Effective User Survey Design and Data Analysis

Hanan Hibshi and Travis Breaux

Monday, September 12, 2016

Full Day Tutorial 23rd IEEE International Requirements Engineering Conference

Tutorial Outline

- Effective User Survey Design
 - Session 1: Introduction to experimental research and user surveys
 - Session 2: Building user surveys
- Analyzing and Reporting User Survey Data
 - Session 3: Quantitative analysis of survey data
 - Session 4: Qualitative analysis of survey data

Why Are We Here?

Requirements elicitation, analysis, documentation, validation, and verification

Requirements management, viewpoints, prioritization and negotiation

Requirements specification languages, methods, processes and tools

Modeling of requirements, goals and domains

Tool support for requirements engineering

Evolution of requirements over time, product families, variability and reuse

Relating requirements to business goals, architecture and testing

Formal analysis and verification

Social, cultural, global and cognitive factors in requirements engineering

Industry and research collaboration, interdisciplinary insights, learning from practice, and technology transfer

Requirements traceability

Requirements related to safety, reliability, security, privacy and digital forensics

Requirements in agile, product line and model-driven development

Requirements in serviceoriented, virtualization, embedded, cloud and mobile environments

Domain-specific problems, experiences, and solutions, including new and emerging domains

Why take this tutorial?

- You're a junior (or senior!) researcher and you want to use surveys in your research
- You're a practitioner and you want to understand...
 - How customers use one of your products
 - An internal process at your company

Session 1:

INTRODUCTION TO EXPERIMENTAL RESEARCH AND USER SURVEYS

Example from a Paper!

 Does this paper measure privacy without asking about it (authors' goal)?

Survey Question:

(Keeping in mind that purchase records may Likely contain sensitive information) If you were to leave a hard copy of one of your [content type] on a restaurant table how likely are you to return to retrieve them?

Let's say a server went down and you lost access to your [content type] for two weeks.

How would this affect you? It would be

What is Science?

- Static view:
 - An activity contributing systematic activity
 - Output: laws, theories, hypothesis...
 - Example: atomic energy, technology, etc.
- Dynamic view:
 - Also called heuristic view
 - The scientific research methodology
 - The base of other theory and research
 - Leads to further theories, hypothesis and investigation

⁻ Lee, H., 2007. Essentials of Behavioral Science Research.

⁻ Conant, J.B., 1951. Science and common sense.

Scientific Research

"Scientific research is systematic, controlled, empirical, amoral, public and critical investigation of phenomena. It is guided by theory and hypotheses about the presumed relations among such phenomena [1]."

- Systematic and controlled:
 - confidence that other explanations are ruled out
- Empirical:
 - A belief must be put to an outside independent test
- Science is peer-reviewed!
- Results are in terms of validity and reliability
 - Not in "bad" and "good" moral evaluations
- The methods are subject to morality

Experiments and Science

- Common sense is not always good for science [1].
 - We don't want the new ideas to look like old ones!
- Differences between science and common sense [2]:
 - Uses of concepts and theoretical structures.
 - Scientists test man-made concepts.
 - Hypothesis and theory testing
 - systematic vs. selective
 - The notion of control and limitation of influence
 - Relations among phenomena
 - Explanation of phenomena
 - Scientists rule out metaphysical explanations that cannot be tested

^[2] Lee, H., 2007. Essentials of Behavioral Science Research.

Experiments in CS/SE

- Should follow a scientific model rather than common sense.
- Examples of traditional metrics: task completion time, no of clicks...
- Is Tool A better then Tool B [1]?
 - Do: test the scientific theory
 - Don't: test the tool
- Think about the contribution to science

Ask Questions about the Tool

- What is the purpose of the tool?
 - Test a theory
 - Develop a theory
 - Explain a theory

What is a Theory?

 A theory is a set of interrelated constructs(concepts), definitions, and propositions that present a systematic view of phenomena by specifying relations among variables, with the purpose of explaining and predicting the phenomena

⁻ Lee, H., 2007. Essentials of Behavioral Science Research.

Concepts, Constructs, and Variables

- A Concept is an abstraction formed by generalization from particulars
 - Can be real phenomena (pain) or agreed-upon phenomena (justice, truth)
- A Construct is a concept with added meaning created for scientific purposes (satisfaction, IQ)
- A Variable is a symbol to which numerals or values can be assigned

Disciplines in the Research Process

⁻ Lazar, J., Feng, J.H. and Hochheiser, H., 2010. Research methods in human-computer interaction. John Wiley & Sons.

Theory and Research Questions

Descriptive / Structural Theories

- What is X?
- In what category is X?
- What are the parts of X, or what is X comprised of?
- What is X similar to or different from within it's category?
- What purpose does X serve?
- How does X affect change and its environment?

Explanative / Causal Theories

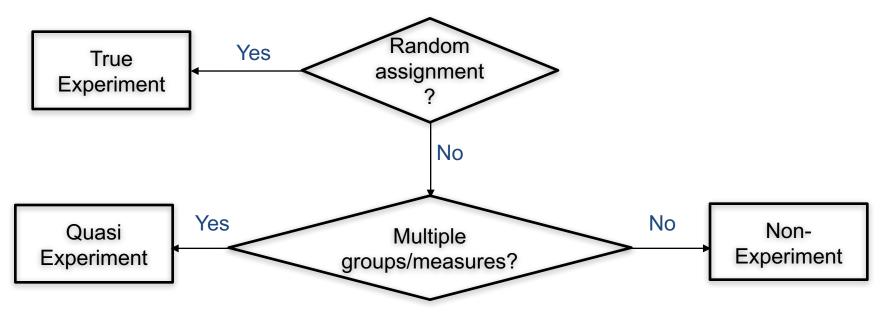
- When and how often does X occur?
- Does X cause or prevent Y from occurring?
- What effects does X have on Y and under what specific conditions?

Types of Experimental Research

Туре	Claim	Typical Methods
Descriptive	X is happening	Observations, field studies, focus groups and interviews
Relational	X is related to Y	Observations, field studies, surveys
Causal	X is responsible for Y	Controlled experiments

- 8 out of 10 students who play a game can touch type vs 2 out of 10 who don't play the game can touch type
- Number of hours of game play and touch typing speed
- Causal is difficult to demonstrate theoretically and methodologically
- Rosenthal, R. and Rosnow, R.L., 1991. Essentials of behavioral research: Methods and data analysis. McGraw-Hill Humanities Social.
- Lazar, J., Feng, J.H. and Hochheiser, H., 2010. Research methods in human-computer interaction. John Wiley & Sons.

Deciding on Surveys


- Advantages:
 - Collect data from a large population
 - Helpful in getting overview of a user population
 - Low cost
 - Easier to obtain Institution Review Board approvals

Practical!

- Limitations
 - Good for shallow data, not deep!
 - Follow-up questions is less convenient
 - Information bias when related to non-factual phenomena
 - e.g. age vs. feeling
 - Human factor: fatigue, preference of oral expression...
- Kitchenham, B. and Pfleeger, S.L., 2003. Principles of survey research part 6: data analysis. ACM SIGSOFT Software Engineering Notes, 28(2), pp.24-27.
- Lazar, J., Feng, J.H. and Hochheiser, H., 2010. Research methods in human-computer interaction. John Wiley & Sons.

Surveys as an Experiment Tool

 With online tools, surveys can be used to conduct online experiments

PRE-SURVEY PREPARATION

Pre-survey Checklist

- Research question(s)
- Experiment design
 - Variables and metrics
 - Metrics used
 - Method (online vs. paper)
 - Tools
- Identifying target population
- Care and handling of participants
 - Recruitment methods
- Paper work and approvals
 - IRB
 - Deception
- Demographics & participants' screening

Research Question

- We need to start with a research question
- The research question be further broken into smaller questions
- We test each hypothesis using empirical investigation.
- Finding the question is critical yet challenging

RQ Examples

- What are the the concerns of analysts writing use-cases?
- Does background culture affect distributed software teams practices?
- Is developers productivity affected by type of programming language?

Research Question Exercise

Exploring the Experimental Options

- What are the concerns of analysts writing use-cases?
 - List of survey questions, descriptive data
- Does distributed software teams practices vary between different cultures?
 - Ask about cultures, check responses...
- Is developers' productivity affected by type of programming language?
 - Ask about languages known, ask questions related to productivity, or
 - Experimental approach:
 - Pick languages: A, B,
 - Decide on productivity measure, compare the two groups

Identifying the Variables and Metrics

- We need to think of independent/dependent variables
 - Independent variable: that is being changed or controlled
 - Dependent variable: that is being tested
 - Control variable: holding a dependent variable constant (e.g. age)

Is developers' productivity affected by type of programming language?

- How to measure productivity:
 - Time!
 - Number of lines
 - Number of hours
 - Number of tasks, submissions, commits, results etc.

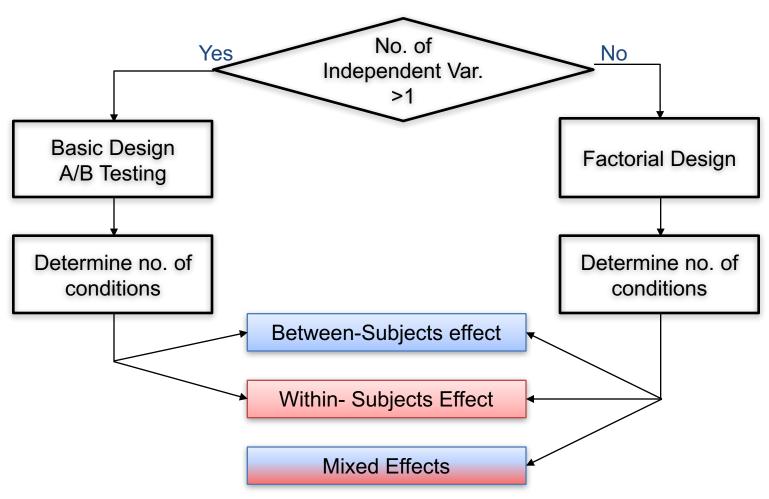
Concepts, Constructs, and Variables

- A Concept is an abstraction formed by generalization from particulars
 - Can be real phenomena (pain) or agreed-upon phenomena (justice, truth)
- A Construct is a concept with added meaning created for scientific purposes (satisfaction, IQ)
- A Variable is a symbol to which numerals or values can be assigned

Measurements

- Can be:
 - Direct observables: height, weight, color, etc.
 - Indirect observables: questions about gender, age, income
 - Constructs: theoretical creations based on observed concepts that cannot be measured directly or indirectly
- Before measurements, variables need to be defined
 - Theoretical definitions: based on theory, definition, or common use
 - Operational definition: assigning the meaning by specifying needed operation
 - Direct: weight, IQ
 - Experimental: frustration: what happens if the Internet goes down while performing a task.

Is developers' productivity affected by type of programming language?



Problems with Measurements

- Measurement error
 - Due to sampling
 - Due to subject or experiment effects
- Reliability
 - = consistency
- Validity
 - The degree to which the measuring instrument is actually measuring the concept

Experiment Design: Structure

Lazar, J., Feng, J.H. and Hochheiser, H., 2010. Research methods in human-computer interaction. John Wiley & Sons. ©2016 H Hibshi

Instrument: Online vs. Paper

- Online surveys are:
 - Easier to store data electronically
 - Has lower deployment cost
 - Environment friendly
 - Things to think about:
 - assuring a participant takes survey once
 - security, privacy, media, clear instructions
- Paper surveys are:
 - Good for semi-interview style and follow up questions
 - Good for lab experiments (before and after)
 - A better way to recruit participants

Tools and Technology for Online Surveys

- Depends on:
 - The complexity of survey design
 - The target population and their recruitment method.
- Some scripting might be needed
- Ideas to help with recruitment and verification:
 - Unique URLs with variables
 - Codes (random, unique)

Examples of Tools

- Survey Gizmo:
 - user friendly interface
 - special scripting language
 - basic plan has limited flexibility
- Qualtrics:
 - special plans for academia
 - JavaScript
 - research oriented
- Amazon's Mechanical Turk:
 - great to advertise surveys to a more general population
 - less helpful with targeted population

Sources of Bias

- Possible causes:
 - Measurement instrument: stop watch, timer on a page
 - Experimental procedures
 - Within-subjects: learning effect and fatigue → Randomization
 - Instructions received → clear instructions, use visuals if needed
 - Trivial and unforeseen details → write down the procedure
 - Pilot!
 - Participants: domain knowledge, background, self esteem...
 - Experimenter behavior or attitude
 - Environment factors
- We can only be careful, but we cannot fully eliminate bias
 - Careful reporting is a must

Identifying Target Population

- Why?
 - Decide on recruitment strategy
 - Design questions accordingly
 - Think about demographics
 - Most importantly: data quality!
 - Participants pool need to represent target population [1,2]

Is developers' productivity affected by type of programming language?

^[2] Smart, R.G., 1966. Subject selection bias in psychological research. Canadian Psychologist/Psychologie canadienne, 7(2), p.115.

^[1] Broome, J., 1984. Selecting people randomly. Ethics, 95(1), pp.38-55.

Target Population Exercise

Is developers' productivity affected by type of programming language?

- Who is your target population here?
 - Developers
 - Software engineers
 - IT Managers
 - Help desk personnel
 - Students

Recruitment Methods

- Online advertisements
 - Amazon MTurk, forums, classified adds (craigslist)
- E-mail
- Personal networking
- Social networks
- Ads in high traffic public spaces
 - Coffee shops, waiting areas, conferences
- Ask in person (beg! use puppy face!)
- Need to have a mechanism for verification
- Add details about the study in advertisement materials

Care and Handling of Participants

- Reduce participant's bias
 - Try to eliminate stressful environment/situations.
 - Reassure participants that you are testing the tool not them
 - Eliminate timers when not needed
 - Provide clear test material
 - Thank participants and show gratitude for their commitment
 - Offer fair compensation for their time
 - Allow them to opt out
 - Maintain privacy and confidentiality
 - Storage of data, access to data, handling names and PII…

Ethical Research Guidelines

- A researcher should always conduct ethical research
 - Whether enforced by the country or not
 - Ensure no harm to subjects: physical or emotional
- The Belmont Report (1979) defined 3 principles:
 - Respect for persons to make their own judgments
 - Beneficence: minimize harm and maximize benefits
 - Justice: participation is not limited to easily manipulated groups.
- Need to give participant an informed consent
 - Due to harms carried historically by medical experiments
- The Stanford Prison Experiment
- National Commission, 1979. The Belmont Report: Ethical principles and guidelines for the protection of human subjects of research. National Commission for the Protection of Human Subjects of Biomedical and Behavioral research.
- Lazar, J., Feng, J.H. and Hochheiser, H., 2010. Research methods in human-computer interaction. John Wiley & Institute for Softwal

Informed Consent

- Should be done before participation
- Informed: participants need to know
 - procedure
 - risks
 - benefits
 - reasons
 - contact information of researchers
- Consent: participation is:
 - voluntary
 - free from any form of pressure
 - e.g. students class credit, medical treatment
- Lazar, J., Feng, J.H. and Hochheiser, H., 2010. Research methods in human-computer interaction. John Wiley & Sons.

Sections of Informed Consent

40

- Title and Purpose
- Description of Procedures
- Duration
- Risks
- Benefits
- Alternatives to participation
- Confidentiality
- Costs/additional Expenses
- Participant's rights

- Contact Information
- Supplemental information
- Signature

- National Cancer Institute (2001). A guide to understanding informed consent,

Participants' Confidentiality

- Especially important with online surveys
- Be extra careful about Personally Identifiable Information (PII)
 - Emails
 - Telephone numbers
 - Names
 - Addresses
- Rule of thumb: If you don't need it, do NOT collect it
- Some guidelines:
 - Use passwords
 - Drawers with locks
 - Store emails and PII separate from responses
 - Anonymize the data before analyses
 - Only share Anonymized data
 - Remember to list the risk of data breach in the informed consent!

Institutional Review Boards

- IRB: A committee to review human subjects research
- Conduct risk-benefit analysis
- Regulations (by FDA and HHS) in the US require IRB reviews
 - National Research Act of 1974
 - Belmont Report
- Informed consent is a must
 - Can be waved under very specific circumstances when the risk is very low
- Audio and video studies complicate the review process
- International researchers who conduct research in the US still need IRB approvals
- There are similar boards in other countries

IRB Review Types

- Exception reviews:
 - Existing data that is publicly available
 - Data collection is not for research purposes
 - e.g. improve classes, courses...
 - Data to evaluate things not subjects behavior or attitude
 - Exception decision is made by a board member
- Type of reviews:
 - Exempt
 - Expedited
 - Full

IRB Paper Work

- Provide details of:
 - Study procedures
 - Compensation
 - How confidentiality is handled
 - Risks and benefits
 - Recruitment method and venues
 - Population
 - Whether deception is used
- Provide copies of:
 - Informed consent
 - Study script
 - Study questions

Deception

- If the study requires concealing the real purpose
- The participant is asked about a certain task while the goal is measuring something else.
- Deception must be approved by IRB
- Deception is tricky:
 - Metrics for the construct asked need to be related to the intended construct

Example from a Paper!

 Does this paper measure privacy without asking about it (authors' goal)?

Survey Question:

(Keeping in mind that purchase records may Likely contain sensitive information) If you were to leave a hard copy of one of your [content type] on a restaurant table how likely are you to return to retrieve them?

Let's say a server went down and you lost access to your [content type] for two weeks.

How would this affect you? It would be

Deception Exercise

Is developers' productivity affected by type of programming language?

Collecting Demographics

- Demographics data help describe your sample
- Standard questions are available online
- Its better to tweak questions according to the research needs

Is developers' productivity affected by type of programming language?

- Age
 - Below 18
 - 18 35
 - 35 -50
 - 50 60
 - Above 60

More Demographics Examples

- What is your occupation?
- What is your income range?
- Which country do you reside in?
- Gender?
- Highest degree?
- Nationality?
- No of computers owned?
- Type of Gadgets?

Background Questions

- Questions that aim to evaluate one's expertise
- Can be:
 - direct:
 - How many years of experience?
 - What programming language(s) do you use?
 - Indirect:
 - The following line of code is used in the which PL?
- Self-assessment ratings could be biased
 - Experts tend to underestimate their ability while novices tend to be over confident
- Background questions can be used for screening

Participants' Screening

- Very useful when targeting a specific population
 - Experts
 - Novices
 - Certain skills
- Help to save time and resources
- Especially useful when using crowdsourcing platforms (Mturk)
- Make sure to still compensate particiaptns for their time taking the screening test.
- When to use screening: when data from other groups is useless even for comparison.

Sampling

 The process of selecting subjects from a population of interest so that by studying the sample we may fairly generalize our results back to the population from which they were chosen.

