
Andersen’s Points-to Analysis for CASH Compiler
Framework

Deepak Garg Himanshu Jain

July 9, 2005

Project URL: http://www.cs.cmu.edu/∼hjain/compilers.html

Abstract

We present the design and results of our implementation of Andersen’s
pointer analysis on the Pegasus intermediate representation. We use a con-
straint based formulation of this analysis and use the Banshee constraint solv-
ing framework to solve the generated constraints. The results of the pointer
analysis are then used for analyzing the token dependencies between the var-
ious memory related operations in the Pegasus IR. Our experimental results
indicate that significant percentage of token dependencies in Pegasus IR are
redundant. These dependencies can be removed to increase the parallelism
in the Pegasus IR.

1 Introduction

Points-to analysis computes, for each expression in a given program, a set of pos-
sible abstract memory locations that the expression could point. Since the general
problem of deciding points-to sets for each expression in a program is undecidable,
any points-to analysis can produce approximate information only. There are sev-
eral design choices that must be made while selecting a suitable pointer analysis for
a given application. The main criteria used in making such a selection is a space-
time vs accuracy trade-off. Acontext sensitive analysistracks points-to sets for
each call to a function separately. Such analyses are very costly in terms of time.
A context-insensitive analysis, on the other hand, disregards such call information.
Context insensitive analyses scale well in practice. In the rest of this report, we
consider context insensitive analyses only.

Pointer analyses may also be classified as flow sensitive and flow insensitive.
A flow sensitive analysis computes a points-to set for each pointer variable at each

1



program site. On the other hand, a flow insensitive analysis computes a single
points-to set for each pointer variable. The latter form of analysis is less accurate,
but runs reasonably well in practice. Two well-known flow insensitive points-to
analyses are Steensgaard’s analysis [8] and Andersen’s analysis [1]. The latter is
more accurate and can be implemented to run in worst case timeO(n3), wheren is
the size of the program. In practice, however, it runs much faster. It is this analysis
that we have chosen to implement for our application.

A very simple way to make a flow insensitive points-to analysis as accurate as
a flow-sensitive one is to convert the program to SSA (static single assignment)
form first. The SSA form of a program is an equivalent program in which each
variable is assigned to exactly once and each use of a variable is preceded by its
(unique) assignment on any program path reaching that use. Once a program has
been converted to SSA form, a flow insensitive points-to analysis is as accurate as
a flow sensitive one, because each variable is assigned exactly once. The difficulty
however comes in obtaining the SSA form in the first place. As Hasti and Horwitz
observe in [7], in order to obtain an SSA form for a program with pointers, at least a
flow-insensitive pointer analysis must be performed first. Once this has been done
and an SSA obtained, the same analysis can be performed again to obtain more
accurate results.

The CASH framework is an experimental compiler that compiles C programs
to asynchronous circuits [4]. Pointer analysis is important for CASH framework
for two reasons. First, in order to obtain the circuit representation of a given C pro-
gram, the program’s dataflow graph must be converted to single static assignment
(SSA) form first. As mentioned above, this requires at least a flow-insensitive anal-
ysis. The CASH compiler framework already has a flow-sensitive pointer analysis
implemented for this purpose.

The second reason for implementing a pointer analysis in CASH stems from
the design of its intermediate representation (called Pegasus [3]). In Pegasus, pro-
grams are represented as high-level circuits which contain functional nodes (like
adders, logical operators, etc.), memory nodes (load and store) and a number of
other flow related nodes like multiplexers, switches, etc. These nodes are con-
nected by wires, and the entire intermediate representation takes the form of a
graph where the nodes represent the program’s operations and the connecting wires
(edges) represent the dataflow. Since the circuit is asynchronous, control flow must
be represented explicitly. Pegasus usestokenedges to do this. If there is a token
edge from node A to node B, then the function in node B can be performed only
after the function at node A has computed its value. In most cases, token edges
are needed between memory operations. For example, if a store node S writes to
memory locationl and a load node L has to read this value from locationl, then
node L cannot readl till node S has completed its write operation. In this case,

2



there would be a token edge from S to L.
During construction of the intermediate representation in CASH, a lot of token

edges are added to ensure correct execution order. However, many of these token
edges are redundant i.e. they connect load and store nodes which have no real
dependency on each other. Such token edges constrain parallelism in the program.
As a result it is desirable to remove them. This can be done using an accurate
pointer analysis followed by simple dependence checks for memory operations
that are connected by token edges. This pointer analysis can be implemented over
the Pegasus representation itself, rather than the source program. This is a real
advantage because the Pegasus representation is SSA (the variables in a Pegasus
representation are the wires, and each wire is assigned exactly once – at its source)
and hence a pointer analysis implemented on it is more accurate than an equivalent
analysis on the source program.

In this report we present the design and results of our implementation of An-
dersen’s analysis on the Pegasus intermediate representation. We use a constraint
based formulation of this analysis and use the Banshee constraint solving frame-
work [2] to solve constraints. The basic formulation of this analysis using Banshee
as the constraint solver is not new. Details of a similar formulation can be found
in [5, 6]. After performing the points-to analysis, we use it to locate token depen-
dencies between load and store nodes that are redundant. Our experiments indicate
that a significant percentage of dependencies in CASH’s IR are redundant.

2 Andersen’s Analysis on Pegasus IR

In this section we adapt an existing presentation of Andersen’s analysis [5, 6] to
the Pegasus IR. We skip a detailed description of the IR itself. This description
may be found in [3]. Our points-to analysis is intra-procedural and is performed
one function at a time.

We associate a name (U, V,W, . . .) with each wire in the Pegasus representa-
tion of the function we are analyzing. With each wire nameW we associate a
symbolic namelW , which is the name of the abstract memory location where the
value present on the wire is stored1. To each wireW we associate atypeτW which
has the formref(lW , XW ), whereXW is asetof types that the value in the wire
may point to. We use the notationφ for the empty set andU for the set of all types.
Formally, the types (τ ) of wires are generated by the following grammar.

τ ::= ref(lW , XW )
XW ::= φ | U | {ref(lW1 , XW1), . . . , ref(lWn , XWn)}

1In reality, some wires may actually get bound to hard registers, but for the purpose of our pointer
analysis, we assume that all wires are allocated to memory locations

3



As a simple example, suppose we have a wireW which may point to wiresV and
U , which in turn may respectively point to wires of typesXV andXU . Then the
type of wireW is τW = ref(lW , {ref(lV , XV ), ref(lU , XU )}). In order to ob-
tain the exact set of locations a particular wireW may point to, we need to look
at the setXW in its typeref(lW , XW ). W may point to locationlV if and only
if XW contains a type of the formref(lV , ). Our points-to analysis implementa-
tion iterates over the entire circuit once and generates constraints between the sets
XW for different wires. Then we use the Banshee constraint solver to solve these
constraints, thus obtaining the types of all wires in the circuit.

We generate constraints by iterating over the nodes (operations) of the Pegasus
IR. For each operation in a function, constraints are generated between the points-
to sets of the types of the input and output wires of the node. We describe in some
detail how these constraints are generated.

Copy type nodes. Copy type nodes are those nodes which simply copy their
input to the output. These include nodes having opcodeop hold, op reg,
op cast, op nop, op eta . Suppose some such nodeN has input wireW
and output wireV , with associated typesref(lW , XW ) andref(lV , XV ) respec-
tively. Then clearly, anything thatW can point to,V can also point to, and as a
result the constraint generated isXW ⊆ XV . Since the Banshee constraint solver
computes least fixed points, in the absence of any more constraints, this implies
that XV will have the same value asXW . This treatment also extends to nodes
having opcodeop neg .

Load nodes. A load node (op lod ) has one input (the memory address from
which to load) and one output, which is the value stored at that memory address.
Let us call these input and output wiresW andV respectively and let their cor-
responding types beref(lW , XW ) andref(lV , XV ). Symbolically, the node per-
forms the operationV = ∗W . For every typeref(lU , XU ) ∈ XW , dereferencing
W can result in a value of typeXU and hence, for each suchU , we must have
the constraintXU ⊆ XV . Banshee provides a convenientprojectionnotation for
writing such a constraint. We writeXW ⊆ proj(ref, XV , 1), which means that
wheneverref(lU , XU ) ∈ XW , we have the constraintXU ⊆ XV .

Store nodes.A store node (op str ) has two inputs – a wireW which has the
address at which the address must be stored and a wireV which holds the value
that must be stored. There is no data output. Symbolically, the operation per-
formed is∗W = V . The constraint added for such a node is the following: for
every locationU that W points to,XU must contain the setXV . Formally, for
eachref(lU , XU ) ∈ XW , we add the constraintXV ⊆ XU . Again, Banshee’s

4



projection notation can be used to do this conveniently.

Constant nodes. If a node with opcodeop const is not a symbolic constant,
then the output of the node cannot be a pointer. If the output wire of such a node
is W , we add the constraintφ ⊆ XW . Since Banshee computes least fixed points,
solving this system of constraints yieldsXW = φ. In words this means that the
value on wireW is not a pointer.

If a node with opcodeop const is a symbolic constant ‘c’, we assume that
we have an abstract locationlc in memory where ‘c’ resides. In this case, the output
wire W is a pointer to the locationlc and the constraint we add is{ref(lc, Xc)} ⊆
XW , whereXc is a fresh set variable. If no further constraints are added onXc,
thenXc will evaluate toφ. In words this would mean that the wireW points to
locationlc, which itself is not a pointer.

Logical operations.For operations, with opcodesop le, op eq, op land,
op lor, etc , the output cannot be a pointer. If the output of such an operation
is a wireW , we add the single constraintφ ⊆ XW .

Mathematical/bitwise/shift operations.These include nodes with opcodesop add,
op sub, op and, op or, etc . For these operations, there are two inputs
(sayU andV ) and one output (sayW ). In these cases, we simply assume thatW
can point to anything thatU or V can point to i.e.XU ⊆ XW andXV ⊆ XW . In
the most common case, such a node is used for pointer arithmetic operations, and
one of the inputs (sayV ) is a constant. For example, one may increment the value
of a pointer by a constant value 4 to point to the next element of an integer array. In
such cases, the valueXV will be φ and the only useful constraint isXU ⊆ XW . As
a result, our pointer analysis identifies the different fields of an array or a structure
in its points-to sets.

Mu/Mux/Switch nodes. In these cases, there are a number of input wires (say
W1, . . . ,Wn) and a single output wire (sayW ). The value on exactly one of the
wire W1, . . . ,Wn) is copied to the output. Therefore we addn constraints – for
each1 ≤ i ≤ n, we add the constraintXWi ⊆ XW .

Arguments to functions. Nodes with opcodeop arg require special treatment
because their output can potentially point to any location other than those created
in the function body. We use the special location namelarg to denote all such lo-
cations. Correspondingly, we use the nameXarg to denote the set of all possible
types that can be obtained by dereferencinglarg. We assume that each argument to
a function is a pointer to this location. As a result, ifW is a wire at the output from

5



an argument node, we add the constraint{ref(larg, Xarg)} ⊆ XW .

Function calls. If a function call is made to an address with symbolic name “mal-
loc”, then the output is a new location. In this case, if the output wire isW , we
add the constraint{ref(lf , Xf )} ⊆ XW , wherelf andXf are fresh names. If the
call is to some other function, the return value can potentially point to anything and
hence the constraint added isU ⊆ XW .

Once constraints have been generated for all nodes in a function’s IR, we can solve
them using Banshee. However, for purposes of efficiency, we solve the constraints
on a need-only basis. When we are looking for token dependencies between nodes,
we do not need to solve all constraints. Instead we need to solve only those con-
straints which affect the inputs and outputs of the specific nodes we are considering.
Therefore, we postpone solving the constraints to the time when their values are
actually needed.

3 Identifying token dependencies

False token dependencies between operations reduce the parallelism available in
a circuit. In this section we describe how the points-to information can be used
for identifying false token dependencies between operations. This in turn can be
used for removing certain token edges from the circuit, thus, leading to increased
parallelism.

A token edge indicates a dependence between the connecting nodes (opera-
tions). However, there might be a dependence between two nodes even if they are
not directly connected by a token edge. In general, there is atoken dependency
from noden to nodem if there is a path consisting of token edges from noden to
nodem. We identify the token dependencies by computing the transitive closure
of the graph induced by the token edges. Once we have obtained all the token de-
pendencies, we classify them as false (i.e., can be removed) or true (i.e., cannot be
removed). This classification process is described next.

For each noden, let read(n) denote the set of abstract memory locations read
by the noden, andwrite(n) denote the set of abstract memory locations written
by the noden. The computation of read and write sets makes use of the points-
to information. For example, for a load nodel of the form x = *y , we have
read(l) = {y, pts(y)}, wherepts(y) denotes the set of abstract memory locations
pointed to byy. Similarly,write(l) = pts(x).

A token dependency between two nodesn and m is false iff the following

6



equation holds:

((read(n) ∩ write(m) = ∅) ∧ (write(n) ∩ read(m) = ∅)) ∧
(write(n) ∩ write(m) = ∅))

The above equation is expressed using the set constraints of Banshee. The
constraints corresponding to the above equation are then solved to determine if
there is a false token dependency between the nodesn andm.

Since most of the token dependencies arise due to memory operations, we per-
form the above computation (transitive closure of token edges, constraint solving)
only for the load/store nodes. This is crucial because performing transitive closure
for all the nodes in the circuit is expensive and intractable for large programs.

4 Experimental results

The experimental results are summarized in Table 1. The column ”Benchmark”
contains the benchmark name, the column ”TP” contains the total number of pro-
cedures analyzed in a given benchmark. The ”Nodes” column contains two sub-
columns: sub-column ”TN” gives the total number of nodes in the various Pegasus
circuits of a given benchmark; sub-column ”L/S” is the total number of load or
store nodes in these circuits. The constraint generation is done for all the nodes in
a circuit. However, the constraint solving is done only for load/store nodes which
have token dependencies between them.

The column ”Dependencies” refers to the token dependencies between load/store
nodes: sub-column ”TrueD” gives the total number of token dependencies which
are true; sub-column ”FalseD” gives the total number of token dependencies which
are false.

The column ”Andersen’s Time” contains the time taken by various steps of
our implementation of Andersen’s analysis. The sub-column ”CGen” gives the
total time taken by constraint generation step; the sub-column ”Tk” gives the total
time taken when computing the transitive closure of load/store nodes; the sub-
column ”Dep” gives the total taken for analyzing the token dependencies between
load/store nodes; the sub-column ”Tot” gives the total time taken by our analysis.
The time taken by existing pointer analysis (done at source level) is given in the
column ”ET”.

4.1 Summary of Results

• The total number of false token dependencies is greater than the total number
of true dependencies for the majority of benchmarks. Thus, many token

7



edges can be removed from the circuit. However, computing the set of token
edges that can be removed is not straightforward. This is because a given
token edge can participate in multiple token dependencies, some of which
can be true and cannot be removed. One way to get around this problem is to
first remove the entire token network and then re-build it based on true token
dependencies only.

• We observed that computing the transitive closue of token edges for all the
nodes is too expensive. Thus, we only compute the set of nodes reachable
from each load/store node. This speeds up the analysis as the total number of
load/store nodes is smaller as compared to the total number of nodes (column
”Nodes”).

5 Conclusion

We have presented a constraint based formulation of the Andersen’s points-to anal-
ysis for the Pegasus intermediate representation. We described the constraint gen-
eration rules for various operations in the Pegasus IR. The Banshee toolkit is used
for solving the generated constraints. The results of our points-to analysis are
used to identify the redundant token dependencies between load and store nodes.
Our experiments indicate that a significant percentage of token dependencies in
CASH’s IR are redundant.

Pegasus IR is in SSA form, and thus, even a flow-insensitive analysis such as
Andersen’s produces the same results as a flow sensitive analysis. However, one
drawback of the Pegasus IR is the lack of source level type information. Without
the type information we do not know how many times a pointer variable can be
dereferenced (e.g.,int** can be dereferenced twice). This sometimes leads to
generation of constraints which cannot be solved by Banshee. Other limitations
are: 1) we do not track function pointers because our analysis is intra-procedural.
2) we cannot detect aliasing between function arguments and global variables be-
cause we cannot detect which symbol names in a circuit are global.

References

[1] L. Andersen. Program Analysis and Specification for the C Programming Lan-
guage. Technical Report Ph.D. thesis, DIKU, University of Copenhagen, 1994.

[2] http://banshee.sourceforge.net/.

8



[3] M. Budiu and S. C. Goldstein. Pegasus: An Efficient Intermediate Represen-
tation. Technical Report CMU-CS-02-107, Carnegie Mellon University, 2002.

[4] http://www-2.cs.cmu.edu/∼phoenix/index.html.

[5] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. Flow-Insensitive
Points-to Analysis with Term and Set Constraints. Technical Report CSD-97-
964, University of California, Berkeley, 1997.

[6] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. Polymorphic ver-
sus monomorphic flow-insensitive points-to analysis for c. InStatic Analysis
Symposium, pages 175–198, 2000.

[7] Rebecca Hasti and Susan Horwitz. Using static single assignment form to im-
prove flow-insensitive pointer analysis. InPLDI ’98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and implemen-
tation, pages 97–105, New York, NY, USA, 1998. ACM Press.

[8] B. Steensgaard. Points-to Analysis in Almost Linear Time. InACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages 32–41,
1995.

9



Bench- TP Nodes Dependencies Andersen’s Time ET
mark TN L/S TrueD FalseD CGen Tk Dep Tot
099.go 210 267568 6388 15486 185785 3.4 10.56 15.58 29.98 3.06
129.compress 15 7800 324 5273 3514 0.14 0.1 0.57 0.82 0.03
130.li 72 18168 831 1945 16756 0.27 0.34 0.98 1.59 0.17
132.ijpeg 13 10784 566 7572 16995 0.13 0.39 1.46 2.02 0.05
147.vortex 72 95440 2791 6631 105670 0.98 5.34 6.04 12.48 14.47
164.gzip 14 17792 524 2332 23003 0.25 0.99 1.4 2.66 0.17
164.gzip.test 14 17856 516 2305 22142 0.21 1.1 1.44 2.76 0.16
175.vpr 29 26856 844 409 26022 0.32 0.89 1.48 2.74 0.5
176.gcc 40 10992 421 376 6379 0.12 0.32 0.42 0.88 0.1
179.art 3 984 46 80 549 0.02 0.01 0.03 0.07 0
181.mcf 23 21976 1093 30423 34858 0.29 0.57 6.16 7.04 0.14
183.equake 3 8880 262 308 35662 0.09 1.11 1.79 3.01 0.35
188.ammp 3 2304 65 112 688 0.04 0.02 0.06 0.12 0.04
197.parser 83 57216 1759 12100 71193 0.69 2.9 5.73 9.38 0.73
253.perlbmk 22 13776 780 2207 18462 0.17 0.3 1.31 1.8 0.25
254.gap 34 29312 1375 2583 78481 0.39 0.98 4.88 6.29 0.27
255.vortex 72 95440 2791 6631 105670 0.99 5.59 6.37 13.16 15.22
256.bzip2 62 78376 2226 22567 257037 1.08 12.76 18 31.96 0.94
300.twolf 15 28944 1551 25886 132042 0.34 1.64 9.5 11.48 0.32
301.apsi 1 16688 154 1223 9204 0.16 3.84 0.54 4.56 60.4
adpcmd 1 1192 19 36 104 0.01 0.01 0.01 0.04 0.01
adpcme 1 2248 20 32 82 0.02 0.04 0 0.08 0.02
basicmath 4 8784 77 10 1269 0.09 0.35 0.05 0.51 0.09
blowfish d 3 4920 330 4625 6740 0.11 0.11 0.67 0.9 0.03
blowfish e 3 4920 330 4625 6740 0.11 0.11 0.66 0.89 0.03
fir wagner 1 648 31 175 45 0.01 0 0.02 0.03 0.01
g721d 20 5752 160 1538 262 0.06 0.06 0.11 0.24 0.04
g721e 15 4496 151 1531 213 0.03 0.03 0.11 0.18 0.01
g721Q d 20 6008 157 1322 218 0.05 0.04 0.09 0.19 0.02
g721Q e 15 4752 148 1315 169 0.08 0.04 0.08 0.2 0.03
g721Q e custom 15 4752 148 1315 169 0.05 0.05 0.08 0.19 0.02
gsmd 79 56920 1831 76202 53249 0.54 1.74 7.95 10.32 0.49
gsme 80 57392 1844 75935 53163 0.56 1.66 8.16 10.43 0.55
ispell 106 102032 2306 10502 77958 1.14 5.48 5.32 12.09 2.66
jpeg d 13 11640 482 7140 15944 0.21 0.41 1.31 1.96 1.08
jpeg e 20 14824 669 6859 18162 0.19 0.47 1.44 2.17 1.26
mi jpeg d 13 11640 482 7140 15944 0.22 0.42 1.34 1.99 1.17
mi jpeg e 20 14824 669 6859 18162 0.16 0.48 1.49 2.17 1.27
mpeg2d 20 12288 529 459 35897 0.15 0.34 1.94 2.44 0.16
mpeg2e 2 8096 118 0 3884 0.11 0.34 0.19 0.64 0.25
pegwit d 58 29128 706 5706 9070 0.35 0.44 0.99 1.84 0.2
pegwit e 58 29128 706 5706 9070 0.35 0.4 0.98 1.75 0.2
pgp d 104 72704 1116 5302 12016 0.72 1.76 0.94 3.48 2.48
pgp e 104 72704 1116 5302 12016 0.67 1.68 1 3.48 2.4
qsort 3 3464 98 4690 2450 0.04 0.2 0.62 0.86 0.04
rasta 3 656 18 12 57 0.01 0 0 0.02 0.01
sha 5 696 21 10 0 0 0 0 0 0.02
sumofsquares 2 336 0 0 0 0.01 0 0 0.01 0
susan 13 21864 652 8314 66531 0.32 0.86 14.99 16.2 0.1

Table 1:Andersen’s pointer analysis results

10


