I as follows. The proof uses the facts that there are O(opt) random
variables that contribute to the overflow, and each randomvariable
corresponding to each group can contribute to the overflow OF(I)
by at most one. More precisely, for each group g , depending on
the value of αg , we make transmission of pages from g either
⌈


t∈I


p∈g x
∗
p,t⌉or ⌊


t∈I


p∈g x

∗
p,t⌋ times during I—in the former

case, g contributes to OF(I) by ⌈


t∈I


p∈g x
∗
p,t⌉−


t∈I


p∈g x

∗
p,t .

Since we use the same rounding method, we get the same upper
bound on the overflow which was shown in [7].

Lemma 5 ([7]). Suppose that opt ≥ 1
ϵ3

log T . Then for any interval
I, Pr[OF(I) ≥ 6ϵopt] ≤ 1/T 3.

S. Im et al. / Operations Research Letters 44 (2016) 784–789 789
Finally, by applying a union bound over all possible intervals
(at most T 2), we have that maxI OF(I) is at most 6ϵopt w.h.p. As
mentioned before, this implies that each transmission moves to
the right by at most 6ϵopt time steps from σtemp to σfinal. This
also implies that all the IP constraints are satisfied when opt is
replaced with (1+ 6ϵ)opt. Thus, we have a randomized algorithm
that yields a feasible schedule with the maximum flow time at
most (1 + 6ϵ)opt with probability least 1 − 1/T . The algorithm
can be easily derandomized using the method of pessimistic
estimators [9,7]. By scaling ϵ, we have Theorem 1 when opt =
Ω(1

ϵ3
log T), with no resource augmentation. The running time is

clearly polynomial in m, and is dominated by that of the DPs in
Section 2.

Acknowledgments

This work was supported in part by NSF grants CCF-1218620,
CCF-1409130, CCF-1433220, CCF-1541602, and CCF-1617653. The
authors greatly thank the anonymous reviewer for the numerous
comments which helped significantly to improve the presentation
of this paper.
References

[1] N. Bansal, M. Charikar, R. Krishnaswamy, S. Li, Better algorithms and hardness
for broadcast scheduling via a discrepancy approach, in: ACM-SIAMSymposium
on Discrete Algorithms, 2014, pp. 55–71.

[2] A. Bar-Noy, S. Guha, Y. Katz, J.S. Naor, B. Schieber, H. Shachnai, Throughput
maximization of real-time scheduling with batching, ACM Trans. Algorithms 5
(2) (2009) 18:1–18:17.

[3] J. Chang, T. Erlebach, R. Gailis, S. Khuller, Broadcast scheduling: Algorithms and
complexity, ACM Trans. Algorithms 7 (4) (2011) 47.

[4] C. Chekuri, A. Gal, S. Im, S. Khuller, J. Li, R.M. McCutchen, B. Moseley, L.
Raschid, Newmodels and algorithms for throughputmaximization in broadcast
scheduling - (extended abstract), in: Workshop on Approximation and Online
Algorithms, 2010, pp. 71–82.

[5] C. Chekuri, S. Im, B.Moseley, Online scheduling tominimizemaximumresponse
time and maximum delay factor, Theory Comput. 8 (1) (2012) 165–195.

[6] S. Im, B. Moseley, Brief announcement: online batch scheduling for flow
objectives, in: ACM Symposium on Parallelism in Algorithms and Architectures,
2013, pp. 102–104.

[7] S. Im, M. Sviridenko, New approximations for broadcast scheduling via variants
of α-point rounding, in: ACM-SIAM Symposium on Discrete Algorithms, 2015,
pp. 1050–1069.

[8] B. Kalyanasundaram, K. Pruhs, Speed is as powerful as clairvoyance, J. ACM 47
(4) (2000) 617–643.

[9] P. Raghavan, Probabilistic construction of deterministic algorithms: Approxi-
mating packing integer programs, J. Comput. System Sci. 37 (2) (1988) 130–143.

http://refhub.elsevier.com/S0167-6377(16)30113-4/sbref2
http://refhub.elsevier.com/S0167-6377(16)30113-4/sbref3
http://refhub.elsevier.com/S0167-6377(16)30113-4/sbref5
http://refhub.elsevier.com/S0167-6377(16)30113-4/sbref8
http://refhub.elsevier.com/S0167-6377(16)30113-4/sbref9

	Minimizing the maximum flow time in batch scheduling
	Introduction
	Our result
	Overview of our approach
	Related work
	Notation and organization

	Case opt = O (1/ ε3) logT
	Warm-up: opt = O (1)
	Warm-up: B :-1mu=maxp Bp = O (1)
	General case under capacity augmentation
	General case under speed augmentation

	Case opt geq (1/ ε3) logT
	Acknowledgments
	References

