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Evaluation of a Neuromechanical
Walking Control Model Using
Disturbance Experiments
Seungmoon Song* and Hartmut Geyer
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Neuromechanical simulations have been used to study the spinal control of human

locomotion which involves complex mechanical dynamics. So far, most neuromechanical

simulation studies have focused on demonstrating the capability of a proposed control

model in generating normal walking. As many of these models with competing

control hypotheses can generate human-like normal walking behaviors, a more

in-depth evaluation is required. Here, we conduct the more in-depth evaluation on a

spinal-reflex-based control model using five representative gait disturbances, ranging

from electrical stimulation to mechanical perturbation at individual leg joints and at the

whole body. The immediate changes in muscle activations of the model are compared to

those of humans across different gait phases and disturbance magnitudes. Remarkably

similar response trends for the majority of investigated muscles and experimental

conditions reinforce the plausibility of the reflex circuits of the model. However, the

model’s responses lack in amplitude for two experiments with whole body disturbances

suggesting that in these cases the proposed reflex circuits need to be amplified by

additional control structures such as location-specific cutaneous reflexes. A model

that captures these selective amplifications would be able to explain both steady

and reactive spinal control of human locomotion. Neuromechanical simulations that

investigate hypothesized control models are complementary to gait experiments in better

understanding the control of human locomotion.

Keywords: neuromechanical simulation, human locomotion, spinal control, model evaluation, spinal reflex, central

pattern generator

1. INTRODUCTION

Understanding the control that underlies human locomotion remains a challenging problem. One
reason for this is that many experimental techniques provide only incomplete access to the control
circuits, making it impossible to directly probe the entire control involving millions of neurons in
complex animals (Vogelstein et al., 2014). Another reason is that the control mechanism seems to
vary across species (Orlovskĭı et al., 1999; Capaday, 2002), which limits our ability to extrapolate
control circuits identified with direct methods in other animals to humans (Arshavsky et al., 1985;
Zehr and Stein, 1999; Moraud et al., 2016). Yet a third reason is that theoretical results from
modeling studies of the control circuitry remain inconclusive (Ijspeert, 2014; Sartori et al., 2016).

Neuromechanical simulations are used as a theoretical tool to study human locomotion control.
Since bipedal locomotion emerges from the interaction between the legs and the ground by utilizing
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and resisting gravitational force (Mochon and McMahon, 1980;
McGeer, 1990; Perry and Burnfield, 1992), accounting for
the mechanical dynamics as well as the neural control is
essential. This integrative approach of simulating the neural
control with the biomechanical dynamics allowed researchers
to investigate the spinal control layer where a large portion
of locomotion control is conducted (Enoka, 2008; Dietz, 2010;
Kiehn, 2016). Previously proposed spinal control models range
from central pattern generators (CPGs; Aoi et al., 2010) to
reflexes (Günther and Ruder, 2003; Geyer and Herr, 2010; Song
and Geyer, 2015a) and to a mix of both (Taga et al., 1991;
Ogihara and Yamazaki, 2001; Hase and Yamazaki, 2002; Jo and
Massaquoi, 2007; Dzeladini et al., 2014). Many of these models
with competing control structures are plausible candidates for
human control, since they produce locomotion with kinematics,
kinetics, or muscle activations similar to the ones observed in
humans. Therefore, to genuinely evaluate the plausibility of these
models a more in-depth comparison to experimental results is
required.

Disturbance reactions provide such a more in-depth
comparison. Studying the reaction to disturbances is a common
approach to establish system models and to identify controllers
(Ogata and Yang, 1970). Specifically for human locomotion,
several walking experiments have been conducted that report
on the immediate responses of the human spinal control to
different types of unexpected disturbances including electrical
stimulation (Simonsen and Dyhre-Poulsen, 1999; Courtine
et al., 2007), mechanical perturbation at individual leg joints
(Dietz et al., 1990; Sinkjaer et al., 1996; Faist et al., 1999),
and more natural mechanical perturbation of the whole body

FIGURE 1 | Spinal reflex-control model of human locomotion. The sagittal plane components of a 3-D model (Song and Geyer, 2015a) are adopted for the

current study. The model mainly uses proprioceptive reflexes to control nine major muscle groups per leg, including hamstrings (HAM), rectus femoris (RF), vasti (VAS),

gastrocnemius (GAS), soleus (SOL), and tibialis anterior (TA). The activations of these muscles during normal walking of the model (black lines) and of humans (gray

lines) are shown in the right panel. MN, motor neuron; IN, interneuron.

(Schillings et al., 1999; Sloot et al., 2015). Although external
disturbances have been used in neuromechanical human walking
models to either test the robustness of control models (Aoi
et al., 2010; Kim et al., 2011; Song and Geyer, 2015a) or to
study specific high-level recovery strategies (Jo, 2007; Murai
and Yamane, 2011), comparisons of the reference data on
the reactions of the human spinal control to the reactions
predicted by the different walking models have so far not been
performed.

Here, we perform the in-depth comparison of disturbance
reactions for one neuromechanical spinal control model of
human locomotion (Song and Geyer, 2015a). In previous
work, we have shown that this model, which consists of
primarily proprioceptive spinal reflexes (Figure 1), can explain
undisturbed locomotion behaviors. The model not only produces
kinematics, dynamics, and muscle activations similar to humans
during normal walking (Figure 1 and Video S1) but also
generates other locomotion behaviors such as running, walking
on slopes and stairs, and avoiding obstacles. We investigate
the plausibility of the model by comparing its reactions
against disturbances to those of humans and discuss its
implications in better understanding the control of human
locomotion.

2. METHODS

We select a range of unexpected disturbances used in human gait
studies from the literature, replicate them in simulation with the
neuromechanical model, and compare the models reactions to
the reported human experimental data.
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2.1. Experiment Selection
Five disturbance experiments are selected from the literature:
electrical stimulation of the lumbar spinal cord to evoke
multisegmental monosynaptic responses (MMR; Courtine et al.,
2007), mechanical tap of tendons to induce tendon tap reflexes
(TR; Dietz et al., 1990; Faist et al., 1999), actuation of the ankle
joint to induce stretch reflexes (SR; Sinkjaer et al., 1996), and
tripping (TRIP) of the swing leg (Schillings et al., 1999), and
slipping (SLIP) of the stance leg (Sloot et al., 2015; referVideo S2
for visual guidance). In these experiments, the reactions of the
spinal control are assessed through the changes that occur in the
leg muscle activations within a short time after the disturbances.
Specifically, the activation changes are measured by surface
electromyograms (EMGs) and their trend with respect to gait
phase or disturbance magnitude is used to estimate the activity
of spinal reflexes.

The five experiments are selected to cover a broad range of
disturbances and responses. For instance, from several reports
of studies using similar types of disturbances, the ones that
include the EMG changes for more leg muscles and across more
conditions are selected. Specifically, while both MMR (Courtine
et al., 2007) and H-reflex (Capaday and Stein, 1986; Simonsen
and Dyhre-Poulsen, 1999) experiments disturb afferent signals
using electrical stimulations, the former was selected since MMR
disturbs multiple afferents and, as a result, induces responses
in more muscles. Similarly, the SR (Sinkjaer et al., 1996), TRIP
(Schillings et al., 1999), SLIP (Sloot et al., 2015), and TR (Dietz
et al., 1990; Faist et al., 1999) experiments were chosen over
similar ones that apply disturbances for fewer conditions (Berger
et al., 1984; Yang et al., 1991; Eng et al., 1994; Van de Crommert
et al., 1996; Cronin et al., 2009; Chvatal and Ting, 2012; Villarreal
et al., 2016). Note that the SLIP experiment by Sloot et al.
(2015) reports on muscle responses with latencies of about 150
ms, which are longer than usual for spinal reflexes. Although
it is acknowledged that one cannot completely exclude that
these responses are long-latency reflexes, we still included the
study, as the authors clarify that these apparent latencies are in
part an outcome of their experimental protocol for detecting
disturbances, and as we could not find an alternative study
reporting responses against a range of disturbance intensities.
However, to further support our analysis on the response
amplitudes in the SLIP experiment (compare Section 3.2), we
have verified the consistency of our model results for a similar
experiment by Berger et al. (1984), in which the reported
responses are clearly within the time window of spinal reflexes.

2.2. Replication in Simulation
We adapt the original neuromechanical model (Song and Geyer,
2015a) for each of the five experiments (Table 1). Since all the
experiments reported on sagittal plane disturbances, the model is
first reduced to its sagittal plane musculoskeletal architecture and
spinal control. Then, the musculoskeletal properties are scaled
(Winter, 2009) to match the average height and weight of the
subjects in each experiment (Courtine et al., 2007; Sloot et al.,
2015). If this information is not reported (Dietz et al., 1990;
Sinkjaer et al., 1996; Faist et al., 1999; Schillings et al., 1999), the
height and weight are set to 1.8m and 80 kg. Finally, the model’s T
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control parameters are optimized with the cost function

J = CE + cv
∥

∥vavg − vtgt
∥

∥ , (1)

which encourages energy efficient walking at a target walking
speed. In this equation, CE is the metabolic energy consumed
by the muscles, cv = 100 is a weighting factor, and vavg and vtgt
are the average and target walking speeds. The target walking
speed, vtgt , is set to the reported speed in each experiment. A
demonstration of the simulationmodel can be found inVideo S2.
More details about the original model and the optimization
procedure to obtain control parameters for stable and steady
walking are given in (Song and Geyer, 2015a).

The disturbances were simulated for the reported conditions
in each experiment, which either included different gait phases
(for MMR, TR, SR, and TRIP) or different disturbance intensities
(for SLIP). The mechanical disturbances of the SR, TRIP, and
SLIP experiments were directly replicated in the simulation
by modeling an unexpected ankle flexion, the encounter of
the tripping obstacle, and the shift of the supporting ground
with the same parameters as reported in each experiment,
respectively.

The MMR and TR experiments were less straightforward
to replicate in simulation, as the neuromechanical model does
not include the corresponding physiological detail. In the MMR
experiment (Courtine et al., 2007), muscle responses (spikes with
about 20 ms durations) are induced by percutaneous electrical
stimulation (1 ms square pulses) at the lumbar spinal cord,
which disturbs the afferent pathways from the legs. Instead
of modeling the electrophysiological dynamics such as the
filtering effects of the skin layer, the MMR disturbance was
simulated as 10 ms square pulses that were simultaneously
added to the afferent signals from all muscles. The duration of
10 ms was chosen because it created similar muscle responses
(spikes with about 20 ms durations) in the model. The
amplitudes of the square pulses were set to be arbitrarily
large (maximum isometric forces, Fm, for force afferents;
optimum length, lce, for length afferents; and maximum-
contraction-velocity value, |vmax|, for velocity afferents) to
evoke responses much larger than the normal activations
seen during walking, as reported in the MMR experiment
(Courtine et al., 2007).

For the TR experiment, it is generally observed that the
tendon tap reflex amplitude is proportional to the tapping force
(Mildren et al., 2016), although the neurophysiological process
behind this observation is not well understood (Zhang et al.,
1999). The effect of tendon taps was modeled by simulating
the length changes in the muscle tendon unit affected by the
tapping. Specifically, we simulated the length change based on
the tension of the muscle and the kinetic energy of the tapping
hammer. As a result, the effect of the taps on length change
varied over the gait cycle according to the variation of the muscle
tension.

2.3. Reaction Comparisons
The response trends and amplitudes were compared separately
for each experiment and muscle. While the model has nine

muscles per leg, data for only six muscles was available in the
literature (compare Figure 1). Similarities of the response trends
were quantified as the % of themodel responses that lie within±1
standard deviation (s.d.) of human responses when linearly scaled
to maximize overlap. For example, 12 out of 16 of the model’s
SOL responses in the MMR experiment lie within ±1 s.d. of the
corresponding human responses and thus the similarity is 12/16
= 75% (Figure 2).

The response amplitudes are only compared for the SR,
TRIP, and SLIP experiments. The MMR and TR disturbances
induce synchronous and artificially exaggerated muscle
activation responses, which is not observed in normal
voluntary activations (Yang et al., 1991). As the model does
not include these artificially synchronized muscle activations, the
response amplitudes are not meaningful to compare for these
studies.

3. RESULTS

3.1. Response Trends
The neuromechanical control model and humans react to
disturbances with a similar trend for the majority of investigated
muscles and experimental conditions. Figure 2 summarizes
the changes in muscle activation organized by disturbance
experiment and leg muscle. The changes observed in humans
(gray lines and shaded areas indicating ±1 s.d.) are normalized
to their peak value and overlaid by the corresponding
changes of the model (scaled to maximize overlap and
compare trends as described in Section 2.3, black lines).
While some of the response trends do not match well (≤50%
overlap within one s.d., comparisons marked with ∗), for
the majority of the investigated muscles and experimental
conditions the scaled model responses lie within one s.d.
of the human responses (78% average overlap for unmarked
comparisons).

For several of the marked comparisons, simple modifications
of either the reflex control or the model tuning could improve
the overlap. First, in the model, the rectus femoris muscle (RF)
is used mainly for sensing but not actuation. As a result, it
cannot change activation except during swing. In the human
experiments, by contrast, RF shows response trends similar to
the synergistic vasti muscle group (VAS) throughout stride,
although careful interpretation of these RF responses is needed,
since surface EMGs of RF, which are used in the disturbance
experiments, are prone to crosstalk from VAS (Nene et al.,
2004). If fine wire EMG of RF reveal response trends similar
to those of VAS, these trends can be reproduced by modifying
the model to control RF with the same reflex pathways as
VAS. Such modification is tenable in the functional point
of view, since RF and VAS share a common role of knee
extension.

Second, the difference between human and model responses
of the vasti and the gastrocnemius muscles (GAS) during late
swing may be an artifact of the model tuning process, which
only considered undisturbed walking. The late swing reflexes
that control VAS and GAS in the model do not engage during
undisturbed locomotion (Song and Geyer, 2015a), and thus the
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FIGURE 2 | Response trends. The responses of the model and human subjects in all five disturbance experiments are shown. Human responses (gray lines) are

normalized with respect to their maximum value in each experiment and for each muscle. The model responses (black lines) are linearly scaled to place as many of the

responses as possible within ±1 s.d. of the human responses (gray shaded area). The % of the model responses within ±1 s.d. of human responses are shown at the

top of each graph, and those which are ≤50% are marked with *.

optimization process sets their parameters to arbitrary values as
far as they do not effect normal walking. In other words, these
control parameters could be further tuned to improve the overlap
with human responses for the two muscles without changing the
undisturbed walking behavior.

Finally, the weak overlap for the soleus muscle (SOL)
in the late swing phase of the SR experiment may be the

result of natural variability in humans. It is known from
human experiments using the H-reflex, the electrically elicited
equivalent of the stretch reflex, that the swing phase responses
in SOL vary among subjects between no responses (similar
to the trend predicted by the model) and the responses
shown in the SR experiment (Simonsen and Dyhre-Poulsen,
1999).
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3.2. Response Amplitudes
Whereas, the model captures the majority of the human response
trends, it clearly underestimates the response amplitudes for the
more natural, whole body disturbances. In the SR experiments,
the model reacts with amplitudes in the muscle activation
changes that are similar to the ones reported for humans (about
90% of human amplitudes). Yet in the more natural TRIP
and SLIP experiments, the response amplitudes are very small
in the model (about 20 and 4%, respectively, and 8% for the
experiment in Berger et al., 1984 as noted in Section 2.1). The
difference occurs as the reflexes of the model only respond to
changes in the muscle lengths, velocities and forces, and the
SR disturbance induces much larger changes (up to about 100
times) in these proprioceptive signals than the TRIP and SLIP
disturbances, which act on the muscles through the entire body
and its mechanical inertia.

One explanation for the shortfall in the model’s response
amplitudes could be the missing integration of reflex pathways
from skin receptors. Experimental studies have shown that
cutaneous reflexes evoke muscle responses with different trends
across the gait cycle depending on the location of the skin
receptors (Van Wezel et al., 1997; Duysens et al., 2000; Nakajima
et al., 2016). Additional modulation of the model’s current
proprioceptive reflexes by location-specific cutaneous reflexes
(Figure 3), which have been observed in cat experiments
(Lundberg et al., 1987), could produce human-like muscle
response amplitudes in all experiments without altering the
response trends. Such additional modulation against specific
disturbances, such as those in SLIP and TRIP experiments, is
also in agreement with previous observations that cutaneous
stimulations are not accountable for the responses against certain

FIGURE 3 | Example of proposed cutaneous amplification of

proprioceptive reflex control during tripping. Location specific skin

sensors at the foot detect an obstacle encounter. Cutaneous reflex pathways

return this information to the spinal cord and amplify the proprioceptive reflex

control of locomotion.

joint specific disturbances (for example, in SR experiment;
Grey et al., 2001) but do evoke muscle responses during
human walking (Nakajima et al., 2016). However, the functional
relevance of this amplification remains open for speculation. For
instance, it could promote the recovery strategies seen during
human tripping (elevating and lowering strategies in early and
late swing; Eng et al., 1994) and slipping (ankle and hip strategies
for anterior-posterior and medial-lateral perturbations; Oliveira
et al., 2012).

4. DISCUSSION

A neuromechanical model of human locomotion has been
evaluated by comparing its reactions to disturbances with those
of humans during walking. The comparison of the response
trends reinforces the plausibility of the majority of the model’s
reflex circuits. However, the observation of smaller response
amplitudes of themodel for the whole body disturbances suggests
that these circuits are selectively amplified in humans.

An extension of the current control model with additional
circuits that modulate the current reflex gains would likely be
able to better reproduce both the human response trends and
amplitudes (Figure 4A). For example, instead of the abrupt
switches in the reflex gains in the current model, either
the supraspinal control (Jo and Massaquoi, 2007; Song and
Geyer, 2015a) or CPGs can gradually change these reflex
gains (Figures 4A-a,b) and shape the response trends closer to
humans (for example, during the transitions between stance and
swing phases in VAS, GAS, and SOL, Figure 2). In addition,
selective amplifications of response amplitudes for particular
disturbances can be realized through additional reflex pathways
that modulate the reflex gains based on the detection of those
particular disturbances (Figure 4A-c). These additional reflex
gain modulations would be able to reproduce the human control
during steady walking as well as its reactions against unexpected
disturbances.

On the other hand, it remains open whether other types of
models, where CPGs generate motor outputs, can reproduce
steady and reactive human walking behaviors with a similar
level of agreement. It is often hypothesized that CPGs generate
some portion or most of the normal (background) muscle
activations while reflexes in parallel generate the remaining
portion (Duysens and Van de Crommert, 1998; Dominici et al.,
2011; Kiehn, 2016; Figure 4B). However, it is less likely that
the previously proposed human walking models based on this
hypothesis (Ogihara and Yamazaki, 2001; Jo and Massaquoi,
2007; Dzeladini et al., 2014) can explain human responses
observed in the disturbance experiments, because the more of
the normal activations is generated in a feed-forward manner by
CPGs the smaller the response amplitudes will be, which stands in
contrast to the large reactions observed in humans. For example,
in a model that generates 90% of the normal activations with
CPGs and the remaining 10% with the reflex pathways of the
reflex-based model (Dzeladini et al., 2014), the response trends
will remain the same but the response amplitudes will only be
a tenth of the reflex-based model. Alternatively, the responsive
activations could also be partially generated by CPGs as they get
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FIGURE 4 | Spinal control hypotheses of the generation of muscle

activations. Each block diagram represents a spinal mechanism of

generating muscle activations, where the spinal control can potentially consist

of serial and parallel combinations of the each mechanism. Outputs of reflex

circuits and CPGs are marked in blue and green, respectively, afferent signals

(Continued)

FIGURE 4 | Continued

during normal walking are marked in yellow, and those signals in response to

disturbances are marked in red. (A-a) Responses through the supraspinal

system appears with larger time delays than the spinal responses. This holds

true for supraspinal modulations of any spinal control (not shown for B,C).

(A-b) Modulation of reflex circuits by pure CPGs does not change the

responsive activations. (A-c) Response activations of reflexes can be

selectively modulated by additional reflex circuits. (B) If muscle activations are

generated mostly by CPGs, in other words, if the reflex circuits generate only a

small portion of the activation signals, the response to the change in afferent

signals would be small as well. (C-a) Phase resetting of CPGs results in

persistent phase shift of the muscle activation signals. (C-b) If CPGs are

continuously modulated by sensory feedback, all afferent signals, including the

disturbance signals, get modulated by CPG dynamics.

modulated by sensory feedback (Figure 4C). For example, phase
shifts in CPG activations in response to perturbations, which is
called phase resetting (Figure 4C-a), have been observed in cats
(Conway et al., 1987; Schomburg et al., 1998) and have been
proposed to increase the robustness of human walking (Yamasaki
et al., 2003; Aoi et al., 2010). However, the responses observed
in the disturbance experiments considered in this study do not
seem to originate from phase resetting of CPGs since they are
transient responses rather than persistent phase shifts. Finally,
CPGs have also been proposed to be continuously modulated by
sensory feedback in many models, where the muscle responses
result from more complicated CPG dynamics (Taga et al., 1991;
Ogihara and Yamazaki, 2001; Hase and Yamazaki, 2002; McCrea
and Rybak, 2008; Figure 4C-b). CPGs are usually modeled to
consist of mutually inhibiting neurons with internal dynamics
(Matsuoka, 1985), and many human walking models (Taga et al.,
1991; Ogihara and Yamazaki, 2001; Hase and Yamazaki, 2002)
incorporate continuous sensory feedbackmodulation of CPGs by
adding afferent signals to this internal dynamics (for example,
in the form of τ u̇ = −u + other-terms + feedback, where τ

is a time constant and u is the neural output). In this case,
the muscle responses are likely to be slower and smaller, since
the disturbance signals need to be integrated to appear in the
neural outputs of the CPGs. Therefore, in order to explain
both steady and reactive behaviors during human walking with
control structures in which CPGs generate muscle activations,
more complicated reflex circuits may be necessary that selectively
amplify the responses not only for the whole body disturbances
but also for the other disturbances.

Still, there is clear evidence that CPGs are highly involved
in locomotion of many animals including mammals, and it
is reasonable to expect human locomotion involves a similar
control structure if the functional role of CPGs remained valid in
the course of evolution to upright bipedal locomotion (Capaday,
2002; MacKay-Lyons, 2002; Ijspeert, 2008). One functional role
that has been proposed to be realized by CPGs is the generation
of transitional behaviors such as changing gait, as well as
locomotion speed and direction. This view is supported by
observations on decerebrate animals, where simple supraspinal
stimulations control locomotion by modulating the frequency
and amplitude of CPGs (Armstrong, 1988; Stein et al., 1997;
Sirota et al., 2000). It has been shown with a neuromechanical
model that human locomotion speed can be controlled in a
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similar way by modulating CPGs of the hip muscles (Van der
Noot et al., 2015). On the other hand, transitional behaviors
including speed and directional changes also can be realized
in the absence of CPGs by changing the reflex gains directly
through the supraspinal control (Song and Geyer, 2012, 2015a,b).
Therefore, the role of CPGs in transitional locomotion behaviors
of humans calls for further experimental studies. To this end,
investigating the responses of the hip muscles (Hof and Duysens,
2013), which lack in previous gait disturbance experiments, can
be crucial.

Our results also show that solely relying on indirect
experimental observations can be misleading when assessing the
role of reflexes. First, the changes in muscle responses do not
necessarily indicate modulation of reflex gains. For example, in
the TR experiment the changes in the model’s HAM and VAS
responses during stance (Figure 2) result from the changes in
muscle configurations while the reflex gains remain constant.
Second, the correlation between the muscle states and muscle
responses is not sufficient to explain the underlying muscle
reflexes. For instance, in a gait experiment similar to the SR
experiment, Yang et al. (1991) suggested velocity feedback to
contribute about 45% in the generation of SOL activations
during the stance phase. The suggested contribution is based on
the correlation between the changes in ankle velocity and the
responses in SOL activation. However, as noted by the authors of
the study, this quantification neglects the potential contributions
of different afferent pathways. Performing the same correlation-
based analysis in our model suggests a contribution of about 40%
of velocity feedback in the stance control of SOL, even though the
model uses no velocity feedback but 100% force feedback.

Although, the findings of our study may help to construct
a model that can explain the steady and reactive spinal control
of human walking, it will take further research to settle the
actual circuitries in humans. First, neuromechanical simulations
with more physiological details will be needed to incorporate
other types of experimental studies in the evaluation of control
models. For instance, we would be able to compare the
response amplitudes of our control model to human responses
in MMR and TR experiments if our simulations could more
faithfully describe the relationship between cutaneous electrical
stimulation and synchronous muscle activation as well as
the related neurophysiology. Second, other models which can

explain normal human walking should also be subjected to gait
disturbance experiments to genuinely evaluate their plausibility

and arrive at a consensus about what the human circuitry
might be. Finally, the resulting control model should be verified
by direct probing of the proposed neural circuits in human
experiments. Although, it is currently impossible to probe the
entire control of humans that involves millions of neurons, a
control model that is thoroughly evaluated and specified may
substantially reduce the search space. Evaluation beyond steady
behavior will play an important role in this quest.
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