Noise-Tolerant Interactive Learning

Using Pairwise Comparisons

Yichong Xu Hongyang Zhang Kyle Miller Aarti Singh Artur Dubrawski

Carnegie Mellon University

Label vs. Comparisons

Task: Classifying old/young people portraits

Direct label query

<table>
<thead>
<tr>
<th>Is the person in the image older than 30?</th>
</tr>
</thead>
</table>

Comparison query

<table>
<thead>
<tr>
<th>Which person looks older?</th>
</tr>
</thead>
</table>

Algorithm Description

Previous active learning algorithm: Label → Classifier

Sample points in uncertainty region

Get labels

Shrink Uncertainty

Our algorithm: Ranking → Label → Classifier

Rank Samples

Sample points in uncertainty region

Binary Search to find the boundary

Infer Other Labels

Theoretical Results

\(\varepsilon : \) classification error desired \(d : \) dimension
\(\text{To}_{\text{comp}} : \) Comparison noise level \(\nu' : \) tolerance
\(\theta : \) complexity of class \(C \)

Adversarial Noise for both Label & Comparison

<table>
<thead>
<tr>
<th>Work</th>
<th>Efficient?</th>
<th>#Label</th>
<th>#Query</th>
<th>(\text{To}_{\text{comp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>No</td>
<td>(O(d\log(1/\varepsilon)))</td>
<td>(O(d\log(1/\varepsilon)))</td>
<td>N/A</td>
</tr>
<tr>
<td>Label</td>
<td>Yes</td>
<td>(O(d^3\log(d/\varepsilon)))</td>
<td>(O(d^3\log(d/\varepsilon)))</td>
<td>N/A</td>
</tr>
<tr>
<td>Label+ Comparison</td>
<td>Yes</td>
<td>(O(\log(1/\varepsilon)))</td>
<td>(O(d\log^4(1/\varepsilon)))</td>
<td>(\varepsilon^2)</td>
</tr>
</tbody>
</table>

*Our work in bold

Tsybakov Noise for Label, Adversarial Noise for Comp

<table>
<thead>
<tr>
<th>Work</th>
<th>Efficient?</th>
<th>#Label</th>
<th>#Query</th>
<th>(\text{To}_{\text{comp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>No</td>
<td>(\Theta \left(\frac{1}{\varepsilon} \right) 2^x - 2) (d\theta)</td>
<td>(\Theta \left(\frac{1}{\varepsilon} \right) 2^x - 2) (d\theta)</td>
<td>N/A</td>
</tr>
<tr>
<td>Label+ Comparison</td>
<td>Yes</td>
<td>(\Theta \left(\frac{1}{\varepsilon} \right) 2^x - 2) (d\theta)</td>
<td>(\Theta \left(\frac{1}{\varepsilon} \right) 2^x - 2) (\theta + d\theta)</td>
<td>(\varepsilon^{2x})</td>
</tr>
</tbody>
</table>

*No previous work exists for efficient learning under Tsybakov Noise

Proof Sketch:

1. Show that there are not too many errors in the ranking obtained from noisy comparisons.
2. Thus, Ranking → Label → Classifier approach achieves low error on Adversarial & Tsybakov label noise, using few label queries.
3. Combine with adversarial active learning algorithm to achieve complexity bounds.

Lower bounds

- Label complexity & Total complexity are optimal (up to log)
- Noise tolerance is optimal (up to log)
- Proof sketch: Assume oracle with error \(\nu' \) is free, consider the best possible classifier using the oracle