Dynamic Shard Cutoff Prediction for Selective Search

Hafeezul Rahman Mohammad
Keyang Xu
Jamie Callan

J. Shane Culpepper

Carnegie Mellon University
Language Technologies Institute

RMIT University
Selective search is a recent distributed search architecture

- During indexing, split the corpus into small, topical index shards
Introduction: Selective Search

Selective search is a recent distributed search architecture

- During indexing, split the corpus into small, topical index shards

- Use resource selection to pick shards for query q
 1. Rank the index shards

ClueWeb09

\[S_1 \quad S_3 \quad \cdots \quad S_23 \quad S_{19} \quad S_{47} \quad S_{37} \quad \vdots \]
Selective search is a recent distributed search architecture

• During indexing, split the corpus into small, topical index shards

• Use resource selection to pick shards for query q
 1. Rank the index shards
 2. Decide how many shards to search
Introduction: Selective Search

Selective search is a recent distributed search architecture:

- During indexing, split the corpus into small, topical index shards.
- Use resource selection to pick shards for query q.
 1. Rank the index shards.
 2. Decide how many shards to search.
 3. Search the (few) selected shards.

Usually evaluated using an early precision metric:
- $P@10$, $NDCG@30$
Introduction:
Motivation

The number of shards selected impacts performance

• Selecting too few: Hurts document retrieval accuracy
• Selecting too many: Costly and inefficient

Previous shard selection algorithms include:

• ReDDE, L2RR: Static cutoff
• Taily, Rank-S: Tightly linked with shard ranking
• ShRkC: Independent of shard ranker
Introduction: Motivation

Prior studies focus on early precision in selective search

• Multi-stage ranking pipelines are now common
• As an early stage retrieval step, recall should be a priority
• Later rankers in the pipeline will re-rank these documents
Predicting Shard Ranking Cutoffs

Problem: Given query q, predict the shard cutoff k

Solution: Treat this as a regression problem
- Easy to tune for early precision or high recall

Key elements to be addressed
- Features
- Learning algorithms
- Training data

Talks are short this year, so this talk skips many details
- See the paper for details
Predicting Shard Ranking Cutoffs: Features

147 (query, corpus) features
• Typical query-difficulty features
• Eg., Variance of similarity scores

42 shard distribution features
• Characterize the different score distribution across shards
• Eg., Entropy of similarity scores across shards
Predicting Shard Ranking Cutoffs: Learning Algorithms

Algorithms

- Quantile Regression (QR)
 - Often better for predicting skewed distributions
 - Modification of RF that estimates conditional median
 - Parameterized by τ

- Random Forest (RF) regressor
 - Less effective, so not covered in the talk
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?

1. Create an exhaustive search ranking ($r_{d,e}$)

Search all shards $q \rightarrow S_1 \quad S_2 \quad S_3 \quad S_4 \quad \ldots$
What is the ‘right’ number of shards k to search for query q?

1. Create an exhaustive search ranking $(r_{d,e})$

Search all shards

Document rankings are returned

$\begin{align*}
S_1 & : d_{14} \\
S_2 & : d_1 \\
S_3 & : d_2 \\
S_4 & : d_{41} \\
\vdots & : \vdots \\
\vdots & : \vdots
\end{align*}$
What is the ‘right’ number of shards k to search for query q?

1. Create an exhaustive search ranking $(r_{d,e})$

Search all shards $q \rightarrow S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \ldots$

Document rankings are returned

$\begin{array}{c}
d_{14} \\
d_{23} \\
\vdots \\
d_{32} \\
d_{41} \\
\end{array}$

Merge rankings to produce a final ranked list $(r_{d,e})$
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards: $q \rightarrow S_{12} \rightarrow S_{8} \rightarrow S_{31} \rightarrow S_{72} \rightarrow \cdots$
What is the ‘right’ number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards

Same document rankings as Step 1
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards

$\begin{array}{c}
1 \\
S_{12} \\
\downarrow \\
d_{21} \\
\vdots
\end{array} \quad \begin{array}{c}
2 \\
S_{8} \\
\downarrow \\
d_{1} \\
\vdots
\end{array} \quad \begin{array}{c}
3 \\
S_{31} \\
\downarrow \\
d_{2} \\
\vdots
\end{array} \quad \begin{array}{c}
4 \\
S_{72} \\
\downarrow \\
d_{63} \\
\vdots
\end{array} \ldots$

Same document rankings as Step 1

Iterate over potential cutoffs
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards $q \rightarrow S_{12} \rightarrow d_{21} \rightarrow \cdots$

Same document rankings as Step 1

Merge $k=1$ rankings to produce a final ranked list ($r_{d,k}$)
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
2. Find a cutoff that produces a similar selective search ranking

Rank the shards

```
S_{12} | S_8 | S_{31} | S_{72} | ... \\
\downarrow | \downarrow | \downarrow | \downarrow | \downarrow \\
{d_{21}} | {d_1} | {d_2} | {d_{63}} | ... \\
\vdots   | \vdots   | \vdots   | \vdots   | ...
```

Same document rankings as Step 1

Merge k=1 rankings to produce a final ranked list \((r_{d,k})\)

If Close Enough \((r_{d,k}, r_{d,e})\)
Stop & report cutoff = 1
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards $q \rightarrow S_{12}, S_8, S_{31}, S_{72}, \ldots$

Same document rankings as Step 1

Merge $k=2$ rankings to produce a final ranked list $(r_{d,k})$

If $\text{Close Enough} (r_{d,k}, r_{d,e})$
Stop & report cutoff $= 2$
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards \(k \) to search for query \(q \)?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards

Same document rankings as Step 1

Merge \(k=3 \) rankings to produce a final ranked list \((r_{d,k}) \)

If Close Enough \((r_{d,k}, r_{d,e}) \)

Stop & report cutoff = 3
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards $q \rightarrow$

Same document rankings as Step 1

Continue until a good cutoff is found or $k=16$ (cap for outlier queries)
Predicting Shard Ranking Cutoffs: Training Data (Gold Standard)

Vary the definition of ‘close enough’ to satisfy different goals

Early Precision
Overlap in top 100 documents

High Recall
Overlap in top 1,000 documents

\[d_{211} \]
\[d_{29} \]
\[\vdots \]
\[d_{107} \]
\[d_{231} \]
\[\vdots \]
\[d_{87} \]
\[\vdots \]
\[r_{d,k} \]
\[d_{29} \]
\[d_{1} \]
\[\vdots \]
\[d_{201} \]
\[\vdots \]
\[d_{76} \]
\[\vdots \]
\[r_{d,e} \]
Experimental Methodology

Datasets: ClueWeb09-B (Gov2 shown in paper)

Metrics

- Early-precision: $P@5$, $NDCG@10$, $Overlap@100$
- High-recall: $MAP@1000$, $RBP\ (p=0.95)$, $Overlap@5000$
- Efficiency: C_{RES} (total cost), C_{LAT} (latency)
- Agreement: Pearson (PCC), Mean Absolute Error (MAE)

Baselines

- Shard ranking: Taily, Rank-S, ReDDE, L2RR
- Shard cutoff: Taily, Rank-S, ShRkC
Experiment 1:
Cutoff Prediction Comparisons

RQ1: How accurate are existing shard cutoff predictions?

ClueWeb09-B

<table>
<thead>
<tr>
<th></th>
<th>Early-Precision</th>
<th>High-Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank-S</td>
<td>Taily</td>
</tr>
<tr>
<td>MAE</td>
<td>1.31</td>
<td>1.34</td>
</tr>
<tr>
<td>PCC</td>
<td>0.37</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Lower MAE & higher PCC: Better at predicting k

The Learned predictor is best under both scenarios
RQ3: Are ranker-independent cutoff predictions effective?

ClueWeb09-B

<table>
<thead>
<tr>
<th></th>
<th>Early-Precision</th>
<th>High-Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank-S Taily ShRkC QR Rank-S Taily ShRkC QR</td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td>1.31 1.34 2.99 1.14</td>
<td>2.91 2.84 4.85 1.94</td>
</tr>
<tr>
<td>PCC</td>
<td>0.37 0.34 0.26 0.44</td>
<td>0.38 0.39 0.28 0.64</td>
</tr>
</tbody>
</table>

Lower MAE & higher PCC: Better at predicting k

Ranker-independent cutoff predictions can be effective

- QR is, but ShRkC is not
Experiment 1: Cutoff Prediction Comparisons

Shard cutoff biases

- Closer to the ‘Label’ curve is desired
- Taily tends to under predict
Experiment 1: Cutoff Prediction Comparisons

Shard cutoff biases

- Closer to the ‘Label’ curve is desired
- Taily tends to under predict
- Rank-S and ShRkC tend to over predict
Experiment 1: Cutoff Prediction Comparisons

Shard cutoff biases

• Closer to the ‘Label’ curve is desired
• Taily tends to under predict
• Rank-S and ShRkC tend to over predict
• QR is the most accurate
Experiment 2: Shard Ranking Comparisons

RQ2: How accurate are existing shard rankings?

- Examine **shard ranking & cutoff prediction** separately
 - Usually these problems are conflated

- In this experiment, each ranker uses a fixed number of shards
 - Given by ‘Label’ (the gold standard)
Experiment 2: Shard Ranking Comparisons

<table>
<thead>
<tr>
<th>Ranking</th>
<th>MAP</th>
<th>RBP,0.95</th>
<th>O@5000</th>
<th>C_{RES}</th>
<th>C_{LAT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taily</td>
<td>.180</td>
<td>.261 (.339)</td>
<td>.599</td>
<td>.811</td>
<td>.187</td>
</tr>
<tr>
<td>Rank-S</td>
<td>.181</td>
<td>.279 (.349)</td>
<td>.612</td>
<td>.811</td>
<td>.190</td>
</tr>
<tr>
<td>ReDDE</td>
<td>.182</td>
<td>.281 (.345)</td>
<td>.618</td>
<td>.853</td>
<td>.198</td>
</tr>
<tr>
<td>L2RR</td>
<td>.196</td>
<td>.293 (.304)</td>
<td>.626</td>
<td>.896</td>
<td>.199</td>
</tr>
<tr>
<td>r_s,e</td>
<td>.202</td>
<td>.301 (.286)</td>
<td>.709</td>
<td>.850</td>
<td>.195</td>
</tr>
</tbody>
</table>

- L2RR is the most accurate shard ranker
- Rankers tend to select smaller (Taily) or larger (L2RR) shards
 - All rankers searched the same number of shards
Experiment 2: Shard Ranking Comparisons

<table>
<thead>
<tr>
<th>Ranking</th>
<th>P@5</th>
<th>NDCG@10</th>
<th>O@100</th>
<th>C<sub>RES</sub></th>
<th>C<sub>LAT</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Taily</td>
<td>.370</td>
<td>.214</td>
<td>.623</td>
<td>.508</td>
<td>.180</td>
</tr>
<tr>
<td>Rank-S</td>
<td>.375</td>
<td>.229</td>
<td>.673</td>
<td>.517</td>
<td>.178</td>
</tr>
<tr>
<td>ReDDE</td>
<td>.386</td>
<td>.229</td>
<td>.708</td>
<td>.551</td>
<td>.190</td>
</tr>
<tr>
<td>L2RR</td>
<td>.389</td>
<td>.234</td>
<td>.734</td>
<td>.560</td>
<td>.189</td>
</tr>
<tr>
<td>r<sub>s,e</sub></td>
<td>.409</td>
<td>.247</td>
<td>.818</td>
<td>.534</td>
<td>.187</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>.390</td>
<td>.240</td>
<td>-</td>
<td>5.24</td>
<td>.330</td>
</tr>
</tbody>
</table>

- L2RR is the most accurate shard ranker
- Rankers tend to select smaller (Taily) or larger (L2RR) shards
 - All rankers searched the same number of shards
Experiment 3: Precision vs Recall

RQ4: How do the competing goals of precision and recall affect efficiency-effectiveness tradeoff?

Up is more accurate
Left is more efficient
Goal is to be close to $r_{s,e}$

QR’s τ enables tuning efficiency vs effectiveness tradeoff

- $\tau = 0.45$ works well
Experiment 3: Precision vs Recall

RQ4: How do the competing goals of precision and recall affect efficiency-effectiveness tradeoff?

Up is more accurate
Left is more efficient
Goal is to be close to $r_{s,e}$

QR’s τ enables tuning efficiency vs effectiveness tradeoff
• $\tau = 0.45$ works well
Experiment 3: Precision vs Recall

RQ4: How do the competing goals of precision and recall affect efficiency-effectiveness tradeoff?

Up is more accurate
Left is more efficient
Goal is to be close to $r_{s,e}$

QR’s τ enables tuning efficiency vs effectiveness tradeoff

- $\tau = 0.45$ works well
Experiment 4: Training Labels Comparisons

RQ5: Should the shard cutoff prediction be trained for a specific resource selection algorithm?

• Any shard ranking can generate training data for the QR predictor – E.g., Exhaustive search (previous experiments), Taily, L2RR, ..

Conclusion

• Training with rankings based on exhaustive search produces more aggressive cutoffs
• Aggressive cutoffs work well with strong rankers (L2RR)
• Weaker rankers (Taily) benefit from ranker-specific training
• See the paper for details
Conclusions

Shard ranking & cutoff prediction should be studied separately
• Distinct problems, separate sources of error

Cutoff prediction can be done well by quantile regression
• Query difficulty and shard distribution features
• Tune for early-precision or high-recall requirements as needed
• Use with any shard ranker

Selective search can achieve high-recall
• 70% agreement with exhaustive search rankings at depth 5000 can be attained with 16-18% of the computational effort
Thank you!

Questions?