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Abstract - A mathematical model of the swing phasc of walking is presented in this paper. The body is
represented by three links, one for the stance leg and two for the thigh and shank of the swing leg. It is
assumed that the muscles act only to cstablish an initial configuration and velocity of the limbs at the
beginning of the swing phase, The swing leg and the rest of the body then moves through the remainder of the

swing phase entirely under the action of gravity.

The range of possible times of swing for each step length is computed for two types of gaits; stiff-legged
walking and walking with flexion at the knee. The range of times of swing found for the model with flexion at
the knee are compared with published experimental results. The agreement is shown o be very close. Typical
histograms of forces applied 1o the ground and angles of the limbs against time arc also given. The computed
forces and angles have the same general time course as those found experimentally in normal walking, with
the exception of the vertical force, which ofien has a different shape. The limitations of the model apparently

responsible for this discrepancy are discussed.

INTRODUCTION

When walking on the level, an individual has a range of
possible step frequencies for a given step length.
Nevertheless there is a preferred relationship between
step frequency and walking speed.

This relationship has been reported by various
investigators, among them Cotes and Meade (1960)
and Grieve (1968). The most simple formula that fits
the curves obtained is a power law of the form f = a”,
where fis the frequency and ¢ the speed of walking. The
value of £ is around 0.58 and varies for different
individuals (Grieve, 1968).

A more complete study has been done by Grieve and
Gear (1966) in which the various relationships be-
tween time of swing, velocity and stride length are
reported. It is interesting to note that the time of swing
varies inversely with speed in adolescents and adults,
but not in children. During the first few months of
walking, children show a direct relation between time
of swing and walking speed. Later, including the
period up to § years of age, the time of swing is
independent of walking speed.

No theoretical work attempting to predict the form
of swing period vs speed relationship has yet been
reported, but experimentally itis found that the energy
comsumption per unit distance is a minimum at a
particular chosen frequency (Elftman, 1966). This
result led Inman (1966) to describe locomotion as the
translation of the center of mass through space along a
path requiring the least expenditure of energy.

Various investigators used this hypothesis to model
walking by minimizing some criterion which reflects
the mechanical work done by the muscles of the lower
extremities. Among these are the works by Beckett and
Chang (1968) and Chow and Jacobson (1971).
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Alexander and Goldspink (1977) have presented a
series of simple and elegant mathematical models for
calculating the power expended during bipedal walk-
ing. These models, which do not require a computer for
their solution, payv particular attention to changes in
the potential, translational and rotational kinetic
energics of the body, and ascribe a metabolic cost to
changes in these energics.

Another theme in theoretical models concerns the
application of control theory to biped locomotion
machines (Frank, 1970; Gubina et al., 1974). The legs
are gencrally considered massless in the interests of
keeping the analysis manageable. Furthermore, the
modelling is usually confined to the stance phase,
because a particularly important question concerning
robot bipeds is the stability of the trunk on the limbs.

In this paper, a purely ballistic model of walking
during the swing phase is presented. The double
support phase is thus specifically excluded from con-
sideration here. We will assume that the action of the
muscles during the double-support phase establishes a
set of initial conditions and velocities for both the
stance and swing legs. Throughout the remainder of
the swing phase, the limbs move under the influence of
gravity alone, and finish in a position which allows
direct entry into the next step. Our model is thus
essentially different from those which consider the
mechanical work done by the lower extremities, since
the total energy is constant during the ballistic swing.
It is also quite different from those models which
investigate servo control of walking, again because we
assume zero muscular torques acting during the swing.

The purpose of this work is to see how well the swing
phase of human gait may be described as a ballistic
motion. It has always seemed plausible that the action
of the swing leg is like the motion of a pure pendulum;
in fact, this suggestion first appears in the literature
more than a century ago (Weber and Weher. 1836).
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This suggestion has been often debated since, and was
investigated further by Grieve and Gear (1966) who
concluded that most swings are performed in times
considerably less than the natural half-period of either
the lower leg or the whole leg regarded as a compound
pendulum.

Electromyographic traces show that the muscles of
the swing leg are reasonably silent during the whole
~ swing period, except just at the beginning and end.
Basmajian (1976) stated, “very little electromyo-
graphic activity appears in any of the muscles during
normal moderate-speed walking ... we need only small
inputs of propulsive force and balancing mechanisms
to maintain forward progress™. Thus, a ballistic model
of walking seems plausible on electromyographic, as
well as dynamic grounds.

Saunders et al. (1953), in their investigation with
amputees, concluded that the major determinants of
human gait are: (1) pelvic rotation, (2) pelvic tilt, (3)
knee flexion, (4) hip flexion, (5) knee and ankle
interaction, and (6) lateral pelvic displacement. They
found that the loss of one of these determinants can be
compensated by the other five, but the loss of two or
more deranges gait so seriously that normal walking
may no longer be accomplished.

As Saunders et al. (1953) point out, coordinated knee
and ankle interaction of the stance leg is important in
decreasing the vertical excursion of the center of mass
of the body during a step. Even so, a “compass-gait”
model of walking, where the stance leg is stiff and the
whole body is represented as an inverted pendulum,
has been used successfully by Cavagna et al. (1976) to
explain the changes of kinetic and potential energies of
the center of mass of the body that occur in normal
walking. We take this as evidence for the argument
that determinants (3) and (4) are more significant than
determinants (1), (2), (5) and (6) in setting the charac-
teristics of normal walking. Certainly, forward pro-
gression would be impossible without determinant (4).

The model presented here includes only two of the
six determinants: hip flexion (4) and knee flexion of the
swing leg (3). To study the contribution of swing leg
knee flexion to the dynamics of walking, the model is
first analyzed without movement at the knee so that
the swing leg is a stiff link. This type of gait is called
stiff-legged walking.

MATHEMATICAL MODEL

The model shown schematically in Fig. 1 consists of
3 links; one representing the stance leg and two
representing the thigh and shank of the swing leg. The
foot of the swing leg is rigidly attached to the distal
link, as explained below, and therefore does not
constitute a separate link. Each link is assumed to have
adistributed mass. The moment of inertia and location
of the center of mass of each link is taken from the
anthropometric data of Dempster (given in the Appen-
dix). The mass of the foot is lumped into the shank. The
mass of the trunk, head and arms is represented by a

Fig. 1. Schematic representation of the model. The numbers
(1), (2) and (3) give, respectively, the position of the model at
heel strike, toe-ofl and following heel strike. The angles,
lengths and positions of the centers of mass of each limb are
shown in the figure. For meaning of symbols see Appendix.

point mass at the hip joint. The lengths, positions of the
centers of mass and angles of each limb are shown in
Fig. 1. :

As explained in the Introduction, we will consider
two special cases of bipedal gait; stiff-legged walking
and walking with knee flexion. The equations of
motion for these two cases are derived by writing
expressions for the total kinetic and potential energies
of the system (Fig. 1) and applying Lagrange’s
equations.

Stiff-legged walking

For stiffi-legged walking, Lagrange’s equations yield
the following ballistic equations of motion:

JO — CP?*sin(0—p) — CP cos(6—¢) = Usin 0
(1)
K¢ + C0*sin(0—¢) — Cl cos(0—¢) = — W sin ¢,
(2)

where the meaning of the symbols is given in the
Appendix and Fig. 1.

We have imposed, in this case, the following boun-
dary conditions and constraints. Due to the geometry
of the model, at the beginning and at the end of the
swing (represented by points (1) and (3), respectively,
in Fig. 1) both legs must make the same angle with the
vertical, so that both heels are in contact with the
ground. This then imposes two kinematic conditions:
0(0) = — ¢(0), and (T,) = — ¢(T,), where T, is the
time of heel strike. A third kinematic condition is that
the step length should be equal at the beginning and at
the end of the swing. Since a possible swing is
determined by 5 parameters (2 initial angles; 2 initial
angular velocities and the time of swing), with the 3
equations mentioned so far, we still have 5 — 3 = 2 free
parameters‘

But there are two more conditions, which might be
called dynamic constraints. One is that the vertical
force at the ground must always be positive ; otherwise
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the model will fly off the ground. The other is that the
initial angular velocity of the swing leg should be
positive, because if it is negative the leg will swing
backwards at the beginning of the swing.

Itis evident that in stiff-legged walking, the swing leg
will hit the ground at some point during the swing —
this is an inevitable consequence of the fact that the
two legs are the same length. An individual walking
with braces at the knees can avoid this by plantar
flexion of the ankle of the stance leg or by tilting of the
pelvis. Since these accommodations are beyond the
capabilities of our model, we will ignore the fact that
the foot of the swing leg drops below the surface of the
ground during the swing,.

Ballistic walking including knee flexion

When flexion is allowed at the knee of the swing leg,
the equations become

K0 — C,¢ cos(8—¢) — C,¢? sin(0—¢)

—C36 cos(@—o) — C36?*sin(f —o) = W, sin

A3)
K¢ + C 6 cos(¢p—a) + C,d*sin(¢p — o)

—Cybcos(0—¢) + C,0%sin(0—¢) = — W, singd
4)

K36 — C3 cos(0—0) + C,0% sin(0— o)

+C pcos(p—o) — C;d*sin(¢p—0) = — W,sinag,
(5)

where the meaning of the constants is given in the
Appendix.

As was the case with stiff-legged walking, a number
of initial and final conditions must be imposed to
specify the motion.

At toeing-off [(2) in Fig. 1] the angle that the foot
makes with the horizontal is called a. The condition
that the toe should be still in contact with the ground
imposes two geometric conditions, as follows. The
vertical position of the toe of the swing leg is zero (see
Fig. 1). This gives the first geometric condition :

lcosBy — Iy cospp — I,c086, —dsina = 0. (6)

Since the toe has not moved horizontally, it is still a
distance §; — d from the ankle of the other leg. Thus
the second geometric condition is:

fSinGU—I-flSin(ﬁo+f;Sinao—dCDSc{=5L-—d (?)

(see Appendix for meaning of constants). We arbit-
rarily increase the angle « linearly from 45° to 65° as
step length varies from 0.5 to 1.

The above two conditions fix the position of the
ankle at the beginning of the swing, but this leaves the
position of the hip still undetermined. The position of
the hip at toe-off depends on the movement of the body
during double support. Cavagna et al. (1976) reported
that the forward displacement of the center of mass of
the body during double support is a constant for a
given individual, independent of walking speed up to a

speed of 7 km/hr. This constant is generally a length
just smaller than the length of the foot. We have taken
the constancy of the double support length as our third
condition, so that

Ising, — IsinB, = 0.9d. (8)

We also require that at heel strike [(3) in Fig. 1] the
knee angle should arrive at zero and the heel of the
swing leg should strike the ground simultaneously.
This requirement gives two equations specifying two
independent final conditions. Firstly, the condition
that the knee has just locked at heel strike says o(T,) =
&(T,). Secondly, the condition that time t = T
corresponds to heel strike requires ¢(T,) = — 6(T,).

Two kinematic constraints applying to the swing
have been imposed. One requires that the foot must
clear the ground at all times. During the swing, from
the moment following toe-off, the ankle of the swing
leg is assumed to be locked at 90°.

Additionally, in this case of walking including knee
flexion, as was the case in stiff-legged walking, we
require that the vertical force applied to the ground

- must always remain positive.

An extension of ballistic walking including knee flexion

We have extended this model by relaxing one of the
conditions. Instead of demanding that the knee arrives
at zero degrees at heel strike as we did in the strict
version of the model described above, the knee is
allowed to lock when it passes through zero degrees
and then the swing is continued with a stiff leg until
heel strike.

This locking of the knee before heel strike has to be
taken as a mathematical substitute for the braking
torque the muscles actually supply to the knee at the
end of the swing. Instead of having a moment applied
to the knee during the last part of the swing, an
impulsive moment is assumed to act at the instant the
knee angle reaches zero. This impulsive moment is just
sufficient to bring the knee extension velocity (6 — ¢),
to zero, locking the knee.

To represent this condition mathematically, we note
that we are only applying a moment at the knee to lock
it; there are no moments applied to the ankle of the
stance leg or to the hip. This means that the angular
momentum of the whole system around the ankle of
the stance leg is the same before and after knee lock. For
the same reason, the angular momentum of the swing
leg around the hip is conserved through the locking
collision. These two conditions specify the two angular
velocities of the legs immediately after knee lock, given
the angular velocities of the three links immediately
before. y

Conservation of angular momentum of the whole
system around the ankle gives:

[J —Ccos(6—¢)]0, + [K — Ccos(8 — )],
=[K; — Ccos(0—¢)]6,+[K, + C, — C,

x cos(0—¢)]d, + [K3 + C; — C3 cos(0—¢)]d,

©)
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Conservation of angular momentum of the swing leg
around the hip gives:

— Ccos(0—¢)0, + K, = — Ccos(0—¢)0,
+(Ky + C )y + (K3 + Cy)dy,  (10)

where the a and b subscripts mean after and before
knee lock and 6 and ¢ are the angles of the stance leg
and the thigh when the knee arrives at zero degrees.
These equations can also be obtained by drawing free
body diagrams of each of the three links, assuming that
the changes of linear and angular momenta are due to
impulsive forces acting at the ground (ankle), hip joint
and knee joint, and that an impulsive moment acts at
the knee.

In order to keep the results as general as possible, we
have changed all the equations to dimensionless form
using the length of the leg / and the natural half-period
of the leg T, = n(I,/M,gZ)'”* as the scales for length
and time. (For a leg length of 1 m, T,, is approximately
0.82 sec.) The constants appearing in the dimension-
less equations are then computed from Dempster’s
data given in the Appendix.

RESULTS

Stiff-legged gait

The constraints imposed on the model will set limits
on the possible range of the variables. This is shown for
stifl-legged walking in Fig. 2. For a fixed step length
there is a lower and an upper limit to the time of swing.
These limits are set, respectively, by the conditions that
the vertical force on the ground and the initial angular
velocity of the swing leg should be positive. For times
of swing to the left of the shaded area in Fig. 2, the
model will fly off the ground. For times to the right of
the shaded area, the swing leg will initially swing
backward. The boundary §, = 1 is a physiological
limit to hip extension. This boundary is not precisely

Fig. 2. The boundaries of possible ballistic walking for the
stif-legged gait. For each step length a range of times of swing
are given, bounded by the heavy lines. The light lines show the
solutions of the equations when all angles are confined to
small values, and hence are only valid for small §,.

Ts
1

1 2

Fig. 3. The same boundaries given in Fig. 2 with the
normalized time of swing T, and velocity V now as the
variables.

determined, since it varies from individual to in-
dividual, but it is included for completeness. The light
lines show the analytical results of the linearized
equations, and are therefore strictly valid only for
small g, ¢ and 6. Figure 3 shows the same boundaries
given in Fig. 2, in a graph of time of swing against
speed. The dotted line represents a constant step length
(S, = 0.5).

Ballistic walking including knee flexion

For the model with movement at the knee, we
imposed 5 conditions, and since 7 parameters de-
termine a solution in this case, fixing 2 parameters fixes
the others automatically. The most convenient para-
meters to fix for computational reasons are the step
length S, and the initial angular velocity of the stance
leg 0y. ForaS, = 0.75and §, = — 0.8, point (1)in Fig.
4 gives the initial angular velocities for the thigh ¢, and
shank d, which were found to satisfy the 5 conditions
imposed. The curve on this figure shows all the
possible combinations of initial velocities ¢, and 4,
which ultimately bring the swing leg to the proper end
condition if the knee is allowed to lock before heel
strike. Each point in this curve represents a swing with
a different percentage of the time of swing after knee
lock. The shaded part of the curve represents those
initial conditions for which the swing leg strikes the
ground in mid-swing. The shaded region is therefore
excluded from the range of initial conditions which
result in a possible swing.

If, now, for the same step length, 6, is varied, a graph
such as the one in Fig. 4 is obtained. Increasing the
value of §, (which reduces the time of swing) will bring
point (1) closer to the ¢, axis until a critical value is
reached at which points (1) and (2) coincide and the toe
of the swing leg just grazes the ground in mid-stride.
This boundary is given by the furthest-left heavy line in
Fig. 5. When the time of swing is made smaller than
this limit, the toe will strike the ground in mid-stance.

Moving from left to right along any horizontal line
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Fig. 4. Initial velocities of the thigh ¢, and shank &, which
make the model satisfy all the conditions imposed. The
shaded part of the curve are those initial velocities which
cause the foot of the swing leg to strike the ground in mid-
swing. The 10% (20%) point represents a swing where the
knee is locked when 10% (20%) of the time of swing still
remains before heel-strike. Points (1) and (2) are explained in
the text.

which begins at the furthest-left heavy line, higher
values of the time of swing are found to correspond
with higher negative initial angular velocities of the
shank ¢,, which means that the knee will be flexed
more during the swing. The next two heavy near-
vertical lines in Fig. 5 correspond to those swings in
which the knee has flexed to a maximum of 90° and
125° respectively. This 125° limit seems to us a
reasonable physiological limit for knee flexion. Not
only will the knee flex more for higher times, but also
the thigh will swing to higher angles at the final part of
the swing, as is shown schematically in the upper
diagrams of Fig. 5. Therefore times of swing higher
than those given by the 125° time will be very hard to
achieve from the physiological point of view.

When knee lock and heel strike are not synchronous

The results given up until now are for the strict
version of the model, where the knee reaches full
extension at the moment the heel strikes the ground. If
we now look at the results of the extended model,
where heel strike occurs some time after knee lock, the
limit curves will be shifted to higher values of the time
of swing. In Fig. 5, the broken lines show how the 125°
maximum knee flexion line is shifted when 10 and 20%
of the swing time still remains after knee lock.

A light line is also shown in Fig. 5. This line divides
those swings in which the model will fly off the ground
(to the left of this line) from those which will not (to
the right). Note that the shaded area is well to the ri ght
of this line so that the condition of positive vertical
force at the ground is not a determining factor in
setting a lower limit to the time of swing.

No results are shown in Fig. 5 for step lengths below

BM. 13/1—D

0.5. This is because the computer analysis has only
been carried out for step lengths between 0.5 and 1.
This range is the one most commonly used in normal
walking (Grieve, 1968). Figure 6 shows the same
results given in Fig. 5, but now with the velocity of
walking as a variable. The walking velocity v is
computed :
SL R SDS

v=—"

T:

where Sp5 = 0.9d is the distance the body moves
forward during the double support phase. It can be
seen from these graphs that low (high) speeds of
walking correspond to smali (large) step lengths and to
large (small) times of swing.

Typical histograms of force and angles against time
during the swing phase are given in Figs. 8 and 9. For
comparison, experimental traces of the vertical and
forward forces at the ground reproduced from Cav-
agna and Margaria (1966) are presented in Fig. 7. The
arrows added to Fig. 7 indicate the moment of toeing-
off (full arrow) and heel strike (broken arrow). The
portion between the arrows is then the swing phase. It
is this portion of the complete step cycle which our
model attempts to simulate.

Figure 8 shows the calculated angles and ground
reactions during the swing for the limit case where the
foot will just clear the ground (S, = 0.75, T, = 0.53).
The predicted angles and ground reactions look very
much like those found experimentally for normal
walking during the swing phase, except for the vertical
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Fig. 5. The range of possible times of swing for each step
length is given by the shaded area for the model including
swing leg knee flexion. The broken lines show how the
furthest-right boundary (representing the case where knee
flexion reaches a maximum of 125°) is shifted if knee lock
occurs 107 (20%) of the time of swing before heel strike. The
upper diagrams show the moment of toe-off (left broken
configuration), maximum knee flexion (continuous con-
figuration) and maximum hip flexion (right broken con-
figuration) for a step length of 1.0 and a maximum knee
flexion of 90° (left diagram) and 125° (right diagram).
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Fig. 6. The same boundaries given in Fig. 5 are given here in
graphs of (a) step length S, against velocity of walking V ; and
(b) time of swing T, against velocity of walking V.

time, s

Fig. 7. Experimental traces of the vertical and forward forces

on the ground in normal walking reproduced from Cavagna

and Margaria (1966). The solid arrow shows the time of

toeing-off; the broken arrow, the moment of heel strike. The

dotted lines show the force contributed by the swing leg after
it strikes the ground.
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Fig. 8. The solid lines show calculated angles and ground

reactions as a function of time during the swing phase for a

limit case where the foot just clears the ground. The broken

lines show F,,, F; and @ for a simple inverted pendulum which
starts with the same initial angle and velocity.

force, which looks like the experimental trace until
mid-stance, after which the experimental trace div-
erges upward.

Figure 9 gives an example of a swing in the case
where the knee locks before heel strike (25% of the total
swing period occurs after knee lock in this figure). The
first thing to note is that a dip followed by a rising
phase appears in the vertical force calculated for the
model, just as it does in the experimental traces shown
in Fig. 7. Thisis due to the pulling down of the center of
mass of the body produced by the centripetal accele-
ration of the swing leg at the middle of the swing. After
knee lock, the vertical force begins falling again.

The effect of the impulsive moment at the knee is to
stop the swing of the shank and lock it with the thigh.
This, in turn, slows down and therefore reduces the
backward movement of the thigh because if no mo-
ment had been applied to the knee, the thigh would
have continued to swing, as shown by the broken line
for ¢ in Fig. 9. The locking of the knee and consequent
reduction of negative 6 acts to keep the thigh flexed for
heel strike.
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Fig % Angles and ground rewctions duiing the swing phase
obigined for a case in which knee lock oecurred when 25 of
the time of swing remained before hesl strike.

DISCUSSION

Limirations of the analysis

The model described in this paper does not take into
account some of the determinants of normal walking
discussed in the introduction. General pelvic move-
ment, as well as knee and ankle interactions of the
support leg, arc absent in the model. It is important to
note that the absent determinants, when taken into
account, will change many details of the geometry of
Fig 1, and hence change some of the equations of
constraint deduced from geometric considerations.
The introduction of stance leg knee flexion, for exam-
ple, will introduce new terms into equations {6), (7)
and (8). Most of the basic assumptions of our model,
however, such as the constancy of step length and the
prohibition of the toe from striking the ground, are
characteristics of walking which will not change when
the absent determinants are introduced. Another
strong cxample here is our assumption of a double
support displacement 5,; which was taken to be
independent of walking speed and step length - this
assumption is backed by experimental evidence, and
would not be changed by making the model more
complex.

The constraint of positive initial angular velocity of

ihe swing leg in stiff-legged walking, although reason-
able, is otherwise arbitrary. We could not find phy-
siological evidence for or against its realism.

We have taken the ratio of foot length 10 leg length
to be 0.25. (The appropriate measure of d for our model
is the length from the 10e 10 the ankle joint and not the
whole length of the fool.) Although this is appro-
simately correct, the value (0.25 is by no means precise,
and a diferent value will shift the furthest-left curve of
Fig 5. A lower value, for example 0.2, will move this
curve 1o the lelt, to a time of swing near 0.4, The time of
swing will also change if movement of the ankle of the
swing leg is taken into account, instead of locking it at
90" as was done in this paper.

The most imponant assumption of all, that the
muscles do not act during the ballistic swing. is only
Justified in “normal” walking, not in walking at very
low or high speeds. Alexander (1977) discusses how, in
walking at normal speeds, the potential energy of the
body is lowest and the kinetic energy is highest during
the double support phase, and how fuctuations in the
two act directly opposite each other during the step,
kecping the total energy about constant. The situation
for walking at normal speeds is thus energetically
somewhat similar to that of a simple inverted pen-
dulum which starts with sufficient initial velocity (at
heel sirike) 1o carry it “over the top™ of s arcing
motion. As Alexander notes, in fast walking, the
fAuctuations in polential energy grow smaller and the
Auctuations in kinetic energy grow larger. This means
that the total energy of the center of mass goes through
significant fluctuations during a step, but these fluc-
tuations can only occur if the muscles add or subtract
energy, violating the conditions of the ballistic model.

The analog between normal walking and the simple
mverted pendulum has been proposed so often that we
decided to compare the inverted pendulum to our
ballistic walking model including flexion at the knee of
the swing leg. In Fig. 8, the broken lines show the
vertical force F ., the horizontal force F, and the angle
with the horizontal # made by an inverted pendulum
starting from the same # and d taken for this particular
run of the ballistic walking model. The entire mass of
the body, including the legs, is assumed concentrated
at the top of the inverted pendulum. As might have
been expected, the horizontal and vertical forces and
the angle # all execute trajectories which are quite close
to those of the ballistic walking model: the only
notable differcnee is that the swing is prolonged for the
pendulum, to a dimensionless time of ¢ = 055, as
opposed to 053 for the walking model

At this point, the reader might be wondering why, if
the inverted pendulum gives force trajectories so
similar to those of the ballistic walking model, we have
bothered to construct a ballistic walking model at all.
The answer is that the inverted pendulum does not
have a time of swing built in. Changing the initial
angular velocity of the inverted pendulum changes the
time of swing without réstrictions. We belicve that the
ballistic walking model, and the coupling it provides
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between an inverted pendulum representing the stance
leg and a compound pendulum representing the swing
leg, is the simplest representation of walking which still
possesses a natural period while getting the ground
reaction forces about right. Neither the inverted
pendulum nor the compound pendulum alone can
accomplish both of these objectives.

CONCLUSIONS

As discussed earlier, Fig. 5 gives the possible range of
times of swing for a given step length. In this figure, T
is the dimensionless swing time, i.e. the actual swing
time scaled by the parameter T, =  (I/MgZ)"”%. Using
the values of these constants presented in the Appen-
dix, we can write this parameter in the form: T,, = 2.58
(I/g)*"* ; or, taking the ratio of length leg [ to stature S to
be 4 (from Williams and Lissner, 1974), we can write
T, = 1.82 (S/g)""*. This means that the range of times
of swing for each individual depends on his height; a
small person will have relatively short times of swing.
To compare our results with experiment, then, the
range of times of swing should be given as a function of
stature. Grieve and Gear (1966) made precisely these
observations ; their results are reproduced in Fig. 10.In
this figure each vertical line represents the range of
possible times of swing for a subject. The broken line
gives the half-period of the whole leg regarded as a
passive compound pendulum, calculated by Grieve
and Gear. Their expression for this half-period is 1.81
(S/g)*?, which is essentially identical to the one
obtained above. We have added to this figure two
ruled lines. These represent the same limits given in
Fig. 5. The lower line corresponds to the limit where
the toe just clears the ground and the upper line to our
125° maximum knee flexion line. (The shaded area
then corresponds to the shaded area of Fig. 5.) We can
see from Fig. 10 that the range of times of swing
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Fig. 10. The range of times of swing observed in each subject

is represented by a vertical line plotted against stature,

reproduced from Grieve and Gear (1966). Superimposed are

the range of times predicted by the “strict” ballistic walking

model including swing knee flexion described in this paper,
represented by the shaded area.

predicted in this paper encompasses most of the times
of swing found experimentally. The discrepancy for
small statures suggests that young children have a
different mechanism of walking, as was discussed in the
introduction.

As a general conclusion, we may observe that for
each step length, the limiting factor in going to higher
speeds is the condition that the swing leg must clear the
ground. If muscles are allowed to act during the swing,
as we expect them to at the higher walking speeds, this
conclusion must be modified. Nevertheless, even when
muscles act, the inertial dynamics of the leg will
continue to play a role, so that the parameter d/I (the
ratio of foot length to leg length, whose influence on
the ballistic model was found to be considerable) could
be important in determining the maximum speed of
walking.

In summary, it is reasonable to claim that many
aspects of walking at normal speed, from a prediction
of the foot forces to an understanding of the re-
lationship between walking cadence and body stature,
are well represented by a model which completely
disregards the action of muscles, except for setting the
initial positions and velocities of the limbs at the
beginning of the swing phase. We offer this model not
in the hope of saying the last word on walking, which
is, after all, a very complicated and subtle matter, but
only in the hope of saying something simple about it.
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APPENDIX

List of Symbols

mass of body, leg, thigh and shank (+ foot)
length of the leg, thigh and shank

distance of the center of mass of the leg, thigh
and shank (+foot) to proximal end

radius of gyration of the thigh and shank
(+foot) around proximal end

moments of inertia of the leg, thigh and shank
(+foot) around proximal end

gravitational constant

step length

t/T, = normalized time

normalized time of swing

n(I/MgZ)'"

velocity of walking = forward distance travel-
led | T,

angle that the leg, thigh and shank make with
the vertical (see Fig. 1)
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velocities of the leg, thigh and shank
knee angle = ¢ — ¢

0,¢,0
K

(a zero and f subscript mean the initial and final state of the
variable).

Dempster's data
(from Williams and Lissner, 1974)

M,|My = 0097 M,|M; =006
Z,|l, = 0433 Z,|l, = 0437
fy = 0.54 n; =0.735

=1

Any other constant appearing in the paper can be eva-
luated from this data.

Constants Appearing in Equations
J=1+ M* -2MIZ

Kl
C=MIZ

U= (Mgl —MZ)yg
W=MZg

K, =1+ M? - 2M,IZ
K, =1, + My}
Kymi;

C, =M,l,Z,
C,=(Myl, + M, Z))l
Cy=M,lZ,

W, =Myl — M|Z}g
W, =(M,l, + Mlzl}g
W3 = Mzz_zg-



