Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling

Hongyang Zhang
Joint work with Maria-Florina Balcan
Machine Learning Department, CMU

Machine Learning Lunch
Life-Long Matrix Completion

Real-world applications:
- Recommendation System
- Compressed Sensing

What if the Signal is 2D?
- Trivial solution: make it into 1D
- May not work

Netflix Challenge:
We have to consider the correlation among rows and columns!

Matrix Completion

What if the data comes online?

Arrived Columns

Coming Columns

Real-world applications:
Recommendation System
Compressed Sensing
Outline

• Motivation and examples
• Our goal and approach
• Matrix completion background
• Robustness Analysis
• Experimental Results
Our Sampling Model

• Adaptive Sampling
 • Scheme 1: Uniformly take the samples *randomly* (smaller sample complexity)
 • Scheme 2: Request all entries of column from *oracle* (larger sample complexity)

• Sampling scheme in the real world
 • Network Tomography
 • Gene Expression Analysis
 • Recommendation System

Goal: Keep Sample Complexity as small as possible

Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013
Our Approach

Real-world applications:
- Recommendation System
- Compressed Sensing
- Approx Representable?

Matrix Completion

What if the data comes online?
What if the data is noisy?

Basis Set

Arrived Columns

Coming Columns

Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013
Noisy Life-Long Matrix Completion

- Challenges in the noisy setting
 - Noise might be adversarial
 - Noise propagates as the data comes along online
Outline

• Motivation and examples
• Our goal and approach
• **Matrix completion background**
• Robustness Analysis
• Experimental Results
Matrix Completion Background

What if the Signal is 2D?

• Trivial solution: make it into 1D
• May not work

Netflix Challenge:

We have to consider the correlation among rows and columns!

Effectiveness of Low Rankness

• It is a global constraint
• Data compression: $mn \rightarrow r(m+n-r)$
• Significantly reduces the degrees of freedom: $mn \rightarrow r(m+n-r)$

We have to consider the correlation among rows and columns.
Matrix Completion Background (cont’d)

- Incoherence is necessary

\[X = \begin{pmatrix} \vdots \\ \end{pmatrix} \quad (= e_1 e_1^*) \]

- Any subset of entries that misses the (1,1) component tells you nothing!

\[X = U \Sigma V^T, \quad r \]

- Still need to see the entire first row

\[\|U^T e_i\|_2 \leq \sqrt{\frac{\mu_0 r}{m}} \quad \text{(left incoherence)} \]

\[\|V^T e_i\|_2 \leq \sqrt{\frac{\mu_0 r}{n}} \quad \text{(right incoherence)} \]

- Want each entry to provide nearly the same amount of information.
Related Work

• Matrix completion by nuclear norm.

• Matrix completion by alternating minimization

• Matrix completion by adaptive sampling
 • Krishnamurthy & Singh, 2013 & 2014

Very little analysis of noise-tolerant online matrix completion algorithm
Outline

• Motivation and examples
• Our goal and approach
• Matrix completion background
• Robustness Analysis
• Experimental Results
Noise Model

- Bounded Deterministic Noise

\[\| E_x \| = \leq \varepsilon_{\text{noise}} \]

Basis Set

Arrived Columns

Coming Columns
Noise Model (cont’d)

- Sparse Random Noise

![Diagram of Sparse Random Noise]

- Basis Set
- Arrived Columns
- Coming Columns

Sparse Random Noise Model

Noise Model (cont’d)
Main Results --- Bounded Deterministic Noise

Theorem (Bounded Deterministic Noise)

Sample Complexity: $O((\mu_0nr + mnk\epsilon_{noise}) \log^2(\frac{r}{\delta}))$

Output Error: $\|\hat{M}:t - M:t\|_2 \leq \Theta \left(\frac{m}{d} \sqrt{k\epsilon_{noise}} \right)$

Parameter: k number of bases, ϵ_{noise} noise magnitude, r rank, μ_0 incoherence, δ failure prob., d unif(d)
Discussion --- Bounded Deterministic Noise

Theorem (Bounded Deterministic Noise)

Sample Complexity: \(O((\mu_0 nr + mk\epsilon_{\text{noise}}) \log^2(\frac{r}{\delta})) \)

Output Error: \(||\hat{M}_{t} - M_{t}||_2 \leq \Theta \left(\frac{m}{d} \sqrt{k\epsilon_{\text{noise}}} \right) \)

Parameter: \(k \) number of bases, \(\epsilon_{\text{noise}} \) noise magnitude, \(r \) rank, \(\mu_0 \) incoherence, \(\delta \) failure prob., \(d \) \(\text{unif}(d) \)

- The error propagates only in the speed of \(\sqrt{k} \), low propagation rate
- Sample Complexity \(O(\mu_0 nr \log^2 n) \), if \(\epsilon_{\text{noise}} \leq O(\mu_0 r/mk) \)
- Incoherence assumption in only one direction
Why left incoherence is enough?

Avoid by \(\left\| U^T e_i \right\|_2 \leq \sqrt{\frac{\mu_0 r}{m}} \) (left incoherence)

Not an Issue:

Arrived Columns

Avoid by \(\left\| V^T e_i \right\|_2 \leq \sqrt{\frac{\mu_0 r}{n}} \) (right incoherence)
Proof Sketch --- Bounded Deterministic Noise

Fact 1

\[U^k = \text{span}\{u_1, u_2, \ldots, u_k\} \]

\[\tilde{U}^k = \text{span}\{\tilde{u}_1, \tilde{u}_2, \ldots, \tilde{u}_k\} \]

If \(\theta(u_i, \tilde{u}_i) \leq \varepsilon_{\text{noise}} \) and \(\theta(\tilde{U}^{i-1}, \tilde{u}_i) \geq 20i\varepsilon_{\text{noise}} \)

Then \(\theta(U^k, \tilde{U}^k) \leq \gamma_k / 2 \)

Proof idea: Reduction on \(k \)

Fact 2

\[U^k \approx \tilde{U}^k \]

\[\theta(M_{\Omega t}, U^k) \approx \theta(M_{\Omega t}, \tilde{U}^k) \]
\[\left\| M_{\Omega t} - P_{\tilde{U}^k_{\Omega t}} M_{\Omega t} \right\|_2 \approx \frac{d}{m} \left\| M_{\Omega t} - P_{\tilde{U}^k_{\Omega t}} M_{\Omega t} \right\|_2 \]

\[= f(\theta(M_{\Omega t}, \tilde{U}^k)) \]

\[\theta(M_{\Omega t}, U^k) \text{ is determined by } \left\| M_{\Omega t} - P_{\tilde{U}^k_{\Omega t}} M_{\Omega t} \right\|_2 \]

Far away from subspace

Appro Representable?
Main Results --- Sparse Random Noise

Theorem (Sparse Random Noise, Upper Bound)

Noise Sparsity: \(s_0 \leq O(m) \)

Noise Magnitude: Arbitrarily large

Sample Complexity: \(O(\mu_0 rn \log \left(\frac{r}{\delta} \right)) \)

Output Error: Exact Recovery

Theorem (Sparse Random Noise, Lower Bound)

Sample Complexity: \(\Omega \left(\mu_0 rn \log \left(\frac{r}{\delta} \right) \right) \)

Output Error: Exact Recovery

<table>
<thead>
<tr>
<th>Complexity Lower bound</th>
<th>Passive Sampling</th>
<th>Adaptive Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{O} \left(\mu_0 nr \log^2 \left(\frac{n}{\delta} \right) \right) [22])</td>
<td>(\mathcal{O} \left(\mu_0 nr \log^2 \left(\frac{r}{\delta} \right) \right) [19])</td>
<td>(\mathcal{O} \left(\mu_0 nr \log (r/\delta) \right)) (Ours)</td>
</tr>
<tr>
<td>(\mathcal{O} \left(\mu_0 nr \log(n/\delta) \right) [10])</td>
<td>(\mathcal{O} \left(\mu_0 nr \log(r/\delta) \right)) (Ours)</td>
<td></td>
</tr>
</tbody>
</table>
Main Results --- Mixture of Subspaces

Theorem (Mixture of Subspaces, Sparse Random Noise)

Noise Sparsity: \(s_0 \leq O(m) \)

Noise Magnitude: Arbitrarily large

Sample Complexity: \(O(\mu \tau^2 n \log(\frac{r}{\delta})) \) (Single: \(O(\mu_0 rn \log(\frac{r}{\delta})) \))

Output Error: Exact Recovery

Parameter: \(\mu, \tau \) incoherence of each subspace, \(\tau \) dimension upper bound of each subspace.
Outline

- Motivation and examples
- Our goal and approach
- Matrix completion background
- Robustness Analysis
- Experimental Results
Experiment Results --- Bounded Deterministic Noise

\[L = \begin{bmatrix} \mathbf{u}_1 \mathbf{1}_{200}^T, \sum_{i=1}^2 \mathbf{u}_i \mathbf{1}_{200}^T, \sum_{i=1}^3 \mathbf{u}_i \mathbf{1}_{200}^T, \sum_{i=1}^4 \mathbf{u}_i \mathbf{1}_{200}^T, \sum_{i=1}^5 \mathbf{u}_i \mathbf{1}_{1,200}^T \end{bmatrix} \in \mathbb{R}^{100 \times 2000} \]

Noise Magnitude: \(\epsilon_{\text{noise}} = 0.6 \).
Experiment Results --- Sparse Random Noise

White Region: Nuclear norm minimization succeeds.
White and Gray Regions: Our algorithm succeeds.
Black Region: Our algorithm fails.
Experiment Results --- Mixture of Subspaces

Table 2: Life-long Matrix Completion on the first 5 tasks in Hopkins 155 database.

<table>
<thead>
<tr>
<th>#Task</th>
<th>Motion Number</th>
<th>$d = 0.8m$</th>
<th>$d = 0.85m$</th>
<th>$d = 0.9m$</th>
<th>$d = 0.95m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>2</td>
<td>9.4×10^{-3}</td>
<td>6.0×10^{-3}</td>
<td>3.4×10^{-3}</td>
<td>2.6×10^{-3}</td>
</tr>
<tr>
<td>#2</td>
<td>3</td>
<td>5.9×10^{-3}</td>
<td>4.4×10^{-3}</td>
<td>2.4×10^{-3}</td>
<td>1.9×10^{-3}</td>
</tr>
<tr>
<td>#3</td>
<td>2</td>
<td>6.3×10^{-3}</td>
<td>4.8×10^{-3}</td>
<td>2.8×10^{-3}</td>
<td>7.2×10^{-4}</td>
</tr>
<tr>
<td>#4</td>
<td>2</td>
<td>7.1×10^{-3}</td>
<td>6.8×10^{-3}</td>
<td>6.1×10^{-3}</td>
<td>1.5×10^{-3}</td>
</tr>
<tr>
<td>#5</td>
<td>2</td>
<td>8.7×10^{-3}</td>
<td>5.8×10^{-3}</td>
<td>3.1×10^{-3}</td>
<td>1.2×10^{-3}</td>
</tr>
</tbody>
</table>
Summary

• Life-Long Matrix Completion
 • Online
 • Noise Tolerant

• Sample Complexity
 • Bounded Noise: As small as noiseless case
 • Sparse Noise: Achieve lower bound in the worst case, better than nuclear norm minimization method
 • Mixture of Subspaces: Potential smaller sample complexity
Thank You