
Localization and Register Sharing for Predicate
Abstraction

Himanshu Jain1,2, Franjo Ivančić1, Aarti Gupta1, and Malay K. Ganai1

1 NEC Laboratories America, Inc., 4 Independence Way, Princeton, NJ 08540
2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

Abstract. In the domain of software verification, predicate abstraction has e-
merged to be a powerful and popular technique for extractingfinite-state models
from often complex source code. In this paper, we report on the application of
three techniques for improving the performance of the predicate abstraction re-
finement loop. The first technique allows faster computationof the abstraction.
Instead of maintaining a global set of predicates, we find predicates relevant to
various basic blocks of the program by weakest pre-condition propagation along
spurious program traces. The second technique enables faster model checking of
the abstraction by reducing the number of state variables inthe abstraction. This
is done by re-using Boolean variables to represent different predicates in the ab-
straction in a safe way. However, some predicates are usefulat many program
locations and discovering them lazily in various parts of the program leads to a
large number of abstraction refinement iterations. The third technique attempts
to identify such predicates early in the abstraction refinement loop and handles
them separately by introducing dedicated state variables for such predicates. We
have incorporated these techniques into NEC’s software verification tool F-Soft,
and present promising experimental results for various case studies using these
techniques.

1 Introduction

In the domain of software verification,predicate abstraction[2, 7, 9, 11] has emerged
to be a powerful and popular technique for extracting finite-state models from often
complex source code. It abstracts data by keeping track of certain predicates on the
data. Each predicate is represented by a Boolean variable inthe abstract program, while
the original data variables are eliminated.

The application of predicate abstraction to large programsdepends crucially on the
choice and usage of the predicates. If all predicates are tracked globally in the program,
the analysis often becomes intractable due to the large number of predicate relation-
ships. In Microsoft’s SLAM [4] toolkit, this problem is handled by generating coarse
abstractions using techniques such asCartesian approximationand themaximum cube
length approximation[3]. These techniques limit the number of predicates in eachthe-
orem prover query. The refinement of the abstraction is carried out by adding new pred-
icates. If no new predicates are found, the spurious behavior is due to inexact predicate
relationships. Such spurious behavior is removed by a separate refinement algorithm
called CONSTRAIN [1].

The BLAST toolkit [13] introduced the notion oflazy abstraction, where the ab-
straction refinement is completely demand-driven to removespurious behaviors. Re-
cent work [14] describes a new refinement scheme based on interpolation [8], which
adds new predicates to some program locations only, which wewill call henceforthlo-
calization of predicates. On average the number of predicates tracked at each program
location is small and thus, the localization of predicates enables predicate abstraction to
scale to larger software programs.

This paper makes three novel contributions:

• Our first contribution is inspired by the lazy abstraction approach and the localiza-
tion techniques implemented in BLAST. While BLAST makes useof interpolation,
we use weakest pre-conditions to find predicates relevant ateach program loca-
tion. Given an infeasible traces1; . . . ;sk, we find predicates whose values need to
be tracked at each statementsi in order to eliminate the infeasible trace. For any
program location we only need to track the relationship between the predicates rel-
evant at that location. Furthermore, since we use predicates based on weakest pre-
conditions along infeasible traces, most of the predicate relationships are obtained
from the refinement process itself. This enables us to significantly reduce the num-
ber of calls to back-end decision procedures leading to a much faster abstraction
computation.

• The performance of BDD-based model checkers depends crucially on the number
of state variables. Due to predicate localization most predicates are useful only in
certain parts of the program. The state variables corresponding to these predicates
can bereusedto represent different predicates in other parts of the abstraction, re-
sulting in a reduction of the total number of state variablesneeded. We call this
abstraction with register sharing. This constitutes our second technique which re-
duces the number of state variables, enabling more efficientmodel checking of the
abstract models.

• While the above techniques speed up the individual computations and the model
checking runs of the abstractions, they might result in too many abstraction refine-
ment iterations. This can happen if the value of a certain predicate needs to be
tracked at multiple program locations, i.e., if the predicate is usefulglobally or at
least in some large part of the program. Since we add predicates lazily only along
infeasible traces, the fact that a predicate is globally useful for checking a property
will be learned only through multiple abstraction refinement iterations. We make use
of a simple heuristic for deciding when the value of a certainpredicate may need
to be tracked globally or in a complete functional scope. If the value of a predicate
needs to be tracked in a large scope, then it is assigned adedicatedstate variable
which is not reused for representing the value of other predicates in the same scope.

Further Related Work:Rusu et al. [20] present a framework for proving safety proper-
ties that combines predicate abstraction, refinement usingweakest pre-conditions and
theorem proving. However, no localization of predicates isdone in their work. Namjoshi
et al. [18] use weakest pre-conditions for extracting finitestate abstractions, from pos-
sibly infinite state programs. They compute the weakest pre-conditions starting from
an initial set of predicates derived from the specification,control guards etc. This pro-

cess is iterated until a fix-point is reached, or a user imposed bound on the number of
iterations is reached. In the latter case, the abstraction might be too coarse to prove the
given property. However, no automatic refinement procedureis described. The MAGIC
tool [5] also makes use of weakest pre-conditions in a similar way. Both approaches
have the disadvantage that the number of predicates trackedat each program location
can be much higher, which may make the single model checking step difficult. In con-
trast, we propagate the weakest pre-conditions lazily, that is, only to the extent needed
to remove infeasible traces.

In order to check if a sequence of statements in the C program is (in)feasible we use
a SAT-solver as in [16]. The relationships between a set of predicates is found by making
use of SAT-based predicate abstraction [6, 17]. We further improve the performance of
SAT-based simulation of counterexamples and abstraction computation by making use
of range analysis techniques [19, 21] to determine the maximum number of bits needed
to represent each variable in the given program.

Outline: The following section describes the pre-processing of the source code with our
software verification tool F-SOFT [15] and the localized abstraction refinement frame-
work based on weakest pre-condition propagation. F-SOFT allows both SAT-based and
BDD-based bounded and unbounded model checking of C and Javacode. The third
section presents an overview of the Boolean model builder that computes the abstrac-
tion with and without register sharing, while the fourth section describes our approach
of dedicating abstract state variables to predicates. Section 5 discusses the experimental
results, and we finish this paper with some concluding remarks.

2 A Localized Abstraction-Refinement Framework

2.1 Software Modeling

In this section, we briefly describe our software modeling approach that is centered
around basic blocks as described in [15]. The preprocessingof the source code is per-
formed before the abstraction refinement routine is invoked. A program counter variable
is introduced to monitor progress in the control flow graph consisting of basic blocks.
Our modeling framework allowsbounded recursionthrough the introduction of a fixed
depth function call stack, when necessary, and introduces special variables representing
function return points for non-recursive functions. Due tospace limitation, we omit the
details of our handling of pointer variables, which can be found in [15]. It is based on
adding simplifiedpointer-freeassignments in the basic blocks.

2.2 Localization Information

The formulaφ describes a set of program states, namely, the states in which the value of
program variables satisfyφ. Theweakest pre-condition[10] of a formulaφ with respect
to a statements is the weakest formula whose truth before the execution ofs entails
the truth ofφ afters terminates. We denote the weakest pre-condition ofφ with respect
to s by WP(φ,s). Let s be an assignment statement of the formv = e; andφ be a C

expression. Then the weakest pre-condition ofφ with respect tos, is obtained fromφ
by replacing every occurrence ofv in φ with e.

Given anif statement with conditionp, we writeassume p or assume ¬p,
depending upon the branch of theif statement that is executed. The weakest pre-
condition of φ with respect toassume p, is given asφ ∧ p. As mentioned earlier,
pointer assignments are rewritten early on in our tool chain, thus allowing us to focus
here on only the above cases. The weakest pre-condition operator is extended to a se-
quence of statements byWP(φ,s1;s2) = WP(WP(φ,s2),s1). A sequence of statements
s1; . . . ;sk is said to beinfeasible, if WP(true,s1; . . . ;sk) = f alse. Note that for ease of
presentation, we present the following material using individual statements while the
actual implementation uses a control flow graph consisting of basic blocks.

We definechild(s) to denote the set of statements reachable froms in one step in the
control flow graph. Each statements in the program keeps track of the following infor-
mation: (1) A set of predicates denoted aslocal(s) whose values need to be tracked be-
fore the execution ofs. We say a predicatep is activeat the statements, if p∈ local(s).
(2) A set of predicate pairs denoted astrans f er(s). Intuitively, if (pi , p j)∈ trans f er(s),
then the value ofp j afters terminates is equal to the value ofpi before the execution of
s. Formally, a pair(pi , p j) ∈ trans f er(s) satisfies the following conditions:

- pi ∈ {True,False}∪ local(s).
- There existss′ ∈ child(s), such thatp j ∈ local(s′).
- If s is an assignment statement, thenpi = WP(p j ,s).
- If s is an assume statement, thenpi = p j .

We refer to the setslocal(s) andtrans f er(s) together as thelocalization informationat
the statements. This information is generated during the refinement step, and is used
for creating refined abstractions which eliminate infeasible traces.

Example: Consider the C program in Fig. 1(a) and the localization information shown
in Fig. 1(d). Since(p4, p3) ∈ trans f er(s1) ands1 is an assignment, it means thatp4(c=
m) is the weakest pre-condition ofp3(x = m) with respect to statements1. The value of
predicatep4 is useful only before the execution ofs1. After execution ofs1, predicate
p3 becomes useful.

2.3 Refinement using Weakest Pre-condition Propagation

Let s1; . . . ;sk be an infeasible program trace. Ifsi is of the formassume pi , then the
weakest pre-condition ofpi is propagated backwards fromsi until s1. When computing
the weakest pre-condition of a predicatepi with respect to a statementsj of the form
assume p j , we propagate the weakest pre-conditions ofpi andp j separately. That is,
we do not introduce a new predicate forpi∧p j . This is done to ensure that the predicates
remain atomic. Thelocal and thetrans f ersets for the various statements are updated
during this process. The complete algorithm is given in Fig.2.

Example: Consider the C program in Fig. 1(a) and an infeasible trace inFig. 1(b). As-
sume that initiallylocal(s) andtrans f er(s) sets are empty for eachs. The refinement

s
1 : x = c;
2 : y = c + 1;
3 : if (x == m);
4 : if (y != m+1);
5 : ERROR: ;

(a)

s
1 : x = c;
2 : y = c + 1;
3 : assume (x == m);
4 : assume (y != m+1);

(b)

s local(s) transfer(s)
1 : {p2} {(p2, p2)}
2 : {p2} {(p2, p1)}
3 : {p1} {(p1, p1)}
4 : {p1}

(c)

s local(s) transfer(s)
1 : {p2, p4} {(p2, p2),(p4, p3)}
2 : {p2, p3} {(p2, p1),(p3, p3)}
3 : {p1, p3} {(p1, p1)}
4 : {p1}

(d)

Fig. 1. (a) A simple C program. (b) An infeasible program trace. (c) Status of local(s) and
trans f er(s) sets after the first iteration of the refinement algorithm (see Fig. 2). Predicatesp1, p2
denotey 6= m+ 1 andc 6= m, respectively. (d) New additions to thelocal(s) andtrans f er(s) in
the second iteration.p3, p4 denotex = m andc = m respectively.

algorithm in Fig. 2 is applied to the infeasible trace. The localization information after
the first iteration (i = 4) and second iteration (i = 3) of the outer loop in the refine-
ment algorithm, are shown in Fig. 1(c) and Fig. 1(d), respectively. No change occurs to
the localization information fori = 2 andi = 1, sinces2 ands1 do not correspond to
assume statements.

If s1; . . . ;sk is infeasible, thenWP(true,s1; . . . ;sk) = f alseby definition. Intuitively,
the atomic predicates inWP(true,s1; . . . ;sk) appear inlocal(s1). Thus, by finding the
relationships between the predicates inlocal(s1), it is possible to construct a refined
model which eliminates the infeasible trace. When an infeasible traces1; . . . ;sk is re-
fined using the algorithm in Fig. 2,s1 is stored into a set of statements denoted by
marked. If a statements is in themarkedset, and the size oflocal(s) is less than a
certain threshold, then the abstraction routine computes the relationships between the
predicates inlocal(s) using SAT-based predicate abstraction [6, 17]. Otherwise,these
relationships are determined lazily by detection of spurious abstract states [1].

Proof Based Analysis:The refinement algorithm described in Fig. 2 performs a back-
ward weakest pre-condition propagation for eachassume statement in the infeasible
trace. However, neither allassume statements nor all assignments may be necessary
for the infeasibility of the given trace. Propagating the weakest pre-conditions for all
such statements will result in an unnecessary increase in the number of predicates ac-
tive at each statement in the infeasible trace. We make use ofthe SAT-based proof
of infeasibility of the given trace to determine the statements for which the weakest
pre-condition propagation should be done [12]. Thus, the localization information is
updated partially, in a way that is sufficient to remove the spurious behavior. The com-
putation of an abstract model using the localization information is described in the next
section.

Input: An infeasible traces1; . . . ;sk
Algorithm:
1: for i = k downto 1 //outer for loop
2: if si is of form (assume φi) then //propagate weakest pre-conditions
3: local(si) = local(si)∪{φi} //localizeφi at si
4: seed= φi
5: for j = i−1 downto 1 //inner for loop
6: if sj is an assignment statement then
7: wp= WP(seed,sj)
8: else
9: wp= seed
10: local(sj) = local(sj) ∪ {wp} //localizewpatsj
11: trans f er(sj) = trans f er(sj) ∪ {(wp,seed)} //store predicate relationships
12: seed= wp
13: if seedis constant (i.e,true or f alse) then exit inner for loop
14: end for
15: end if
16: end for
17: marked= marked∪ {s1}

Fig. 2. Predicate localization during refinement.

3 Computing Abstractions

We describe the abstraction of the given C program by defininga transition systemT.
The transition systemT = (Q, I ,R) consists of a set of statesQ, a set of initial states
I ⊆ Q, and a transition relationR(q,q′), which relates the current stateq∈ Q to a next-
stateq′ ∈ Q. The abstract model preserves the control flow in the original C program.
Let P = {p1, . . . , pk} denote the union of the predicates active at various programloca-
tions (∪slocal(s)). We first describe an abstraction scheme where each predicate pi is
assigned one unique Boolean variablebi in the abstract model. Thus, the state space of
the abstract model is|L| ·2k, whereL is the set of control locations in the program. We
call this schemeabstraction without register sharing. Next, we will describe a scheme
where the number of Boolean variables needed to represent the predicates inP is equal
to the maximum number of predicates active at any program location. Thus, the size
of the abstract model is given by|L| · 2k′ , wherek′ = max1≤i≤|L||local(si)|. We call
this schemeabstraction with register sharing. Due to the localization of predicatesk′

is usually much smaller thank, which enables faster model checking of the abstraction
obtained using register sharing.

3.1 Abstraction Without Register Sharing

Let PC denote the vector of state variables used to encode the program counter. In
abstraction without register sharing each predicatepi has a state variablebi in the ab-
stract model. Each state in the abstraction corresponds to the valuation of|PC|+k state
variables, wherek is the total number of predicates. In the initial statePC is equal to

the value of the entry location in the original program. The state variables correspond-
ing to the predicates are initially assigned non-deterministic Boolean values. Given a
statementsl and a predicatepi the following cases are possible:

- sl is either an assume statement or an assignment statement that does not assign
to any variable inpi . That is, after executingsl the value of predicatepi remains un-
changed. Thus, in the abstract model the value of the state variable bi remains un-
changed after executingsl . We denote the set of all statements wherepi is unchanged
asunc(pi).

- sl assigns to some variable inpi . Let p j denote the weakest pre-condition ofpi

with respect tosl . If the predicatep j is active atsl , that isp j ∈ local(sl), and(p j , pi) ∈
trans f er(sl), then after executingsl , the value of predicatepi is the same as the value
of predicatep j before executingsl . In the abstract model this simply corresponds to
transferring the value ofb j to bi at sl . If the predicatep j is not active atsl , then the
abstract model assigns a non-deterministic Boolean value to bi at sl . This is necessary
to ensure that the abstract model is an over-approximation of the original program.

We denote the set of all statements that can update the value of a predicatepi as
update(pi). The set of statements where the weakest pre-condition ofpi is available
is denoted bywpa(pi). Using the localization information from Sec. 2.2,wpa(pi) is
defined as follows:wpa(pi) := {sl |sl ∈ update(pi) ∧ ∃p j . (p j , pi) ∈ trans f er(sl)}.

We useinp(pi) to denote the set of statements that assign a non-deterministic value
vi to the state variablebi . This set is defined asupdate(pi)\wpa(pi). Let cil denote the
state variable corresponding to the weakest pre-conditionof predicatepi with respect
to sl . We usepcl to denote that program counter is atsl , that isPC= l . The next state
function for the variablebi is then defined as follows:

b′i :=
[

_

sl∈unc(pi)

(pcl ∧bi)
]

∨
[

_

sl∈wpa(pi)

(pcl ∧cil)
]

∨
[

_

sl∈inp(pi)

(pcl ∧vi)
]

(1)

Note that no calls to a decision procedure are needed when generating the next-state
functions. All the required information is gathered duringthe refinement step itself by
means of weakest pre-condition propagation.

Example: Consider the abstraction of the program in Fig. 3(a) with respect to the lo-
calization information given in Fig. 3(b). The predicatep1 (y 6= m+ 1) is updated at
statements2, and its weakest pre-conditionp2 (c 6= m) is active ats2, and(p2, p1) ∈
trans f er(s2). So the next state function for the state variable representing p1 is given
as follows:b′1 := (pc2∧b2)∨ ((pc1 ∨ pc3 ∨ pc4)∧b1). The other next state functions
are given as follows:b′2 := b2, b′4 := b4, andb′3 := (pc1∧b4)∨((pc2∨ pc3∨ pc4)∧b3).
The resulting abstraction is shown in Fig. 3 (c). For simplicity the control flow is shown
explicitly in the abstraction.

Global constraint generation:The precision of the abstraction can be increased by
finding the relationships between the predicates inlocal(s) for somes. For example, in
Fig. 3(b) the relationship between the predicates inlocal(s1) results in aglobal con-
straint, b2 ↔¬b4. This constraint holds in all states of the abstract model ofFig. 3 (c)
as the Boolean variablesb2 andb4 always represent the same predicate throughout the
abstraction without register sharing. The abstraction without register sharing given in

s
1: x = c;
2: y = c + 1;
3: if (x == m)
4: if (y != m+1)
5: ERROR:;

(a)

local(s) transfer(s)
{p2, p4} {(p2, p2),(p4, p3)}
{p2, p3} {(p2, p1),(p3, p3)}
{p1, p3} {(p1, p1)}
{p1}

(b)

Abstraction
1: b3 = b4;
2: b1 = b2;
3: if (b3)
4: if (b1)
5: ERROR: ;

(c)

s Mapping
1: {p2 : b1, p4 : b2}
2: {p2 : b1, p3 : b2}
3: {p1 : b1, p3 : b2}
4: {p1 : b1}
5:

(d)

Abstraction
1: skip;
2: skip;
3: if (b2)
4: if (b1)
5: ERROR: ;

(e)

Global constraint for (c):
b2 ↔¬b4

Local constraint for (e):
(PC= 1) → (b1 ↔¬b2)

(f)

Fig. 3. (a) C program. (b) Localization information for the programwherep1, p2, p3, p4 denote
the predicatesy 6= m+1,c 6= m,x = m,c = m, respectively. (c) Abstraction with no register shar-
ing. Boolean variablebi represents the value ofpi in the abstraction. (d) Mapping of predicates
in local(s) for eachs to the Boolean variables (register sharing). (e) Abstraction with register
sharing. (f) Global constraint and Local constraint for abstractions in (c) and (e) , respectively.

Fig. 3(c) combined with the global constraint in Fig. 3(f) issufficient to show that the
ERROR label is not reachable in the C program given in Fig. 3(a). Note that we could
have simplified the computation here by recognizing thatp4 = ¬p2, which we omit for
presentation purposes only.

The constraint generation is done only for some of the statements which are marked
during the refinement (Fig. 2, line no. 17). We use SAT-based predicate abstraction [6,
17] to find the relationships between the predicates inlocal(s) for such statements. This
is the only time we use any decision procedure other than checking for the feasibility
of traces. Due to the computational cost of enumerating the set of solutions, we only
perform this computation for very small sets of predicates.Other relationships are then
discovered on demand based on spurious abstract states [1].

3.2 Abstraction With Register Sharing

In abstraction with no register sharing, the state-space ofthe abstract model is|L| ·2|P| ,
whereP is the set of predicates, andL is the set of locations in the given program. Thus,
when the number of predicates is large, model checking of theabstraction can become
a bottleneck even with a symbolic representation of the state space. We make use of the
locality of predicates to speed up the model checking of the abstraction. This is done
by reducing the number of (Boolean) state variables in the abstraction. The fact that
each state variable in the abstract model is only locally useful can be used to represent
different predicates in different parts of the program using the same state variable. We
call the reuse of state variables in the abstract modelregister sharing.

Example: Consider the C program in Fig. 3(a) and the localization information in
Fig. 3(b). The abstraction of this program withno register sharing in Fig. 3(c), contains

four state variables, one for each predicate. However, the number of predicates active at
any program statement ismax1≤i≤4|local(si)| = 2. Intuitively, it should be possible to
create an abstraction with just two state variables.

The predicatesp2, p4 are active at program location 1, so we introduce two Boolean
variablesb1,b2, to represent each of these predicates, respectively. After the execution
of s1, predicatep4 is no longer active, and the state variableb2 can be used to represent
some other predicate. Predicatep3 becomes active ats2, so we can reuse the abstract
variableb2 to representp3 at s2. In a similar fashion,b1 can be reused to represent
predicatep1 at program locationss3 ands4. We usep : b to denote that the predicatep
is represented by the state variableb. The mapping of active predicates at each program
location to the state variables is given in Fig 3(d).

The abstraction with register sharing is obtained by translating the predicate rela-
tionships intrans f er(s) for eachs, according to the mapping discussed above. Continu-
ing our example,(p4, p3)∈ trans f er(s1) in Fig. 3(b), the value of the state variable rep-
resentingp4 at s1, must be transferred to the state variable representingp3, afterwards.
Since bothp4 andp3 are represented by the same state variableb2, the abstraction for
s1 does not alter the value ofb2. The abstraction using only two state variables (b1,b2)
is shown in Fig 3(e). Theskip statement means that the values of the state variables
b1 andb2 remain unchanged for that statement.

Mapping predicates to state variables:Recall, thatp = {p1, . . . , pk} denotes the set of
predicates. LetB = {b1, . . . ,bl} be the set of state variables in the abstraction, where
l equals the maximum number of active predicates at any program location. For ev-
ery statements, the predicates relevant ats are mapped to unique state variables in
B. Let mapbe a function that takes a statements and a predicatep as arguments. If
p∈ local(s), then the result ofmap(s, p) is a state variableb∈ B; otherwise, the result
is ⊥. Recall thatchild(s) denotes the set of statements reachable froms in one step in
the control flow graph. The constraints to be satisfied bymapare as follows:

- Two distinct predicates which are active together at the same statement should not
be assigned the same Boolean variable in the abstraction forthat statement.

∀s∀pi , p j ∈ local(s) [pi 6= p j → map(s, pi) 6= map(s, p j)]

- Consider statements and(p1, p2) ∈ trans f er(s). By definition there existss′ ∈
child(s) wherep2 is active, that isp2 ∈ local(s′). This case is shown in Fig. 4(a). Sup-
pose the predicatep1 is mapped tobi in s andp2 is mapped tob j in s′. The abstraction
for the statementswill assign the value ofbi to b j . Sob j should not be used to represent
a predicatep3, wherep3 6= p2, in any other successor ofs. This is because there is no
relationship between the value of the predicatep1 at s and the predicatep3 at s′′. This
constraint is shown in Fig. 4(b).

We now describe the algorithm which creates an abstraction in the presence of reg-
ister sharing. Letabs(s) be a set of Boolean pairs associated with each statements.
Intuitively, if (bl ,bm) ∈ abs(s), then in the abstraction the value ofbm after s termi-
nates is equal to the value ofbl before the execution ofs. Formally,abs(s) is defined as
follows:

abs(s) := {(bl ,bm)|∃(pi , p j) ∈ trans f er(s). bl = map(s, pi) ∧

p2p2 p3 p2p2 bj bk

bj bi

p3

p1 bi:

bjp3 bk

bp1 :

bp2p2 :

p1

p2

s

s’ s’’

: :

=

!=!=

(a) (b)

s’

s

(c)

b = *

Fig. 4. (a) Statements and two successorss′ ands′′. Predicatesp1, p2, p3 are active ats, s′, and
s′′, respectively. (b) Abstraction with register sharing, where (p1, p2) ∈ trans f er(s). Predicate
p1, p2 are mapped tobi ,b j , respectively, in the abstraction. Predicatep3 6= p2 should not be
mapped tob j for safe abstraction i.e., an over-approximation of original program. (c) Boolean
variableb is used to represent two distinct predicatesp1 andp2 on the same path. It is set to a *
(non-deterministic value) betweens ands′ to ensure safe abstraction.

∃s′ ∈ child(s). bm = map(s′, p j)}.

Given a Boolean variablebi and a statementsl , the following cases are possible:
- sl updates the value ofbi . That is, there exists ab j ∈ B such that(b j ,bi) ∈

abs(sl). We denote the set of all statements which updatebi asupdate(bi). The function
rhs(sl ,bi) returns the Boolean variable which is assigned tobi in the statementsl .

- sl assigns a non-deterministic value tobi . The set of all such statements is denoted
by nondet(bi). In order to understand the use of this set, consider a Boolean variableb
which is used to represent two distinct predicatesp1 andp2 on the same path. Assume
that b is not used to represent any other predicate between the statementss and s′.
Sincep1 and p2 are not related, the value ofb when it is representingp1 should not
be used whenb is representingp2. Sob is assigned a non-deterministic value between
the path starting froms to s′. This is necessary to ensure that the abstraction is an over-
approximation of the original program. This case is shown inFig. 4(c).

- The value ofbi is a don’t-care at statementsl . The value ofbi is a don’t care for
all the statements which are not present inupdate(bi) or nondet(bi). In such cases, we
set the value ofbi to false at these statements, in order to simplify its conjunction with
the program counter variable to false. This simplifies the overall transition relation.

Given the above information the next state function for the variablebi is defined as
follows (we use an inputvi for introducing non-determinism andpcl to denotePC= l):

b′i :=
[

_

sl∈update(bi)

(pcl ∧ rhs(sl ,bi))
]

∨
[

_

sl∈nondet(pi)

(pcl ∧vi)
]

. (2)

Local constraint generation:The abstraction can be made more precise by relating the
predicates inlocal(s) for somes. For example, in Fig. 3(b) the predicates inlocal(s1)
satisfy the constraint thatp2 ↔¬p4. In order to add this constraint to the abstraction,
we need to translate it in terms of the Boolean variables. Themapping given in Fig. 3(d)
assigns Boolean variablesb1, b2 to p2, p4, ats1 respectively. This leads to a constraint
(PC = 1) → (b1 ↔ ¬b2). This is called alocal constraintas it is useful only when
PC= 1. We cannot omit thePC= 1 term from the constraint as this would mean that
b1 ↔ ¬b2 holds throughout the abstraction which is not correct due toregister reuse.

The abstraction with register sharing in Fig. 3(e) combinedwith the local constraint in
Fig. 3(f) is sufficient to show that theERROR label is not reachable in the C program
given in Fig. 3(a).

4 Dedicated State Variables

Register sharing enables the creation of abstract models with as few Boolean variables
as possible which enables more efficient model checking of the abstractions. However,
register sharing might also result in a large number of refinement iterations as described
in the following. Consider a sequenceSE of statements froms to s′, which does not
modify the value of a predicatep. Supposep is localized at the statementss,s′, but not at
any intermediate statement inSE. In abstraction with register sharing, it is possible that
p is represented by two different Boolean variablesb1 andb2 at s ands′, respectively.
Because the value ofp remains unchanged alongSE, the value ofb1 at s should be
equal to the value ofb2 at s′. If this is not tracked however, we may obtain a spurious
counterexample by assigning different values tob1 at s andb2 at s′. This leads to a
refinement step, which localizes the predicatep at every statement inSE, to ensure that
the value of predicatep does not change alongSE in subsequent iterations. We should
note that such behavior is handled in the abstractionwithout register sharing approach
through the use of theunchangedset denoted byunc in Eqn. (1) described earlier.

If p is discovered frequently in different parts of the program through various spuri-
ous counterexamples, then using the abstraction with register sharing will lead to many
abstraction refinement iterations. This problem can be avoided, if p is represented by
exactly one Boolean variableb in a large scope of the abstraction. This is because the
value ofb will not be changed by any statement inSE, and thus, the value ofb ats′ will
be the same as that ats. We call a Boolean variable which represents only one predi-
cate throughout the abstraction adedicated state variable. The next state function for a
dedicated state variableb is computed using Eqn. (1).

Hybrid approach: Initially, when a predicate is discovered it is assigned a Boolean
variable, which can be reused for representing different predicates in other parts of
the abstraction. If the same predicate is discovered through multiple counterexamples
in the various parts of the program, then it is assigned a dedicated Boolean variable
for a global or functional scope of the program depending on the variables used in the
predicate. The decision about when to assign a dedicated Boolean variable to a predicate
is done by making use of the following heuristic.

For each predicatep, let usage(p, i) denote the number of statements wherep is
localized in the iteration numberi of the abstraction refinement loop. Ifusage(p, i)
exceeds a certain user-defined thresholdTH, then p is assigned a dedicated Boolean
variable. If TH = 0, then every predicate will be assigned a dedicated state variable
as soon as it is discovered. This is similar to performing abstraction with no register
sharing for all state variables. On the other hand, ifTH = |L|+1, where|L| is the total
number of statements in the program, then none of the predicates will be assigned a
dedicated state variable. This allows complete reuse of theabstract variables, which is
similar to abstraction with register sharing. For any intermediate value ofTH we have
a hybrid of abstraction with and without register sharing.

In the hybrid approach, it is possible to have global constraints on the dedicated state
variables. This saves refinement iterations where the same constraint is added locally in
various parts by means of counterexamples. We can still havelocal constraints on the
state variables which are reused. Furthermore, we hope to discover as early as possible
whether a predicate should be given a dedicated state variable by having a low threshold
for the early iterations of the abstraction refinement loop,which increases as the number
of iterations increases. Predicting early on that a predicate may need a dedicated state
variable reduces the number of abstraction refinement iterations substantially.

5 Experimental Results

We have implemented these techniques in NEC’s F-SOFT [15] verification tool. All
experiments were performed on a 2.8GHz dual-processor Linux machine with 4GB
of memory. We report our experimental results on the TCAS andAlias case studies.
TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict detection
and resolution system used by all US commercial aircrafts. We used an ANSI-C version
of a TCAS component available from Georgia Tech. Even thoughthe pre-processed
program has only 1652 lines of code, the number of predicatesneeded to verify the
properties is non-trivial for both F-Soft and BLAST. We checked 10 different safety
properties of the TCAS system. Alias is an artificial benchmark which makes extensive
use of pointers. Each property was encoded as a certain errorlabel in the code. If the
label is not reachable, then the property is said to hold. Otherwise, we report the length
of the counterexample in the ”Bug” column in Table 1. All CPU times are given in
seconds. For all runs, we set a time limit of one hour for the analysis.

5.1 Predicate Localization, Register Sharing, and Dedicated State Variables

We first experimented with no localization of predicates. However, this approach did
not scale, as the abstraction computation becomes a bottleneck. We next experimented
with localization of predicates using weakest pre-conditions. The results of applying
only localization and abstraction without register sharing is shown under the ”Localize”
heading in the Table 1. The ”Time Abs MC” column gives the total time, followed by the
breakup of total time into the time taken by abstraction (Abs), model checking (MC),
respectively. We omit the time taken by refinement, which is equal to Time - (Abs +
MC) for each row. The ”P” and the ”I” columns give the total number of predicates,
and the total number of iterations, respectively. Two observations can be made from the
”Localize” results: 1) Due to the localization of predicates, the abstraction computation
is no longer a bottleneck. 2) Model checking takes most of thetime, since for each
predicate a state variable is created in the abstract model.Note that the model checking
step is the cause of the timeouts in three rows under the ”Localize” results.

Next, we experimented with register sharing. The number of state variables in the
abstraction was reduced, and the individual model-checking steps became faster. How-
ever, as discussed in Sec. 4 this approach resulted in too many abstraction refinement it-
erations. This problem was solved by discovering on-the-flywhether a predicate should
be assigned a dedicated state variable, that is, a state variable which will not be reused.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

T
ot

al
 r

un
tim

e
(in

 s
ec

on
ds

)

Threshold (in percentage)

TCAS0
TCAS4

(a)

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

N
um

be
r

of
 a

bs
tr

ac
tio

n
re

fin
em

en
t i

te
ra

tio
ns

Threshold (in percentage)

TCAS0
TCAS4

(b)

Fig. 5. (a) Variation in the total runtime with the threshold. (b) Variation in the total number of
abstraction refinement iterations with the threshold.

A dedicated state variable is introduced for a predicate whose usage exceeds a progres-
sively increasing threshold, starting at 5% of the total number of program locations.

The results of combining these multiple techniques is givenunder the ”Combined”
heading in Table 1. The meaning of ”Time Abs MC” and the ”I” column is the same as
before. The ”P Max Ded” column gives the total number of predicates (P), followed by
the maximum number of predicates active at any program location (Max), and the total
number of state variables which represent exactly one predicate, that is, dedicated state
variables (Ded). Observe that the time spent during model checking (MC) has reduced
significantly as compared to the ”Localize” column.

Effect of varying the threshold:We also experimented with theTH (threshold) param-
eter, which is used to determine when a predicate is assigneda dedicated state variable.
Fig. 5(a) shows the variation of the total runtime with the initial value for the thresh-
old. When the threshold is equal to zero every predicate is assigned a dedicated state
variable. This results in too many state variables in the abstract model causing the total
runtime to be high. However, as the threshold is increased, the number of abstraction
refinement iterations starts to increase as shown in Fig. 5(b). The best runtime in our
experiments has so far been obtained for an initial threshold of 5%. Even such a small
value for the threshold is effective in separating the predicates which areglobally rel-
evant from those which arelocally useful. As the threshold is further increased very
few predicates are assigned dedicated state variables. Oneof the main advantages of
choosing a small initial threshold is that we are able to decide early on whether a pred-
icate may need a dedicated state variable. If we start with a higher initial threshold, the
number of additional iterations needed for a single predicate to receive a dedicated state
variable increases too much.

Variable reuse ratio:In our implementation themapfunction (Section 3.2) is computed
incrementally, as new predicates are discovered. Suppose during refinement a predicate
p gets added tolocal(s) for somes. In order to find a state variable to represent the value
of p at s, we first check if some existing state variable can be reused without violating
the constraints described in Section 3.2. Let the total number of times reuse is possible

Bench Localize Combined BLAST Bug
-mark Time Abs MC P I Time Abs MC P Max Ded I Time P Max Avg I
TCAS0 245 7 196 71 32 36 5 15 65 26 18 31 96 85 24 10 33 -
TCAS1 1187 15 1069108 44 161 9 118 96 35 25 38 256 137 43 17 42 -
TCAS2 952 10 882 74 38 104 25 51 95 31 24 36 148 108 31 11 40 -
TCAS3 940 15 864 91 36 46 17 17 73 22 15 33 172 101 26 10 44 152
TCAS4 1231 13 111197 39 88 9 48 90 34 25 32 182 149 38 13 51 166
TCAS5 1222 11 112879 41 141 8 98 98 37 29 31 105 114 31 10 33 -
TCAS6 TO 20 2270117 49 330 16 266109 40 33 40 293 158 41 14 69 179
TCAS7 1758 16 162779 47 64 10 29 94 28 21 33 287 125 30 11 63 160
TCAS8 TO 21 1988 84 51 119 13 68 106 34 27 41 181 116 31 11 46 -
TCAS9 TO 26 3349113 58 250 14 186106 34 27 44 322 140 40 14 61 179
ALIAS 50 6 33 61 11 6 2 1 55 25 15 9 · · · · · -

Table 1.Results for: 1) Localization, abstraction without register sharing (”Localize”) . 2) Local-
ization, abstraction with register sharing, dedicated state variables (”Combined”). 3) BLAST with
interpolation (”BLAST”). A ”-” indicates that the propertyholds. A ”·” indicates that the bench-
mark could not be handled properly. A ”TO” indicates a timeout of 1hr. We report the statistics
observed before timeout occurs.

be R. If no existing state variable can be used, we introduce a newstate variable for
representing the value ofp at s. Let the total number of times a new state variable is
introduced beC. The ratioR/(C+ R) measures the effectiveness of variable reuse in
controlling the total number of state variables. The value of this ratio is 88% on average
across theTCAS benchmarks and 81% for theALIAS benchmark.

5.2 Comparison with BLAST

We first ran BLAST in the default mode without any options. However, the default
predicate discovery scheme in BLAST fails to find the new set of predicates during
refinement, and terminates without (dis)proving any of the TCAS properties. Next, we
tried the Craig interpolation [14] options (craig1 andcraig2) provided by BLAST.
The BLAST manual recommends the use ofpredH7 heuristic with Craig interpolation.
Of the various options to BLAST,craig2 andpredH7 result in the best performance
when checking the TCAS properties. Table 1 gives the result of running BLAST with
these options under the ”BLAST” heading. The ”P Max Avg” column gives the to-
tal number of predicates (P), followed by the maximum (Max) and the average (Avg)
number of predicates active at any program location (rounded to the nearest integer).

The best runtimes are shown in bold in Table 1. Note that the ”Combined” technique
of F-Soft outperforms BLAST on 9 out of 11 benchmarks, and thenumber of iterations
required by ”Combined” is less than that for ”Blast” in all cases. Recall that the size of
the abstraction is exponential in the maximum number of active predicates (Max). This
number is comparable for both BLAST and F-Soft, even though BLAST makes use of
a more complex refinement technique based on the computationof interpolants.

6 Conclusions and Future Work
The application of the predicate abstraction paradigm to large software depends cru-
cially on the choice and usage of the predicates. If all predicates are tracked globally in

the program, the analysis often becomes intractable due to the large number of predicate
relationships. In this paper we described various techniques for improving the overall
performance of the abstraction refinement loop. We presented experimental results in
our F-SOFT [15] toolkit using the techniques of predicate localization, register shar-
ing and dedicated state variables, and showed how a combination of these techniques
allowed us to check properties requiring a large number of predicates.

There are a number of interesting avenues for future research. Theoretical com-
parison between the use of interpolants [14] and the use of weakest pre-conditions for
localization of predicates will be useful. Other techniques for finding the right balance
between the predicates whose values are tracked locally andthe predicates whose values
are tracked globally are worth further investigation.

Acknowledgment.We thank Rupak Majumdar and Ranjit Jhala for their help with
BLAST.

References

1. T. Ball, B. Cook, S. Das, and S. Rajamani. Refining approximations in software predicate
abstraction. InTACAS 04, pages 388–403. Springer, 2004.

2. T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate abstraction of
C programs. InProgramming Language Design and Implementation, pages 203–213, 2001.

3. T. Ball, A. Podelski, and S.K. Rajamani. Boolean and Cartesian abstraction for model check-
ing C programs. InTACAS 01, volume 2031, 2001.

4. T. Ball and S.K. Rajamani. Automatically validating temporal safety properties of interfaces.
In SPIN Workshop on Model Checking of Software. Springer, 2001.

5. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modularverification of software com-
ponents in C. InICSE 03, pages 385–395. IEEE, 2003.

6. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI–C pro-
grams using SAT.Formal Methods in System Design, 25:105–127, Sep–Nov 2004.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
Symposium on Principles of Programming Languages, pages 238–252, 1977.

8. William Craig. Linear reasoning. InJournal of Symbolic Logic, pages 22:250–268, 1957.
9. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. InComputer Aided

Verification, LNCS 1633, pages 160–171. Springer, 1999.
10. E. Dijkstra.A Discipline of Programming. Prentice Hall, 1976.
11. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. InCAV 97, pages

72–83. Springer, 1997.
12. A. Gupta, M.K. Ganai, P. Ashar, and Z. Yang. Iterative abstraction using SAT-based BMC

with proof analysis. InInternational Conference on Computer Aided Design (ICCAD), 2003.
13. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazyabstraction. InPOPL 02, pages

58–70, 2002.
14. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In

POPL 04, pages 232–244. ACM Press, 2004.
15. F. Ivančić, Z. Yang, M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based bounded model

checking for software verification. InSymposium on Leveraging Applications of Formal
Methods, 2004.

16. H. Jain, D. Kroening, and E. Clarke. Verification of SpecCusing predicate abstraction. In
MEMOCODE 04, pages 7–16. IEEE, 2004.

17. S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate abstraction. In
CAV 03, pages 141–153. Springer, 2003.

18. Kedar S. Namjoshi and Robert P. Kurshan. Syntactic program transformations for automatic
abstraction. InCAV 00, number 1855 in LNCS, 2000.

19. R. Rugina and M.C. Rinard. Symbolic bounds analysis of pointers, array indices, and ac-
cessed memory regions. InPLDI 00, pages 182–195, 2000.

20. Vlad Rusu and Eli Singerman. On proving safety properties by integrating static analysis,
theorem proving and abstraction. InTACAS 99, pages 178–192, 1999.

21. A. Zaks, F. Ivančić, H. Cadambi, I. Shlyakhter, Z. Yang, M. Ganai A. Gupta, and P. Ashar.
Range analysis for software verification.Submitted for publication, 2004.

