Localization and Register Sharing for Predicate
Abstraction

Himanshu Jaih?, Franjo Ilvan&ié, Aarti Guptd, and Malay K. Ganai

1 NEC Laboratories America, Inc., 4 Independence Way, Prim;eNJ 08540
2 School of Computer Science, Carnegie Mellon UniversititsBiirgh, PA

Abstract. In the domain of software verification, predicate abstmactias e-
merged to be a powerful and popular technique for extradtnitg-state models
from often complex source code. In this paper, we report enagbplication of
three techniques for improving the performance of the pagdi abstraction re-
finement loop. The first technique allows faster computatibthe abstraction.
Instead of maintaining a global set of predicates, we findlipeges relevant to
various basic blocks of the program by weakest pre-condimpagation along
spurious program traces. The second technique enables fiastlel checking of
the abstraction by reducing the number of state variabléseimbstraction. This
is done by re-using Boolean variables to represent diffggedicates in the ab-
straction in a safe way. However, some predicates are uaefulany program
locations and discovering them lazily in various parts @ gnogram leads to a
large number of abstraction refinement iterations. Thealttéchnique attempts
to identify such predicates early in the abstraction refimeinoop and handles
them separately by introducing dedicated state variablesufch predicates. We
have incorporated these techniques into NEC’s softwariécation tool F-Soft,
and present promising experimental results for varioug sasgdies using these
techniques.

1 Introduction

In the domain of software verificatiopredicate abstractiofi2, 7,9, 11] has emerged
to be a powerful and popular technique for extracting fisizte models from often
complex source code. It abstracts data by keeping track rtdiinepredicates on the
data. Each predicate is represented by a Boolean variattie abstract program, while
the original data variables are eliminated.

The application of predicate abstraction to large progrdepends crucially on the
choice and usage of the predicates. If all predicates arkadglobally in the program,
the analysis often becomes intractable due to the large eunfipredicate relation-
ships. In Microsoft's SLAM [4] toolkit, this problem is hatetl by generating coarse
abstractions using techniques suclCastesian approximatioand themaximum cube
length approximatiofi3]. These techniques limit the number of predicates in ¢aeh
orem prover query. The refinement of the abstraction isedoiut by adding new pred-
icates. If no new predicates are found, the spurious beh&vilue to inexact predicate
relationships. Such spurious behavior is removed by a aspagfinement algorithm
called GONSTRAIN[1].

The BLAST toolkit [13] introduced the notion dézy abstractionwhere the ab-
straction refinement is completely demand-driven to rengpugious behaviors. Re-
cent work [14] describes a new refinement scheme based apatd&on [8], which
adds new predicates to some program locations only, whiclilleall henceforthlo-
calization of predicatesOn average the number of predicates tracked at each program
location is small and thus, the localization of predicatestdes predicate abstraction to
scale to larger software programs.

This paper makes three novel contributions:

e Our first contribution is inspired by the lazy abstractiopagach and the localiza-
tion techniques implemented in BLAST. While BLAST makes asmterpolation,
we use weakest pre-conditions to find predicates relevaeaelt program loca-
tion. Given an infeasible trac®;...;s, we find predicates whose values need to
be tracked at each statemenin order to eliminate the infeasible trace. For any
program location we only need to track the relationship leetthe predicates rel-
evant at that location. Furthermore, since we use predidseed on weakest pre-
conditions along infeasible traces, most of the predicaltionships are obtained
from the refinement process itself. This enables us to sagmfly reduce the num-
ber of calls to back-end decision procedures leading to ahnfagter abstraction
computation.

e The performance of BDD-based model checkers depends tyummathe number
of state variables. Due to predicate localization most ipegds are useful only in
certain parts of the program. The state variables corretipgrio these predicates
can bereusedto represent different predicates in other parts of therabtsbn, re-
sulting in a reduction of the total number of state varialrleeded. We call this
abstraction with register sharingrhis constitutes our second technique which re-
duces the number of state variables, enabling more effioiedtel checking of the
abstract models.

e While the above techniques speed up the individual comipatatind the model
checking runs of the abstractions, they might result in t@emyrabstraction refine-
ment iterations. This can happen if the value of a certainlipate needs to be
tracked at multiple program locations, i.e., if the prethca usefulglobally or at
least in some large part of the program. Since we add predidarily only along
infeasible traces, the fact that a predicate is globallyul$er checking a property
will be learned only through multiple abstraction refineiritarations. We make use
of a simple heuristic for deciding when the value of a certaiedicate may need
to be tracked globally or in a complete functional scopehéf value of a predicate
needs to be tracked in a large scope, then it is assigredii@atedstate variable
which is not reused for representing the value of other pedds in the same scope.

Further Related Work:Rusu et al. [20] present a framework for proving safety prope
ties that combines predicate abstraction, refinement wseakest pre-conditions and
theorem proving. However, no localization of predicatefoise in their work. Namjoshi
et al. [18] use weakest pre-conditions for extracting fistete abstractions, from pos-
sibly infinite state programs. They compute the weakestcpraditions starting from
an initial set of predicates derived from the specificatmontrol guards etc. This pro-

cess is iterated until a fix-point is reached, or a user imgp@Eeind on the number of
iterations is reached. In the latter case, the abstractightrhe too coarse to prove the
given property. However, no automatic refinement procebudescribed. The MAGIC
tool [5] also makes use of weakest pre-conditions in a simway. Both approaches
have the disadvantage that the number of predicates tratkemth program location
can be much higher, which may make the single model checkamydifficult. In con-
trast, we propagate the weakest pre-conditions lazily,ih@nly to the extent needed
to remove infeasible traces.

In order to check if a sequence of statements in the C proggéim)feasible we use
a SAT-solver as in [16]. The relationships between a setedipates is found by making
use of SAT-based predicate abstraction [6, 17]. We furtim@rove the performance of
SAT-based simulation of counterexamples and abstractompatation by making use
of range analysis techniques [19, 21] to determine the maximumber of bits needed
to represent each variable in the given program.

Outline: The following section describes the pre-processing oftloece code with our
software verification tool F-8FT [15] and the localized abstraction refinement frame-
work based on weakest pre-condition propagation d=Sallows both SAT-based and
BDD-based bounded and unbounded model checking of C andcdalea The third
section presents an overview of the Boolean model buildgrabmputes the abstrac-
tion with and without register sharing, while the fourthtéeie describes our approach
of dedicating abstract state variables to predicatesi@®estiscusses the experimental
results, and we finish this paper with some concluding remark

2 A Localized Abstraction-Refinement Framework

2.1 Software Modeling

In this section, we briefly describe our software modelingrapch that is centered
around basic blocks as described in [15]. The preprocesditige source code is per-
formed before the abstraction refinement routine is invokgatogram counter variable

is introduced to monitor progress in the control flow graphgisting of basic blocks.

Our modeling framework allowsounded recursiothrough the introduction of a fixed

depth function call stack, when necessary, and introdysssal variables representing
function return points for non-recursive functions. Duspace limitation, we omit the

details of our handling of pointer variables, which can benidin [15]. It is based on

adding simplifiecpointer-freeassignments in the basic blocks.

2.2 Localization Information

The formulap describes a set of program states, namely, the states ih Wéwalue of
program variables satisfy. Theweakest pre-conditiof10] of a formulagwith respect
to a statemens is the weakest formula whose truth before the executios eftails
the truth ofg aftersterminates. We denote the weakest pre-conditiopwith respect
to shy WP(@,s). Let s be an assignment statement of the farn¥ e; andgpbea C

expression. Then the weakest pre-conditioofith respect tcs, is obtained fromp
by replacing every occurrence wfn @ with e.

Given ani f statement with conditiop, we writeassume p orassume -p,
depending upon the branch of thé statement that is executed. The weakest pre-
condition of ¢ with respect toassune p, is given aspA p. As mentioned earlier,
pointer assignments are rewritten early on in our tool chthims allowing us to focus
here on only the above cases. The weakest pre-conditioatmpes extended to a se-
quence of statements WWP(@,s1;%) = WPWP(@,%),51). A sequence of statements
S1;...; Is said to banfeasible if WP(true,s;;...;s) = false Note that for ease of
presentation, we present the following material using\iaial statements while the
actual implementation uses a control flow graph consistfizaeic blocks.

We definechild(s) to denote the set of statements reachable Bonone step in the
control flow graph. Each statemesin the program keeps track of the following infor-
mation: (1) A set of predicates denotedasal(s) whose values need to be tracked be-
fore the execution as. We say a predicateis activeat the statemers, if p € local(s).

(2) A set of predicate pairs denotedtesns fex(s). Intuitively, if (pi, pj) € transfer(s),
then the value op; aftersterminates is equal to the value pfbefore the execution of
s. Formally, a pair(p;, pj) € transfer(s) satisfies the following conditions:

- pi € {True False} Ulocal(s).

- There exists’ e child(s), such thapj < local(s).

- If sis an assignment statement, thenr=WP(p;,s).
- If sis an assume statement, than= p;.

We refer to the set®cal(s) andtransfer(s) together as thiocalization informatiorat
the statemens. This information is generated during the refinement steg,ia used
for creating refined abstractions which eliminate infelesitaces.

Example: Consider the C program in Fig. 1(a) and the localizationrimi@tion shown
in Fig. 1(d). Sincd ps, p3) € transfer(s;) ands; is an assignment, it means tip@(c =
m) is the weakest pre-condition p§(x = m) with respect to statemest. The value of
predicatep, is useful only before the execution sf. After execution ofs;, predicate
ps becomes useful.

2.3 Refinement using Weakest Pre-condition Propagation

Letss;...;s be an infeasible program trace dfis of the formassune pj, then the
weakest pre-condition qf; is propagated backwards fragnuntil s;. When computing
the weakest pre-condition of a predicagewith respect to a statemest of the form
assume pj, we propagate the weakest pre-conditiongjaind p; separately. That is,
we do notintroduce a new predicate fpr\ p;. This is done to ensure that the predicates
remain atomic. Théocal and thetransfersets for the various statements are updated
during this process. The complete algorithm is given in Big.

Example: Consider the C program in Fig. 1(a) and an infeasible tra¢égni(b). As-
sume that initiallylocal(s) andtransfers) sets are empty for each The refinement

s s
1:x = c; 1: x = c;
2:y =c¢c + 1; 2:y =c¢c + 1;
3:if (x == ; 3: assunme (x == ;
4: if (y!= ml); 4: assume (y !'= mtl);
5: ERROR: ;
() (b)
s local(s) transfer(s) s local(s) transfer(s)
1: {p2} {(p2, p2)} 1: {p2.pa}t {(P2,P2),(Pa,P3)}
2: {p2} {(p2, p1)} 2: {pz2.ps} {(P2:p1)(P3. P3)}
3: {p} {(p1,p1)} 3:{p,pz} {(P1,P1)}
4: {pi} 4: {p}
(¢ (d)

Fig. 1. (a) A simple C program. (b) An infeasible program trace. (gt$ oflocal(s) and
transfer(s) sets after the first iteration of the refinement algorithne (Sig. 2). Predicateps, p2
denotey # m+ 1 andc # m, respectively. (d) New additions to thecal(s) andtransfer(s) in
the second iteratiorps, ps denotex = mandc = mrespectively.

algorithm in Fig. 2 is applied to the infeasible trace. Thedlization information after
the first iteration i(= 4) and second iteration € 3) of the outer loop in the refine-
ment algorithm, are shown in Fig. 1(c) and Fig. 1(d), respelst No change occurs to
the localization information for = 2 andi = 1, sinces, ands; do not correspond to
assune statements.

If s1;...;5 is infeasible, thelV P(true, s;; . . .;) = falseby definition. Intuitively,
the atomic predicates W P(true,s;;...;s) appear inocal(sy). Thus, by finding the
relationships between the predicatedanal(s), it is possible to construct a refined
model which eliminates the infeasible trace. When an inldasraces:;... ;s is re-
fined using the algorithm in Fig. Z; is stored into a set of statements denoted by
marked If a statemens is in the markedset, and the size dbcal(s) is less than a
certain threshold, then the abstraction routine compteselationships between the
predicates idocal(s) using SAT-based predicate abstraction [6,17]. Otherviieese
relationships are determined lazily by detection of spusiabstract states [1].

Proof Based AnalysisThe refinement algorithm described in Fig. 2 performs a back-
ward weakest pre-condition propagation for easlsunme statement in the infeasible
trace. However, neither aflssune statements nor all assignments may be necessary
for the infeasibility of the given trace. Propagating theakest pre-conditions for all
such statements will result in an unnecessary increaseeinumber of predicates ac-
tive at each statement in the infeasible trace. We make uslkeeoBEAT-based proof

of infeasibility of the given trace to determine the statamsdor which the weakest
pre-condition propagation should be done [12]. Thus, tlallpation information is
updated partially, in a way that is sufficient to remove thergus behavior. The com-
putation of an abstract model using the localization infation is described in the next
section.

Input: An infeasible trace;;. .. ;s

Algorithm:

1: fori = kdownto 1 /louter for loop

2: if 5 is of form (assume @;) then /lpropagate weakest pre-conditions
3: local(s) =local(s)U{@} /Nocalize@ ats

4: seed= @

5: for j =i—1 downto 1 Ilinner for loop

6: if sj is an assignment statement then

7: wp=W P(seeds;)

8: else

9: wp=seed

10: local(sj) = local(sj) U {wp} Nocalizewp ats;

11: transfers;) =transfers;) U {(wp,seed} //store predicate relationships
12: seed=wp

13: if seedis constant (i.etrue or false then exit inner for loop

14: end for

15: endif

16: end for

17: marked= markedU {s;}

Fig. 2. Predicate localization during refinement.

3 Computing Abstractions

We describe the abstraction of the given C program by defiaitrgnsition systent .

The transition systert = (Q,1,R) consists of a set of stat€y a set of initial states

I C Q, and a transition relatioR(q, d'), which relates the current stage= Q to a next-
stateq’ € Q. The abstract model preserves the control flow in the orighharogram.
LetP = {ps,..., P} denote the union of the predicates active at various pro¢pea
tions (Uslocal(s)). We first describe an abstraction scheme where each pregica
assigned one unigue Boolean variahlé the abstract model. Thus, the state space of
the abstract model id | - 2, whereL is the set of control locations in the program. We
call this schemabstraction without register sharingNext, we will describe a scheme
where the number of Boolean variables needed to represeptdidicates i is equal

to the maximum number of predicates active at any prograwtime. Thus, the size

of the abstract model is given Hy|- 2K, wherek’ = max << ||local(s)|. We call
this schemabstraction with register sharingdue to the localization of predicaté&s

is usually much smaller thaq which enables faster model checking of the abstraction
obtained using register sharing.

3.1 Abstraction Without Register Sharing

Let PC denote the vector of state variables used to encode thegmogounter. In
abstraction without register sharing each predigatieas a state variablg in the ab-
stract model. Each state in the abstraction corresponéieteaiuation ofPC| + k state
variables, wherd is the total number of predicates. In the initial stR@ is equal to

the value of the entry location in the original program. Ttegesvariables correspond-
ing to the predicates are initially assigned non-deterstimBoolean values. Given a
statemeng and a predicatg; the following cases are possible:

- g is either an assume statement or an assignment statemedb#sanot assign
to any variable inp;. That is, after executing the value of predicatg; remains un-
changed. Thus, in the abstract model the value of the staiablab; remains un-
changed after executirgy. We denote the set of all statements whegrés unchanged
asund pi).

- § assigns to some variable . Let p; denote the weakest pre-condition mf
with respect tag . If the predicate; is active atg, thatisp; € local(s), and(pj, pi) €
transfers), then after executing, the value of predicatp; is the same as the value
of predicatep; before executing . In the abstract model this simply corresponds to
transferring the value df; to by ats. If the predicatep; is not active asy, then the
abstract model assigns a non-deterministic Boolean valbgdt 5. This is necessary
to ensure that the abstract model is an over-approximatithrecoriginal program.

We denote the set of all statements that can update the vh@redicatep; as
updatép;). The set of statements where the weakest pre-conditign i3f available
is denoted bywpa(pi). Using the localization information from Sec. 2\@pa(p;) is
defined as followswpa(p;) := {s/|s € updatép;) A 3p;. (pj, pi) € transfers)}.

We useinp(pi) to denote the set of statements that assign a non-detetimirskie
v; to the state variabllg,. This set is defined aspdatép;)\wpa(p;). Letc; denote the
state variable corresponding to the weakest pre-conditigomedicatep; with respect
to 5. We usepqg to denote that program counter issatthat isSPC = I. The next state
function for the variabld; is then defined as follows:

o=V (panb)|v] V (panc)|v] V (parw)] @
seundp;) s ewpa(pi) s €inp(pi)
Note that no calls to a decision procedure are needed whesrajerg the next-state
functions. All the required information is gathered durthg refinement step itself by
means of weakest pre-condition propagation.

Example: Consider the abstraction of the program in Fig. 3(a) witlpeesto the lo-
calization information given in Fig. 3(b). The predicgie (y # m+ 1) is updated at
statement,, and its weakest pre-conditign (c # m) is active ats, and(pz, p1) €
transfer(s;). So the next state function for the state variable represgpt is given
as follows:b) := (pcx Aby) vV ((parV pcs Vv pes) Abg). The other next state functions
are given as followsh), := by, b, := by, andbj; := (pcy Aba) V ((pe2 V pc3 Vv pes) Abs).
The resulting abstraction is shown in Fig. 3 (c). For simplithe control flow is shown
explicitly in the abstraction.

Global constraint generation:The precision of the abstraction can be increased by
finding the relationships between the predicatdsaal(s) for somes. For example, in

Fig. 3(b) the relationship between the predicatebal(s;) results in aglobal con-
straint, by < —by. This constraint holds in all states of the abstract modé&ligf 3 (c)

as the Boolean variablds andb, always represent the same predicate throughout the
abstraction without register sharing. The abstractiomeut register sharing given in

S local(s) transfer(s) Abstraction

1: x =c; {P2,pa} {(P2,P2), (P4, P3)} 1: by =hy;

2. y=c+1 {p2:pz} {(P2,P1),(P3, P3)} 2: by =by;

3 it (x == {p1,ps} {(P1,P1)} 3: if (bg)

4: if (y !'= mtl) {p1} 4: if(by)

5: ERROR: ; 5. ERROR:;
(a) (b) ()

s Mapping Abstraction Global constraint for (c):

1: {p2:b1,ps: by} 1: skip; by < —by

2: {p2:by,p3:bo} 2: skip;

3: {p1:by,p3: b} 3: if (by) Local constraint for (e):

4: {p1:b1} 4: if (by) (PC=1) — (b < —by)

5: 5. ERROR:;

(d) (e) (®

Fig. 3. (a) C program. (b) Localization information for the prograrnere py, p2, p3, pa denote
the predicatey # m+1,¢c # m,x = m,c = m, respectively. (c) Abstraction with no register shar-
ing. Boolean variablé; represents the value @f in the abstraction. (d) Mapping of predicates
in local(s) for eachs to the Boolean variables (register sharing). (e) Abstoactiith register
sharing. (f) Global constraint and Local constraint fortedations in (c) and (e) , respectively.

Fig. 3(c) combined with the global constraint in Fig. 3(fsisfficient to show that the
ERROR label is not reachable in the C program given in Fig. 3(a).eNbat we could
have simplified the computation here by recognizing that —p2, which we omit for

presentation purposes only.

The constraint generation is done only for some of the statésnwhich are marked
during the refinement (Fig. 2, line no. 17). We use SAT-basedipate abstraction [6,
17] to find the relationships between the predicatésdal(s) for such statements. This
is the only time we use any decision procedure other thankaingor the feasibility
of traces. Due to the computational cost of enumerating ¢h@fssolutions, we only
perform this computation for very small sets of predicat@her relationships are then
discovered on demand based on spurious abstract states [1].

3.2 Abstraction With Register Sharing

In abstraction with no register sharing, the state-spatieeofbstract model i&| - 2Pl
whereP is the set of predicates, ahds the set of locations in the given program. Thus,
when the number of predicates is large, model checking cdltiseraction can become
a bottleneck even with a symbolic representation of the Space. We make use of the
locality of predicates to speed up the model checking of tietraction. This is done
by reducing the number of (Boolean) state variables in tretrattion. The fact that
each state variable in the abstract model is only locallyulsan be used to represent
different predicates in different parts of the program ggime same state variable. We
call the reuse of state variables in the abstract maigster sharing

Example: Consider the C program in Fig. 3(a) and the localization rimation in
Fig. 3(b). The abstraction of this program with register sharing in Fig. 3(c), contains

four state variables, one for each predicate. However,thger of predicates active at
any program statement max<i<a/local(s)| = 2. Intuitively, it should be possible to
create an abstraction with just two state variables.

The predicatepy, ps are active at program location 1, so we introduce two Boolean
variablesbs, by, to represent each of these predicates, respectively. thigeexecution
of 1, predicateps is no longer active, and the state variabjecan be used to represent
some other predicate. Predicaig becomes active &, so we can reuse the abstract
variableb; to represenps at s. In a similar fashionp; can be reused to represent
predicatep; at program locationss ands,. We usep : b to denote that the predicape
is represented by the state variabl@he mapping of active predicates at each program
location to the state variables is given in Fig 3(d).

The abstraction with register sharing is obtained by tegtirgy the predicate rela-
tionships intransfer(s) for eachs, according to the mapping discussed above. Continu-
ing our example(pas, p3) € transfersy) in Fig. 3(b), the value of the state variable rep-
resentingps ats;, must be transferred to the state variable represeptingfterwards.
Since bothp, and ps are represented by the same state varibjléhe abstraction for
s does not alter the value db. The abstraction using only two state variables lf,)
is shown in Fig 3(e). Theki p statement means that the values of the state variables
b1 andb, remain unchanged for that statement.

Mapping predicates to state variableRecall, thato = {ps, ..., pc} denotes the set of
predicates. LeB = {by,..., b} be the set of state variables in the abstraction, where
| equals the maximum number of active predicates at any pmod¢peation. For ev-
ery statemens, the predicates relevant atare mapped to unique state variables in
B. Let mapbe a function that takes a statemerdand a predicat@ as arguments. If
p € local(s), then the result ofnap(s, p) is a state variablb € B; otherwise, the result
is L. Recall thatchild(s) denotes the set of statements reachable sdmone step in
the control flow graph. The constraints to be satisfiednapare as follows:

- Two distinct predicates which are active together at tineesstatement should not
be assigned the same Boolean variable in the abstractidhabostatement.

Vsvpi, pj € local(s) [pi # pj — map(s, pi) # maps, pj)]

- Consider statemerstand (p1, p2) € transfer(s). By definition there exists'
child(s) wherep; is active, that i, € local(s). This case is shown in Fig. 4(a). Sup-
pose the predicate; is mapped td; in sandp; is mapped tdj in s'. The abstraction
for the statemergwill assign the value alfj to bj. Sobj should not be used to represent
a predicateps, whereps # pp, in any other successor ef This is because there is no
relationship between the value of the predigateat s and the predicatps ats’. This
constraint is shown in Fig. 4(b).

We now describe the algorithm which creates an abstraatitimei presence of reg-
ister sharing. Letabgs) be a set of Boolean pairs associated with each statement
Intuitively, if (bj,bm) € abgs), then in the abstraction the value lof, after s termi-
nates is equal to the value lnfbefore the execution & Formally,abqs) is defined as
follows:

abgs) := {(bi,bm)|3(pi, pj) € transfers). by = maps, pi) A

p]_ S plibi bJ =bi E p]_:b
Lo o]

Py P3 Py by P3: by

' Py: b
P2 = pg b 1= b > ?

(G (b) (©

Fig. 4. (a) Statemens$ and two successoss ands”. Predicates, po, ps are active as, s, and
s’, respectively. (b) Abstraction with register sharing, vengp;, p2) € transfer(s). Predicate
p1, p2 are mapped tdy, bj, respectively, in the abstraction. Predicake+# p, should not be
mapped td;j for safe abstraction i.e., an over-approximation of o@jiprogram. (c) Boolean
variableb is used to represent two distinct predicapgsand p, on the same path. Itis setto a *
(non-deterministic value) betwesrands' to ensure safe abstraction.

35 € child(s). bm=map(s, pj)}-
Given a Boolean variable and a statemers, the following cases are possible:

- 5 updates the value dfi. That is, there exists &; € B such that(b;,b;)
abgs). We denote the set of all statements which up8atsupdatéb;). The function
rhs(s, by) returns the Boolean variable which is assignet; o the statemers.

- § assigns a non-deterministic valueio The set of all such statements is denoted
by nondethb;). In order to understand the use of this set, consider a Bool@aableb
which is used to represent two distinct predicgigsindp, on the same path. Assume
that b is not used to represent any other predicate between thestatss ands.
Since p1 and p; are not related, the value bfwhen it is representing; should not
be used wheb is representingp,. Sob is assigned a non-deterministic value between
the path starting frorsto . This is necessary to ensure that the abstraction is an over-
approximation of the original program. This case is showhifn 4(c).

- The value ofb; is a don’t-care at statemegt The value ofo; is a don’t care for
all the statements which are not presentipdatehb;) or nondeth;). In such cases, we
set the value ob; to false at these statements, in order to simplify its cocjon with
the program counter variable to false. This simplifies therall transition relation.

Given the above information the next state function for tagableb; is defined as
follows (we use an inpug; for introducing non-determinism armh to denotdPC=1):

o= \/ (parrhss.o)]v] Vo (panv)]. (2)
s eupdatéb;) s enondet p;)

Local constraint generationThe abstraction can be made more precise by relating the
predicates ifocal(s) for somes. For example, in Fig. 3(b) the predicatedatal(s;)
satisfy the constraint thad, < —p4. In order to add this constraint to the abstraction,
we need to translate it in terms of the Boolean variablesrii&eping given in Fig. 3(d)
assigns Boolean variablés, b, to p, ps, ats; respectively. This leads to a constraint
(PC=1) — (b1 « —by). This is called docal constraintas it is useful only when
PC = 1. We cannot omit th®C = 1 term from the constraint as this would mean that
b1 < —by holds throughout the abstraction which is not correct dueetpster reuse.

The abstraction with register sharing in Fig. 3(e) combiwét the local constraint in
Fig. 3(f) is sufficient to show that thERROR label is not reachable in the C program
given in Fig. 3(a).

4 Dedicated State Variables

Register sharing enables the creation of abstract modéisawifew Boolean variables
as possible which enables more efficient model checkingeébistractions. However,
register sharing might also result in a large number of reiit iterations as described
in the following. Consider a sequen&k of statements frons to s, which does not
modify the value of a predicafe Suppose is localized at the statemergs/, but not at
any intermediate statement8E In abstraction with register sharing, it is possible that
p is represented by two different Boolean varialdgsndb, ats ands, respectively.
Because the value gf remains unchanged alor®F, the value ofbo; at s should be
equal to the value dfi; ats. If this is not tracked however, we may obtain a spurious
counterexample by assigning different valuestoat s andb, ats'. This leads to a
refinement step, which localizes the predigate every statement i8E, to ensure that
the value of predicatp does not change alor®f in subsequent iterations. We should
note that such behavior is handled in the abstraatitinoutregister sharing approach
through the use of thenchangedet denoted byncin Eqn. (1) described earlier.

If pis discovered frequently in different parts of the progranotigh various spuri-
ous counterexamples, then using the abstraction withtezgikaring will lead to many
abstraction refinement iterations. This problem can bedadiif p is represented by
exactly one Boolean variabkein a large scope of the abstraction. This is because the
value ofb will not be changed by any statemeniSi, and thus, the value dfats’ will
be the same as that atWe call a Boolean variable which represents only one predi-
cate throughout the abstractionledicated state variabld he next state function for a
dedicated state variableis computed using Eqgn. (1).

Hybrid approach: Initially, when a predicate is discovered it is assigned alBan
variable, which can be reused for representing differeatligates in other parts of
the abstraction. If the same predicate is discovered thromgjtiple counterexamples
in the various parts of the program, then it is assigned acdésti Boolean variable
for a global or functional scope of the program dependinghenvariables used in the
predicate. The decision about when to assign a dedicatdd&owariable to a predicate
is done by making use of the following heuristic.

For each predicate, let usagép,i) denote the number of statements whpris
localized in the iteration numberof the abstraction refinement loop. usagép,i)
exceeds a certain user-defined threshiott, thenp is assigned a dedicated Boolean
variable. If TH = 0, then every predicate will be assighed a dedicated statabla
as soon as it is discovered. This is similar to performingralotion with no register
sharing for all state variables. On the other hand,Hf = |L| + 1, where|L| is the total
number of statements in the program, then none of the predieell be assigned a
dedicated state variable. This allows complete reuse ddltiseract variables, which is
similar to abstraction with register sharing. For any intediate value o H we have
a hybrid of abstraction with and without register sharing.

In the hybrid approach, itis possible to have global conssan the dedicated state
variables. This saves refinement iterations where the sanstraint is added locally in
various parts by means of counterexamples. We can still lveat constraints on the
state variables which are reused. Furthermore, we hopstowir as early as possible
whether a predicate should be given a dedicated state l@bghaving a low threshold
for the early iterations of the abstraction refinement ladnich increases as the number
of iterations increases. Predicting early on that a preédinsy need a dedicated state
variable reduces the number of abstraction refinementibesasubstantially.

5 Experimental Results

We have implemented these techniques in NEC'sd+S[15] verification tool. All
experiments were performed on 88&Hz dual-processor Linux machine with 4GB
of memory. We report our experimental results on the TCAS Als case studies.
TCAS (Traffic Alert and Collision Avoidance System) is anca#ft conflict detection
and resolution system used by all US commercial aircrafesugéd an ANSI-C version
of a TCAS component available from Georgia Tech. Even thahghpre-processed
program has only 1652 lines of code, the number of predicadesled to verify the
properties is non-trivial for both F-Soft and BLAST. We cked 10 different safety
properties of the TCAS system. Alias is an artificial benctawehich makes extensive
use of pointers. Each property was encoded as a certainlabedrin the code. If the
label is not reachable, then the property is said to holde@itse, we report the length
of the counterexample in the "Bug” column in Table 1. All CPibthés are given in
seconds. For all runs, we set a time limit of one hour for thed\esis.

5.1 Predicate Localization, Register Sharing, and Dedicad State Variables

We first experimented with no localization of predicateswidwer, this approach did
not scale, as the abstraction computation becomes a letkemVe next experimented
with localization of predicates using weakest pre-copndii The results of applying
only localization and abstraction without register shaigxshown under the "Localize”
headingin the Table 1. The "Time Abs MC” column gives theltbiae, followed by the
breakup of total time into the time taken by abstraction (Absodel checking (MC),
respectively. We omit the time taken by refinement, whichgsas to Time - (Abs +
MC) for each row. The "P” and the "I" columns give the total nien of predicates,
and the total number of iterations, respectively. Two obmssons can be made from the
"Localize” results: 1) Due to the localization of predicgatéhe abstraction computation
is no longer a bottleneck. 2) Model checking takes most oftithhe, since for each
predicate a state variable is created in the abstract mded.that the model checking
step is the cause of the timeouts in three rows under the Tizecaesults.

Next, we experimented with register sharing. The numbetai&ss/ariables in the
abstraction was reduced, and the individual model-checieps became faster. How-
ever, as discussed in Sec. 4 this approach resulted in top abatraction refinement it-
erations. This problem was solved by discovering on-thefigther a predicate should
be assigned a dedicated state variable, that is, a statdleawhich will not be reused.

nds)

Total runtime (in secor

40

&
Number of abstraction refinement iterations

0 20

15 1
Threshold (in percentage) Threshold (in percentage)

() (b)
Fig. 5. (a) Variation in the total runtime with the threshold. (b)rigion in the total number of
abstraction refinement iterations with the threshold.

A dedicated state variable is introduced for a predicatesghsage exceeds a progres-
sively increasing threshold, starting at 5% of the total benof program locations.

The results of combining these multiple techniques is giveter the "Combined”
heading in Table 1. The meaning of "Time Abs MC” and the "I’ @win is the same as
before. The "P Max Ded” column gives the total number of pcatés (P), followed by
the maximum number of predicates active at any programitmtéltlax), and the total
number of state variables which represent exactly one gaigglithat is, dedicated state
variables (Ded). Observe that the time spent during modsgkihg (MC) has reduced
significantly as compared to the "Localize” column.

Effect of varying the thresholdWe also experimented with thieH (threshold) param-
eter, which is used to determine when a predicate is ass@dedicated state variable.
Fig. 5(a) shows the variation of the total runtime with thiiah value for the thresh-
old. When the threshold is equal to zero every predicatesigased a dedicated state
variable. This results in too many state variables in thérabsmodel causing the total
runtime to be high. However, as the threshold is increasedntumber of abstraction
refinement iterations starts to increase as shown in Fig. Btie best runtime in our
experiments has so far been obtained for an initial threlsbb5%. Even such a small
value for the threshold is effective in separating the praidis which arglobally rel-
evant from those which arecally useful. As the threshold is further increased very
few predicates are assigned dedicated state variablesofdhe main advantages of
choosing a small initial threshold is that we are able todieeiarly on whether a pred-
icate may need a dedicated state variable. If we start wiigteehinitial threshold, the
number of additional iterations needed for a single predittareceive a dedicated state
variable increases too much.

Variable reuse ratio:In our implementation thenapfunction (Section 3.2) is computed
incrementally, as new predicates are discovered. Supposgydefinement a predicate

p gets added ttocal(s) for somes. In order to find a state variable to represent the value
of p ats, we first check if some existing state variable can be reusttut violating

the constraints described in Section 3.2. Let the total rerrobtimes reuse is possible

Bench Localize Combined BLAST Bug
-mark |[Time Abs MC| P || ||Time Abs MC P Max Ded | ||Time| P Max Avg
TCASO| 245 7 196/71|32]| 36 5 15/65 26 18|31 96 |85 24 10|33 -
TCAS1(1187 15 106910844(161 9 118 96 35 25|38|| 256|137 43 17|42 -
TCAS2| 952 10 882 74|38|| 104 25 51|95 31 24|36| 148|108 31 11|40 -
TCAS3|(940 15 864 91|36|| 46 17 17|73 22 15|33|| 172|101 26 10|44|{152
TCAS4(1231 13 111197|39|| 88 9 48|90 34 25|32|| 182|149 38 13|51/166
TCAS5(|1222 11 112879|41j| 141 8 98/98 37 29|31} 105|114 31 10/33 -
TCAS6| TO 20 227(0117/49|| 330 16 266109 40 33|40/ 293|158 41 14/69/179
TCAS7(1758 16 162779|47|| 64 10 29|94 28 21|33||287|125 30 11/63/160
TCAS8| TO 21 198884|51j| 119 13 68|106 34 27|41 181|116 31 11/46| -
TCAS9| TO 26 334911358|| 250 14 186106 34 27|44| 322|140 40 14/61/179
ALIAS| 50 6 33|61|11 6 2 1|55 25 15|9(- - cl -

Table 1.Results for: 1) Localization, abstraction without registiearing ("Localize”) . 2) Local-
ization, abstraction with register sharing, dedicatetestariables ("Combined”). 3) BLAST with
interpolation ("BLAST"). A "-” indicates that the propertyolds. A " indicates that the bench-
mark could not be handled properly. A "TO” indicates a timeoilhr. We report the statistics
observed before timeout occurs.

be R. If no existing state variable can be used, we introduce astate variable for
representing the value gf at s. Let the total number of times a new state variable is
introduced beC. The ratioR/(C + R) measures the effectiveness of variable reuse in
controlling the total number of state variables. The valihis ratio is 88% on average
across thd CAS benchmarks and 81% for ti#.| AS benchmark.

5.2 Comparison with BLAST

We first ran BLAST in the default mode without any options. Hwer, the default
predicate discovery scheme in BLAST fails to find the new d$aqtredicates during
refinement, and terminates without (dis)proving any of t&A¥ properties. Next, we
tried the Craig interpolation [14] optionsi(ai g1 andcr ai g2) provided by BLAST.
The BLAST manual recommends the us@ofdH7 heuristic with Craig interpolation.
Of the various options to BLASTr ai g2 andpr edH7 resultin the best performance
when checking the TCAS properties. Table 1 gives the regulirming BLAST with
these options under the "BLAST” heading. The "P Max Avg” aolu gives the to-
tal number of predicates (P), followed by the maximum (Max)l ¢he average (Avg)
number of predicates active at any program location (rodmol¢he nearest integer).

The best runtimes are shown in bold in Table 1. Note that tlikined” technique
of F-Soft outperforms BLAST on 9 out of 11 benchmarks, andiaber of iterations
required by "Combined” is less than that for "Blast” in allsess. Recall that the size of
the abstraction is exponential in the maximum number ofagredicates (Max). This
number is comparable for both BLAST and F-Soft, even thougABT makes use of
a more complex refinement technique based on the computdtioterpolants.

6 Conclusions and Future Work

The application of the predicate abstraction paradigm rigel@oftware depends cru-
cially on the choice and usage of the predicates. If all wegtds are tracked globally in

the program, the analysis often becomes intractable die fatge number of predicate
relationships. In this paper we described various tectesdar improving the overall

performance of the abstraction refinement loop. We predestperimental results in

our F-SOFT [15] toolkit using the techniques of predicate localizatioegister shar-

ing and dedicated state variables, and showed how a coritiraftthese techniques
allowed us to check properties requiring a large number edipgates.

There are a number of interesting avenues for future relsedfweoretical com-
parison between the use of interpolants [14] and the use akegt pre-conditions for
localization of predicates will be useful. Other technigjmr finding the right balance
between the predicates whose values are tracked locallhanqutedicates whose values
are tracked globally are worth further investigation.

Acknowledgment.We thank Rupak Majumdar and Ranijit Jhala for their help with
BLAST.

References

1. T. Ball, B. Cook, S. Das, and S. Rajamani. Refining apprakions in software predicate
abstraction. IfTACAS 04pages 388-403. Springer, 2004.

2. T.Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamaniutdmatic predicate abstraction of
C programs. IrProgramming Language Design and Implementatimages 203-213, 2001.

3. T.Ball, A. Podelski, and S.K. Rajamani. Boolean and Gaateabstraction for model check-
ing C programs. IIMACAS 01volume 2031, 2001.

4. T.Balland S.K. Rajamani. Automatically validating teonal safety properties of interfaces.
In SPIN Workshop on Model Checking of Softw&pringer, 2001.

5. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Moduéaification of software com-
ponents in C. INCSE 03 pages 385-395. IEEE, 2003.

6. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Pratéabstraction of ANSI-C pro-
grams using SATFormal Methods in System Desjif25:105-127, Sep—Nov 2004.

7. P. Cousot and R. Cousot. Abstract interpretation: a uhifigice model for static analysis
of programs by construction or approximation of fixpoints.Proceedings of the 4th ACM
Symposium on Principles of Programming Languagegies 238-252, 1977.

. William Craig. Linear reasoning. Wournal of Symbolic Logigages 22:250-268, 1957.
9. S. Das, D. Dill, and S. Park. Experience with predicatarabgon. InComputer Aided

Verification LNCS 1633, pages 160-171. Springer, 1999.

10. E. Dijkstra.A Discipline of ProgrammingPrentice Hall, 1976.

11. S. Graf and H. Saidi. Construction of abstract statelgragith PVS. InCAV 97 pages
72-83. Springer, 1997.

12. A. Gupta, M.K. Ganai, P. Ashar, and Z. Yang. lIterativeti@usion using SAT-based BMC
with proof analysis. Innternational Conference on Computer Aided Design (ICC/&DD3.

13. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. ladogtraction. IlPOPL 02 pages
58-70, 2002.

14. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillafbstractions from proofs. In
POPL 04 pages 232—-244. ACM Press, 2004.

15. F. Ivancic, Z. Yang, M. Ganai, A. Gupta, and P. AshaficiEnt SAT-based bounded model
checking for software verification. 18ymposium on Leveraging Applications of Formal
Methods 2004.

16. H. Jain, D. Kroening, and E. Clarke. Verification of Spewihg predicate abstraction. In
MEMOCODE 04 pages 7-16. IEEE, 2004.

oo

17

18.

19.

20.

21.

. S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approac predicate abstraction. In
CAV 03 pages 141-153. Springer, 2003.

Kedar S. Namjoshi and Robert P. Kurshan. Syntactic prodransformations for automatic
abstraction. IMCAV 0Q number 1855 in LNCS, 2000.

R. Rugina and M.C. Rinard. Symbolic bounds analysis aftpcs, array indices, and ac-
cessed memory regions. RLDI 00, pages 182-195, 2000.

Vlad Rusu and Eli Singerman. On proving safety propetie integrating static analysis,
theorem proving and abstraction. TACAS 99pages 178-192, 1999.

A. Zaks, F. Ivanti¢, H. Cadambi, I. Shlyakhter, Z. YaMy Ganai A. Gupta, and P. Ashar.
Range analysis for software verificatidBubmitted for publicatior2004.

