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Abstract

The planar spring-mass model is frequently used to describe bouncing gaits (running, hopping, trotting, galloping) in animal and

human locomotion and robotics. Although this model represents a rather simple mechanical system, an analytical solution

predicting the center of mass trajectory during stance remains open. We derive an approximate solution in elementary functions

assuming a small angular sweep and a small spring compression during stance. The predictive power and quality of this solution is

investigated for model parameters relevant to human locomotion. The analysis shows that (i), for spring compressions of up to 20%

(angle of attack X60�; angular sweep p60�) the approximate solution describes the stance dynamics of the center of mass within a

1% tolerance of spring compression and 0:6� tolerance of angular motion compared to numerical calculations, and (ii), despite its

relative simplicity, the approximate solution accurately predicts stable locomotion well extending into the physiologically reasonable

parameter domain. (iii) Furthermore, in a particular case, an explicit parametric dependency required for gait stability can be

revealed extending an earlier, empirically found relationship. It is suggested that this approximation of the planar spring-mass

dynamics may serve as an analytical tool for application in robotics and further research on legged locomotion.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The astonishing elegance and efficiency with which
legged animals and humans traverse natural terrain
outclasses any present day man-made competitor.
Beyond sheer fascination, such a ‘technological’ super-
iority heavily attracts the interest from many scientists.
Yet it seems that, despite intensive research activities in
fields as diverse as biomechanics, robotics, and medicine,
the overwhelming complexity in biological systems may
deny a comprehensive understanding of all the functional
details of their legged locomotor apparatus. Considering
e front matter r 2004 Elsevier Ltd. All rights reserved.
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this, in some studies complex integral representations are
discarded in favor of simpler models seeking least
parameter descriptions of aspects of the problem at
hand. Without claiming to capture the whole system,
these models may well be suited to succeed in identifying
some underlying principles of pedal locomotion.

In particular, on the mechanical level, the planar
spring-mass model for bouncing gaits (Blickhan, 1989;
McMahon and Cheng, 1990) has drawn attention since,
while advocating a largely reductionist description, it
retains key features discriminating legged from wheeled
systems: phase switches between flight (swing) and stance
phase, a leg orientation, and a repulsive leg behavior in
stance. In consequence, not only biomechanical studies
investigating hopping (Farley et al., 1991; Seyfarth et al.,
2001) or running (He et al., 1991; Farley et al., 1993), but
also fast legged robots driven by model-based control

www.elsevier.com/locate/yjtbi
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Fig. 1. Spring-mass model for running. Parameters: m—point mass,

‘0— rest length, a0—leg angle of attack during flight, g—gravitational

acceleration, k—spring stiffness, r—radial and j—angular position of

the point mass, Dj—angle swept during stance.
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algorithms (Raibert, 1986; Saranli and Koditschek, 2003)
rely on this plant. Yet still, even for the simple spring-
mass model, parametric insights remain obscured as the
dynamics of the stance phase are non-integrable (Whit-
tacker, 1904). Lacking a closed form solution, research is
either bound to extensive numerical investigations or
needs to establish suitable approximations.

For instance, by mapping the model’s parameter
space, simulation studies suggest that the spring-mass
system for running can display a ‘self-stable’ behavior
(Seyfarth et al., 2002; Ghigliazza et al., 2003). Here, self-
stability refers to the observation of asymptotically
stable gait trajectories without continuous sensory
feedback. As the spring-mass model is energy preser-
ving, i.e. non-dissipative, this behavior seems counter-
intuitive. However, it also constitutes a piecewise
holonomic system experiencing phase-dependent dy-
namics (the different stance and flight-phase dynamics),
and several recent investigations demonstrate that such
systems can exhibit asymptotic stability (Coleman et al.,
1997; Ruina, 1998; Coleman and Holmes, 1999).

Analytical investigations assessing this issue for the
spring-mass model in particular, for reasons of accessi-
bility, mostly neglect gravity when approximating the
stance-phase dynamics (e.g. Ghigliazza et al., 2003). As
this can hardly be done in general locomotion (Schwind
and Koditschek, 2000) or when addressing physiologi-
cally motivated parameters (Geyer, 2001), in Schwind
and Koditschek (2000) an iterative algorithm reincor-
porating the effect of gravity is introduced. Although
the quality of the approximate solution improves with
each iteration, its decreasing mathematical tractability
hampers the intended deeper parametric insight into the
functional relations.

In this study, a comparably simple approximate
solution for the dynamics of the planar spring-mass
model is derived including gravitational effects. Within
the scope of stability in spring-mass running, the
predictive power and the quality of this solution are
investigated. The former by considering a special case, the
latter by comparing a return-map analysis based on the
approximation with numerical results throughout
the range of the parameters spring stiffness, angle of
attack, and system energy. In both situations, model
parameters relevant to human locomotion are addressed.
2. Spring-mass running

2.1. Model

Planar spring-mass running is characterized by alter-
nating flight and contact phases. As described previously
(Seyfarth et al., 2002), during flight the center of mass
trajectory is influenced by the gravitational force. Here,
a virtual leg of length l0 and a constant angle of attack
a0 are assumed (Fig. 1). When the leg strikes the ground,
the dynamic behavior of spring-mass running is further
influenced by the force exerted by the leg spring
(stiffness k; rest length l0) attached to the center of
mass. The transition from stance-to-flight occurs if the
spring reaches its rest length again during lengthening.

2.2. Apex return map

To investigate periodicity for this running model, it
suffices to consider the apex height yi of two subsequent
flight phases. This holds since (i) at apex the vertical
velocity _yi equals zero, (ii) the forward velocity _xi can be
expressed in terms of the apex height due to the constant
system energy Es; and (iii) the forward position xi has no
influence on the further system dynamics.

Consequently, the stability of spring-mass running
can be analysed with a one-dimensional return map
yiþ1ðyiÞ of the apex height of two subsequent flight
phases (single-step analysis). In terms of the apex return
map, a periodic movement trajectory in spring-mass
running is represented by a fixed point yiþ1ðyiÞ ¼ yi:
Moreover, as a sufficient condition, a slope dyiþ1ðyiÞ=dyi

within a range of ð�1; 1Þ in the neighborhood of the
fixed point indicates the stability of the movement
pattern (higher than period 1 stability, which corre-
sponds to symmetric contacts with time reflection
symmetry about midstance, is not considered). The size
of the neighborhood defines the basin of attraction of
the stable trajectory.
3. Approximate solution

3.1. Model approximations

The analytical solution for the center of mass motion
during flight is well known (ballistic flight trajectory),
but a different situation applies to the stance phase.
Using polar coordinates (r;j), the Lagrange function of
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the contact phase is given by (see Fig. 1 for notation)

L ¼
m

2
ð_r2 þ r2 _j2Þ �

k

2
ð‘0 � rÞ2 � mgr sin j: (1)

From the Lagrange function, the derived center of mass
dynamics are characterized by a set of coupled nonlinear
differential equations. As of today, the analytical
solution for the contact phase remains open. For such
situations, a common approach is to ask for simplifica-
tions, which could provide an approximate solution. In
the case of Eq. (1), for sufficiently small angles Dj swept
during stance, the sine term on the right-hand side can
assumed to be

sin j � 1 (2)

and the equations of motion simplify to

m€r ¼ kð‘0 � rÞ þ mr _j2 � mg (3)

and

d

dt
ðmr2 _jÞ ¼ 0 (4)

transforming the spring-mass model into an integrable
central force system, where the mechanical energy E and
the angular momentum P ¼ mr2 _j are conserved.

To derive the apex return map yiþ1ðyiÞ; it suffices to
identify the system state at the phase transitions (flight-
to-stance and stance-to-flight), regardless of the actual
motion during stance. Due to both, the radial symmetry
of the model (spring assumes rest length ‘0 at each phase
transition) and the conservation of angular momentum
(4), the system state at take-off (TO) relates to the state
at touch-down (TD) with

rTO ¼ rTD;

_rTO ¼ �_rTD;

jTO ¼ jTD þ Dj;

_jTO ¼ _jTD; ð5Þ

where only the angle Dj swept during stance cannot
simply be expressed by the state at touch-down. Hence,
we will calculate this angle from the dynamics of the
central force system (3) and (4) in the following sections.
Particularly, we will first derive the radial motion rðtÞ

and then integrate _j ¼ P
mr2: In both cases, we will use the

further assumption of small relative spring amplitudes

jrj51 (6)

with r ¼ r�‘0

‘0
p0 to attain an approximate solution of

the central force system and, consequently, of the planar
spring-mass dynamics in elementary functions.

3.2. Radial motion during stance

Using the conservation of angular momentum P; the
constant mechanical energy of the contact phase is
given by

E ¼
m

2
_r2 þ

P2

2mr2
þ

k

2
ð‘0 � rÞ2 þ mgr: (7)

Applying the substitutions e ¼ 2E
m‘2

0

; o ¼ P
m‘2

0

; and o0 ¼ffiffiffi
k
m

q
; the equation rewrites to

e ¼ _r2 þ
o2

ð1 þ rÞ2
þ o2

0r
2 þ

2g

‘0
ð1 þ rÞ; (8)

where r represents the relative spring amplitude

introduced in the previous section. The term 1
ð1þrÞ2

can

be represented as a Taylor expansion around the initial
relative amplitude r ¼ 0

1

ð1 þ rÞ2

����
r¼0

¼ 1 � 2rþ 3r2 � Oðr3Þ: (9)

The restriction (6) to small values of r allows to truncate
the expansion after the square term. Hence, the
differential equation (8) transforms into

t ¼

Z
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lr2 þ mrþ n
p ; (10)

where the factors are given by l ¼ �ð3o2 þ o2
0Þ; m ¼

2ðo2 � g=‘0Þ; and n ¼ ðe� o2 � 2g=‘0Þ: The integral in
Eq. (10) is given byZ

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lr2 þ mrþ n

p ¼ �
1ffiffiffiffiffiffiffi
�l

p


 arcsin
2lrþ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 4ln

p
 !

; ð11Þ

provided that both the factor l and the expression 4ln�
m2 are negative. The first condition is fulfilled by the
definition of l: The second one holds if n is positive.
Since n is constant, it suffices to check this condition at
the instant of touch-down. From here it follows that

n ¼ _r2
0=‘

2
0: Using Eq. (11), Eq. (10) can be resolved and

yields the general radial motion

rðtÞ ¼ ‘0 1 þ a þ b sin ô0tð Þ (12)

with

a ¼
o2 � g=‘0

o2
0 þ 3o2

;

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2 � g=‘0Þ

2
þ ðo2

0 þ 3o2Þðe� o2 � 2g=‘0Þ

q
o2

0 þ 3o2
;

ô0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 þ 3o2

q
:

The radial motion rðtÞ describes a harmonic oscillation
around the length ‘0ð1 þ aÞ with an amplitude ‘0b and
an angular frequency ô0 (Fig. 2). However, the solution
rðtÞ only holds for the contact phase of spring-mass
running where rp‘0: Using the condition r ¼ ‘0;
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Eq. (12) can be resolved to identify the instances of
touch-down and take-off (Fig. 2)

tTD ¼
1

ô0
2n þ

3

2

� 	
p�

p
2
þ arcsin �

a

b


 �h i� �
(13)

and

tTO ¼
1

ô0
2n þ

3

2

� 	
pþ

p
2
þ arcsin �

a

b


 �h i� �
(14)

where n is an arbitrary integer.
The maximum spring compression D‘max during

stance is given by the difference of the amplitude ‘0b

of rðtÞ and the shift ‘0a of the touch-down position
rðtTDÞ ¼ ‘0 (Fig. 2). Thus, restriction (6) to small values
of r is adequately formulated by

b � a51: (15)
3.3. Angle swept during stance

With the radial motion rðtÞ; the angle swept during
stance can be derived from the equation P ¼ mr2 _j
describing the constant angular momentum. Using the
substitutions o and r; the angular velocity is given by

_j ¼
o

ð1 þ rÞ2
: (16)

To integrate Eq. (16), again, we use the Taylor
expansion (9), but cancel this expansion after the linear
term already. The Taylor expansion of 1

ð1þrÞ2
to the

second order in r for both the r- and j-trajectory would
lead to a more accurate approximate solution of the
central force dynamics (3) and (4). However, approx-
imating the actual spring-mass dynamics (1), the central
force approach (2) is error-prone itself. Carrying out the
expansion to the first-order only for _j allows in part to
compensate for the error introduced by this general
approach (see appendix).

With _j ¼ oð1 � 2rÞ and substituting r by r; we obtain
the angle Dj swept during stance

Dj ¼

Z tTO

tTD

o½ð1 � 2aÞ � 2b sin ô0t�dt: (17)

Considering Eqs. (13) and (14) as integration limits,
and using the identities cosðarcsin xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
and

pþ 2 arcsin �a
b

� �
¼ 2 arccos a

b

� �
; the angle swept during

stance resolves to

Dj ¼ 2
o
ô0

1 � 2að Þ arccos
a

b
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

� a2
ph i

: (18)

As both the mechanical energy and the angular
momentum are conserved, the parameters o; ô0; a and
b can be related to the system state at touch-down by
solving Eqs. (4) and (8) at this instant. Therefore, Dj is
uniquely determined by the system state at touch-down
(‘0; _rTD; jTD; _jTD) and the parameters of the spring-
mass system (k; m; g). Although not explicitly appearing
when re-substituting in Eq. (18), the landing angle
jTD ¼ p� a0 influences Dj by determining the distribu-
tion of the landing velocity to the radial and angular
component.
3.4. Approximate solution

By defining the instant of touch-down as t ¼ 0; the
radial (12) and angular motions during stance (17)
rewrite to

rðtÞ ¼ ‘0 þ ‘0½að1 � cos ô0tÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

� a2
p

sin ô0t�; ð19Þ

jðtÞ ¼ jTD þ ð1 � 2aÞot þ
2o
ô0


½a sin ô0t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

� a2
p

ð1 � cos ô0tÞ� ð20Þ

with t ranging from 0 to tc ¼ ½pþ 2 arcsinð�a=bÞ�=ô0:
By substituting a and b (12) as well as expressing e; o;
and o0 with the system state at touch-down, the center
of mass trajectory during stance resolves to

rðtÞ ¼ ‘0 �
j_rTDj

ô0
sin ô0t

þ
_j2

TD‘0 � g

ô2
0

ð1 � cos ô0tÞ; ð21Þ
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jðtÞ ¼ p� a0 þ 1 � 2
_j2

TD � g=‘0

ô2
0

 !
_jTDt

þ
2 _jTD

ô0

_j2
TD � g=‘0

ô2
0

sin ô0t

"

þ
_rTDj j

ô0‘0
ð1 � cos ô0tÞ

#
: ð22Þ

The radial motion corresponds to the motion of a one-
dimensional spring-mass system under the influence of
gravity except for the increased oscillation frequency

ô0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=m þ 3 _j2

TD

q
: The angular motion has a linear

characteristic, which is modulated by trigonometric
functions. The time in contact resolves to

tc ¼
1

ô0
pþ 2 arctan

g � ‘0 _j2
TD

j_rTDjô0

� 	� �
: (23)
4. Stability of spring-mass running

4.1. Analytical apex return map

In the following section we use the derived analytical
solution for the contact to calculate the dependency of
two subsequent apex heights. Based on this apex return
map, for a special case, we derive an explicit parametric
dependency required for stable spring-mass running
and, within the scope of gait stability, compare
parameter predictions with previous numerical results.

With the angle swept during stance (18), we know
how the system state at take-off relates to the initial state
of the contact phase at touch-down (5). But, to apply the
correct initial values, the mapping between the apex
height yi and the touch-down state in polar coordinates
is required

yi 7!

_x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m
ðEs � mgyiÞ

q
y ¼ ‘0 sin a0

_y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðyi � yÞ

p

2
6664

3
7775

TD

7!

r ¼ ‘0

_r ¼ _x cos jþ _y sin j

j ¼ p� a0

_j ¼ 1
‘0
ð _y cos j� _x sin jÞ

2
666664

3
777775

TD

; ð24Þ

where Es is the system energy prior to touch-down (for
details see Sections 2.2 and 4.2). To obtain the apex
return map yiþ1ðyiÞ; the system state at the following
apex i þ 1 has to be derived, i.e. the mapping between
the state at take-off and the apex i þ 1 is further
required

_x ¼ _r cos j� ‘0 _j sin j

y ¼ ‘0 sin j

_y ¼ _r sin jþ ‘0 _j cos j

2
664

3
775

TO

7!

_xiþ1 ¼ _xTO;

yiþ1 ¼ yTO þ
1

2g
_yTO

2
64

3
75: ð25Þ

Using both mappings, the apex return map function of
approximated spring-mass running can be constructed
and yields after simplification

yiþ1ðyiÞ ¼
1

mg
cosðDj� 2a0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mgðyi � ‘0 sin a0Þ

ph
þ sinðDj� 2a0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Es � mgyi

p i2

þ ‘0 sinða0 � DjÞ: ð26Þ

Next to the preceding apex height (yi), yiþ1 is a function
of the system energy (Es), the landing leg configuration
(‘0; a0), and the dynamic response of the spring-mass
system (k; m; g). However, the apex return map can
only exist where yiþ1 exceeds the landing height
yiþ1X‘0 sin a0: Otherwise, the leg would extend into
the ground (stumbling).

4.2. System energy correction

For spring-mass running, the stability analysis can be
performed based on a one-dimensional apex return map
since the system energy Es remains constant (see Section
2.2). When using the approximation for the stance
phase, in particular due to assumption (2), this
conservation of energy is violated if the vertical position
at take-off differs from that at touch-down (yTDayTO;
i.e. asymmetric contact phase):

In a central force system approach, the kinetic energy
m
2
_r2 þ r2 _j2
� �

is equal at touch-down and take-off (5),
regardless of the angle swept during stance. At the
transitions between flight and stance phase the direction
of the gravitational force ‘switches’ between vertical and
leg orientation. The corresponding shifts in energy at
touch-down and take-off compensate each other for
symmetric stance phases (yTD ¼ yTO). In contrast, for
asymmetric contact phases, a net change in system
energy DE ¼ mgðyTO � yTDÞ occurs. To restore the
conservative nature of the model (Es ¼ const), this
change is corrected in (25) by readjusting the horizontal
velocity to

_xiþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
ðEs � mgyiþ1Þ

r
: (27)

When reapplying the apex return map (26) for the new
apex height yiþ1; this is automatically taken into account
by reusing the system energy Es:
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4.3. Stability analysis: the special case a ¼ 0

From Eq. (26) we obtain that the fixed point
condition yiþ1ðyiÞ ¼ yi is fulfilled if Eq. (18) describes
symmetric contacts with Dj ¼ 2a0 � p: In general,
solving Eq. (18) appears to be difficult since this
equation involves nonlinearities. However, in order to
demonstrate the existence and stability of fixed points of
the apex return map, it suffices to present one example.
In the following, we will confine our investigation to the
special case a ¼ 0; i.e. when the angular velocity at
touch-down is identical to the pendulum frequency
o ¼ _jTD ¼ �

ffiffiffiffiffiffiffiffiffi
g=‘0

p
(although o ¼ þ

ffiffiffiffiffiffiffiffiffi
g=‘0

p
equally

satisfies a ¼ 0; we are concerned with forward locomo-
tion only). In this particular situation, Eq. (18)
considerably simplifies to

Djð ~k; a0; ~EsÞ ¼ �
2ffiffiffiffiffiffiffiffiffiffiffi
~k þ 3

p



p
2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

~k þ 3

s0
@

1
A ð28Þ

where ~k ¼ k‘0

mg
represents the dimensionless spring

stiffness and ~Es ¼
Es

mg‘0
is the dimensionless system

energy.1

Apart from its mathematical simplicity, this special
case addresses a characteristic running speed in animals
and humans. Considering that, for rather steep angles of
attack, the horizontal velocity _x relates to the angular
velocity with _x � ‘0 _jTD; the case a ¼ 0 describes
running with a Froude number Fr ¼ _x2

g‘0
¼ 1; which

is close to the preferred trotting speed in horses
(Alexander, 1989; Wickler et al., 2001) or to a typical
jogging speed in humans (Alexander, 1989).
4.3.1. Existence of fixed points

Before continuing with Eq. (28), we need to check
whether apex states yi restricted by the touch-down
condition o ¼ �

ffiffiffiffiffiffiffiffiffi
g=‘0

p
can be found. By using the

apex-to-touch-down map (24), we find the formal
expression

o ¼

ffiffiffiffiffi
2g

‘0

s
cos a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi=‘0 � sin a0

p


� sin a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Es � yi=‘0

q 	
: ð29Þ
1The appearance of ~k and ~Es is not restricted to the special case

a ¼ 0: Rather, these substitutes can be identified as independent

parameter groups when applying a dimensional analysis of the

governing equations in spring-mass running. Specifically, the dimen-

sionless stiffness ~k is a well-known parameter group frequently used in

comparative studies on animal and human locomotion (e.g. Blickhan,

1989; Blickhan and Full, 1993).
Resolving for o ¼ �
ffiffiffiffiffiffiffiffiffi
g=‘0

p
leads to the corresponding

apex height

yi ¼ ‘0 sin a0 þ
‘0

2
cos a0 � sin a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

q� 	2

¼ ‘0
~Es �

‘0

2
sin a0 þ cos a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

q� 	2

:

ð30Þ

However, substituting (30) back into (29) yields

�1 ¼ cos a0 cos a0 � sin a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

q����
����

� sin a0 sin a0 þ cos a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

q����
����
ð31Þ

and it follows that the solution (30) only holds

if cos a0p sin a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

p
; i.e. the system

energy fulfils ~EsX
~E

min

s with

~E
min

s ¼
1

2 sin2a0

þ sin a0: (32)

For a system energy ~Es ¼ ~E
min

s ; the apex height is

identical to the landing height yi ¼ ‘0 sin a0: Above this

level ~Es4 ~E
min

s ; the apex height increases, but never

approaches the upper boundary yi ¼ ‘0
~Es:

Having established the flight-phase limitations for the
existence of apex states yi characterized by a ¼ 0; we can
proceed with Eq. (28). Solving for Dj ¼ 2a0 � p

involves a quadratic equation for
ffiffiffiffiffiffiffiffiffiffiffi
~k þ 3

p
; which has

only one physically reasonable solution yielding an
expression for the required spring stiffness

~kða0; ~EsÞ

¼

pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 32 p

2
� a0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

pq� �2

16 p
2
� a0

� �2
� 3:

ð33Þ

At given angle of attack (a0 2 0; p
2

" #
in forward locomo-

tion), the stiffness is lowest for the minimum system
energy

~k
min

ða0Þ ¼
~k
min

ða0; ~E
min

s Þ

¼
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 32 p

2
� a0

� �
cos a0

sin a0

qh i2

16 p
2
� a0

� �2
� 3 ð34Þ

with increasing system energy ~Es4 ~E
min

s ; a larger

spring stiffness is required to ensure symmetric contacts
(Fig. 3).
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Fig. 3. Parameter interdependence for fixed point solutions with a ¼ 0:
The fixed points can only exist if a minimum energy ~Eminða0Þ is

exceeded (permitted parameter range). Above this level, the required

parameter combinations of angle of attack a0; system energy ~Es; and

spring stiffness ~k are defined by relation (33) describing a sub set
~kða0; ~EsÞ within the parameter space. The dark area within this sub set

characterizes stable fixed point solutions (see Section 4.3.2). The open

lines indicate the parameter combination that is used as apex return

map example in Fig. 4.

H. Geyer et al. / Journal of Theoretical Biology 232 (2005) 315–328 321
With Eqs. (32) and (33) we have identified the
parameter dependence required for periodic locomotion
constrained by o ¼ �

ffiffiffiffiffiffiffiffiffi
g=‘0

p
: Although the resulting

steady-state solutions (30) demonstrate the existence of
fixed points of the apex return map, it remains to
investigate to what extent the derived parameter
relations represent stable gait patterns.
4.3.2. Stability of fixed points

Stable fixed point solutions yi are characterized by

�1o
@

@yi

½yiþ1ðyiÞ�yiþ1¼yi
¼ @iy

no1: (35)

To prove stability, we need to identify at least one
parameter set (a0; ~Es) leading to solutions yi satisfying
Eq. (35). Starting with Eq. (26), we obtain

@iy
n ¼ 1 þ ‘0 cos a0½

þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘0

~Es � yiÞðyi � ‘0 sin a0Þ

q �
@iDjn ð36Þ

by using Dj ¼ 2a0 � p for symmetric contacts. As the
bracketed expression always remains positive, Eq. (35)
transforms into a condition for the angle swept dur-

ing stance @iDjn 2 � 2

‘0 cos a0þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘0

~Es�yiÞðyi�‘0 sin a0Þ
p ; 0

� 	
indicating that disturbed apex conditions towards
higher (lower) apices must be compensated for by a
larger (smaller) amount of angular sweep in con-

tact (Djn is negative). However, to remain stable,
the rate of this ‘negative’ correlation must not exceed

� 2

‘0 cos a0þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘0

~Es�yiÞðyi�‘0 sin a0Þ
p : From Eq. (18) it follows

that

@iDjn ¼
1

o
�

3o

ô2
0

 !
2a0 � pð Þ@ion

� 2
o
ô0

2 arccos
a

b


 �
@ia

n

2
4

�

a
b
� 2 a2

b
þ 2b


 �
@ib

n
� @ia

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

� a2
p

3
5; ð37Þ

which, by expressing @ia
n and @ib

n with @ion; and

resolving @ion; can be further deduced to

@iDjn ¼
1

o
�

3o

ô2
0

 !
ð2a0 � pÞ � 2

o2

ô3
0

(


 ð4 � 12aÞ arccos
a

b


 �2
4

�

a
b
� 2a2

b
þ 2b


 �
2a

b
� 1

b
� 3a2

b
� 3b


 �
� 2 þ 6affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
� a2

p
3
5
9=
;




ffiffiffiffiffi
2g

p

2‘0

cos a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yn

i � ‘0 sin a0

p þ
sin a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘0

~Es � yn
i

q
0
B@

1
CA:

ð38Þ

Note that Eq. (38) is valid for any fixed point solution

with symmetric contacts Djn ¼ 2a0 � p since a ¼ 0
has not yet been utilized. Finally, applying a ¼ 0 and

o ¼ �
ffiffiffiffiffiffiffiffiffi
g=‘0

p
yields

@iDjn ¼
1

~k þ 3
~k
p
2
� a0


 �
�

2pffiffiffiffiffiffiffiffiffiffiffi
~k þ 3

p
"

�
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Es � 1 � 2 sin a0

p
~k þ 3

�
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ~Es � 1 � 2 sin a0

p
#




ffiffiffiffiffi
2

‘0

s
cos a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yn
i � ‘0 sin a0

p þ
sin a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘0

~Es � yn
i

q
0
B@

1
CA: ð39Þ

By substituting Eq. (39) back into Eq. (36) and using
Eq. (30) as well as Eq. (33), we obtain an expression

@iy
n ¼ @iy

nða0; ~EsÞ identifying the parameter dependence



ARTICLE IN PRESS
H. Geyer et al. / Journal of Theoretical Biology 232 (2005) 315–328322
of the derivative of the apex height return map yiþ1ðyiÞ

at the fixed points yn
i in the special case a ¼ 0:

Based on this result, in Fig. 3, parameter combina-
tions leading to stable fixed points are indicated in the
~kða0; ~EsÞ–region as dark area, which is limited by two
curves denoting the lower (@iy

n ¼ �1) and upper
constraint (@iy

n ¼ þ1) for stable solutions (35).
Although this area narrows and almost diminishes
below the minimum system energy ~Eminða0Þ for steep
angles of attack, parameter combinations above this
critical level remain existent. For example, an angle of
attack a0 ¼ 85� (not shown in Fig. 3) necessitates a
minimum system energy ~Emin ¼ 1:500; and the lower
stability constraint corresponds to a system energy
( ~E

�

s ¼ 1:497) below this minimum. Nevertheless, the
system energy related to the upper constraint
( ~E

þ

s ¼ 1:506) still exceeds the critical level, and, for
instance, for a system energy ~Emino ~Es ¼ 1:503o ~E

þ

s ;
one easily checks that, besides the steep angle condi-
tion(2), with b � ao0:06 the resulting apex return map
(26) fulfils Eq. (15) required for the validity of the
approximate solution.

As a result of the steep angle a0 ¼ 85�; the return map
yiþ1ðyiÞ almost matches the diagonal yiþ1 ¼ yi; if viewed
on the large scale of all possible apex heights, hampering
a compact overview of its qualitative behavior. How-
ever, to provide such an overview, in Fig. 4, an explicit
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Fig. 4. Stability of spring-mass running. The return map function

yiþ1ðyiÞ is shown for the parameter set a0 ¼ 60�; ~Es ¼ 1:61; and ~k ¼

10:8; which belongs to the calculated region of parameter combina-

tions producing stable fixed point solutions. As predicted, the return

map has a stable fixed point yiþ1 ¼ yi attracting neighboring apex

states within a few steps (arrow traces in the magnified region).

Furthermore, the return map is characterized by an additional,

unstable fixed point representing the upper limit of the basin of

attraction of the stable one (the lower limit is given by the landing

height y‘ ¼ ‘0 sin a0).
return map example is shown for the moderate angle of
attack a0 ¼ 60�: Here, the system energy ~Es ¼ 1:61 and,
as a result of Eq. (33), the spring stiffness ~k ¼ 10:8
(indicated by the open lines in Fig. 3) are chosen such
that the fixed point yn ¼ 0:872‘0 (open circle) calculated
from Eq. (30) is stable with @iy

n ¼ 0: Starting from
disturbed apex heights, the system stabilizes within a few
steps (as indicated by the arrow traces in the small panel
of Fig. 4). Here, the basin of attraction contains all apex
heights from the landing height y‘ ¼ ‘0 sin a0 to the
second, unstable fixed point (closed circle). As the
analysis performed in this section is restricted to local
predictions, both the basin and the second fixed point
are merely observations from plotting Eq. (26). How-
ever, from Fig. 3 it is obtained that, if the system energy
is not adequately selected, the fixed point given by
Eq. (30) is unstable. Without proof we observed the
following behavior: For a system energy leading to
@iy

no� 1; Eq. (30) still traces the lower fixed point
being unstable. For @iy

n ¼ 1; both fixed points collapse
to a single one, and, if @iy

n41; Eq. (30) describes the
upper, unstable fixed point.
4.3.3. k-a0-relationships for stable running

In the last two sections, we have identified the

parameter combinations ( ~k; a0; and ~Es) required to
achieve self-stable running patterns characterized by a ¼

0 (dark area in Fig. 3). Specifically, for steep angles of
attack a0 ! p

2
; stable trajectories are obtained when the

system energy ~Es is close to the minimum system energy

~E
min

s (32), i.e. the parametric dependency approaches

the minimum stiffness-angle-relation ~k
min

ða0Þ (34). In
the numerical study (Seyfarth et al., 2002), we empiri-
cally found a different estimate for the stiffness-angle-

relationship kða0Þ �
1600N

‘0ð1�sin a0Þ
; and the question arises in

how far both relationships relate to each other.
Considering that, for a0 ! p

2
; the minimum system

energy ~E
min

s approaches a value of 1.5, in the numerical

study this corresponds to a system energy of

Es ¼ mg‘0
~Es � 1200 J (m ¼ 80 kg, g ¼ 9:81 m=s2; and

‘0 ¼ 1 mÞ: As the initial apex height was fixed to y0 ¼ ‘0

therein, this is equivalent to an initial speed of _x0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m
ðEs � mg‘0Þ

q
of about 3.3 m/s, which is slightly less

than the initial speed the empirical k–a0-relationship is
derived from ( _x0 ¼ 5 m/s, Fig. 2A in Seyfarth et al.
(2002)). However, the general shape of the stable
domain does not change much for initial running
velocities below _x0 ¼ 5 m/s (the domain only narrows,
Fig. 2B and C in Seyfarth et al. (2002)) and, hence, from
an energetic point of view both relationships should be
comparable.
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A similar argument holds for the restriction to the
special case a ¼ 0: As in Seyfarth et al. (2002) running
stability is scrutinized for all possible parameter
combinations, certainly more than the steady-state
solutions belonging to this special case are identified.
Actually, the stable domain forms a single volume in the
k–a0– _x0 space (Geyer, 2001; Seyfarth et al., 2002),
which, due to the restriction to the special case a ¼ 0;
cannot be obtained from Eq. (33). Here, only a surface
element of this volume can be derived (dark area in
Fig. 3). However, for _x0p5 m/s the stable parameter
domain is rather narrow (for steep angles of attack the
angular range is limited to 2�) and, although we do not
expect exactly the same result, both the empirical
relationship and Eq. (34) should qualitatively be
equivalent for a0 ! p

2
:

Using that for a0 ! p
2
; 1

1�sin a0
! 2

ð
p
2
�a0Þ

2; and taking the

body mass used in the numerical study (m ¼ 80 kg) into
account, the empirical k–a0-relationship can be written

as ~ka0!
p
2
� 4

ð
p
2
�a0Þ

2: In the same limit Eq. (34) reads

~k
min

a0!
p
2
¼

p2=4

ð
p
2
�a0Þ

2; which indeed confirms that the qualita-

tive behavior of Eq. (34) is consistent with the
empirically found stiffness-angle relation. In addition
to this mere comparison, Eq. (33) emphasizes the change
of the stiffness-angle relation with increasing system
energy, introducing a quality observed but not for-
mulated in the numerical study.
4.4. Quality of approximate solution

Considering the steep angle assumption (2), the valid
range of the approximate solution is always bound to a
spring stiffness exceeding physiologically reasonable
values. For instance, taking the example a0 ¼ 85� and
~Es ¼ 1:503 of the last section, the dimensionless stiffness
~kða0; ~EsÞ is ~k ¼ 326: Scaled into absolute values, for a
human with a body mass of m ¼ 80 kg and a leg length
of ‘0 ¼ 1 m; the required stiffness k ¼

mg
‘0

~k approaches
260 kN=m: Compared to experiments, where typical
stiffness values are in the range of k ¼ 10 � 50 kN=m
(e.g. Arampatzis et al., 1999), the predicted stiffness is
far above the biological range, which, however, is no
contradiction since humans do use flatter angles of
attack in running (speed dependent, e.g. a0 ¼ 60–70�;
Farley and Gonzalez (1996)).

At this point, the question arises of how applicable
the approximate solution is to biological data, or, more
technically spoken, how restrictive are the assumptions
made? To gain a quantitative judgement, the quality of
the approximation shall be demonstrated by the
following example: still considering a human subject
with m ¼ 80 kg and ‘0 ¼ 1 m; the running speed is set to
be _x0 ¼ 5 m=s at the apex y0 ¼ ‘0; and a leg stiffness
k ¼ 11 kN=m and an angle of attack a0 ¼ 60� are
assumed. The contact phase of the resulting steady-
state motion is characterized by a maximum spring
compression of 20%, which corresponds to a relative
spring amplitude r ¼ �0:2: At this configuration, the
accuracy (i.e. the maximum error) of the analytically
predicted center of mass trajectory ((21) and (22)) is
better than 1% in spring compression and 0.6� for the
angle swept during stance ( Dj

�� �� ¼ 60�) compared to the
numerical counterpart.

This indicates that, even for configurations with
reasonable angles of attack, the approximate solution
well describes the dynamics of the stance phase.
However, it cannot be concluded with such a single
example whether the quality of the solution satisfies the
demands of a specific application. To illustrate its
predictive power in the context of self-stability, in
Fig. 5 the parameter combinations leading to self-stable
movement trajectories (Fig. 5A–C) are compared to
numerical results (Fig. 5D–F, after Seyfarth et al.
(2002)) throughout the parameter space. Although, for
the stability of steady-state trajectories, it would suffice
to compare the analytically predicted with the numeri-
cally calculated apex return maps for each single
parameter combination, in Fig. 5 the investigation of
the number of successful steps is adopted from Seyfarth
et al. (2002). This not only allows a direct comparison to
the numerical and experimental results presented in
Seyfarth et al. (2002), but, starting from disturbed apex
conditions, also scrutinizes the performance of the
approximate apex return map (26) if consecutively
applied, hereby addressing the influence of the arbitrary
energy correction following each stance phase
(Section 4.2) on the quality of the approximate solution.
For angles of attack a0X60�; the predicted region
matches the simulation results surprisingly well. This
holds not only for the general shape, but also for the
subtle details (e.g. the sharp edges in the stability
region close to the level of _x0 ¼ 5 m=s in Fig. 5B and
C, E and F, respectively). Again, a quantitative
comparison shall be provided: For a0 ¼ 60�; the range
of spring stiffness resulting in stable running narrows
from 2 kN=m (10.5–12:5 kN=m; Fig. 5D) to 1:6 kN=m
(10.6–12:2 kN=m;Fig. 5A). Complementary, for a
given spring stiffness of k ¼ 11 kN/m, the angle of
attack range narrows from 2:7� (58:0 � 60:7�) to 1:7�

(58.6–60:3�).
5. Discussion

In this study, we addressed the stability of spring-
mass running within a theoretical framework. We
derived an analytical solution for the stance phase
dynamics assuming steep spring angles and small spring
compressions, and investigated the return map of the
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Fig. 5. Comparison of the stability region for spring-mass running predicted by the analytical approximation (A–C) with the results from a previous

simulation study (Seyfarth et al., 2002) (D–F). Starting from the initial condition y0 ¼ ‘0 and _x0; the number of successful steps is predicted by

iteratively applying the return map function (26) (A–C), or obtained through numerical integration of the spring-mass system (D–F). The movement

is interrupted if (i) the vertical or horizontal take-off velocity becomes negative, or (ii) the number of successful steps exceeds 24 (scale on the right).

In each subplot (A–C, or D–F, respectively), one of three parameters (k; a0; _x0) is held constant. Additional parameters: m ¼ 80 kg, g ¼ 9:81 m=s2,

‘0 ¼ 1 m; and Es ¼
m
2
_x2

0 þ mg‘0.
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apex height. The analysis confirms the previously
identified self-stabilization of spring-mass running.
Moreover, the stability prediction surprisingly well
matches the numerical results throughout the parameter
space (leg stiffness k; angle of attack aX60�; and system
energy Es or, adequately, initial forward speed _x0),
suggesting that, within this range, the approximate
solution sufficiently describes the dynamics of the center
of mass during the stance phase of spring-mass running.
The solution is not restricted to the parameter setups
used in this study, but also holds in dynamically similar
situations (Blickhan, 1989).

5.1. Closed form representations of the stance phase

dynamics

As mentioned in the introduction, the stance phase
dynamics of the spring-mass model are non-integrable
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(Whittacker, 1904) and, thus, approximate solutions are
in demand when seeking parametric insights into the
properties of the system. A common approach to this
issue is to simply ignore the gravitational force. The
resulting central force problem allows a closed form
solution in the formal mathematical sense, which,
however, involves elliptic integrals (Schmitt and
Holmes, 2000) and, therefore, lacks a representation in
elementary functions hampering the desired parametric
insight. At this point, one either proceeds by resuming to
numerical studies (e.g. Ghigliazza et al., 2003), or
further simplifications are introduced. For instance, in
Schwind and Koditschek (2000) the mean value theorem
is applied to circumvent elliptic integrals yielding a good
approximation of the modified system dynamics in
stance, especially, when the spring compression is close
to its maximum.

However, in these studies it is also demonstrated that
the effects of gravity can hardly be neglected in general
locomotion (Schwind and Koditschek, 2000) or when
using physiologically motivated model parameters
(Geyer, 2001). The resulting approximate solutions
clearly deviate from numerical calculations for the
spring-mass model incorporating gravity (e.g. in
Schwind and Koditschek (2000) mean errors as high as
20% for the radial velocity at take-off are observed).
Although these solutions may be used for qualitative
assessments (Ghigliazza et al., 2003), any quantitative
result seems highly questionable. Bearing in mind that
the spring-mass model is employed to devise general
control schemes for running machines (Raibert, 1986;
Saranli and Koditschek, 2003) and to investigate animal
and human locomotion (He et al., 1991; Farley et al.,
1991, 1993; Seyfarth et al., 2001), this leaves a rather
unsatisfactory state.

To surmount the discrepancy, in Schwind and
Koditschek (2000) a general approach similar to Picard
iterations is introduced that iteratively fits the solution
without gravity in stance to the complete system. The
algorithm does not depend on the particular spring law,
and changes of angular momentum as observed in the
complete spring-mass system are taken into account.
Again, this approach best approximates the solution for
the instant of maximum spring compression, although it
seems that, with an increasing number of iterations, the
result for the subsequent apex condition also improves
(in Schwind and Koditschek (2000) the ‘bottom-to-apex
map’ from maximum spring compression to apex
position is investigated). The authors report a reduction
of the largest mean errors from 20% for the zeroth
iterate (solution without gravity) to 7% for the first
iterate and to 3.5% for the second iterate. Yet with
increasing number of iterates, the algebraic tractability
of the approximate solution decreases. However, it
should be noted that, although most of the model
parameters in Schwind and Koditschek (2000) are
human-like, a body mass of m ¼ 1 kg is used, and the
correct assessment of accuracy in the physiological
parameter domain requires re-investigation for this
approximation.

Similar to existing approaches, the approximate
solution derived in this study is based on a simplification
of the stance-phase dynamics to a central force problem
rendering the planar spring-mass model integrable. But
instead of ignoring gravity, the gravitational force
vector is realigned from the vertical to the spring axis.
This approach is motivated by the assumption of steep
spring angles during stance. By introducing the further
assumption of small spring amplitudes, a Taylor series
expansion allows to rewrite the resulting differential
equation for the radial motion into an integral equation
of familiar type (

R
dx

ax2þbxþc
). Although the dynamics of

the central force system could have been obtained by
consequently solving elliptic integrals, this approach
avoids the difficult quadratures that typically remain
even when gravity is ignored (e.g. Schmitt and Holmes,
2000; Ghigliazza et al., 2003). Hence, the radial and
angular motions can be extracted in terms of elementary
functions. But, more importantly, the approximation
error introduced by using the Taylor series expansions
in part compensates for the error made by converting
the planar spring-mass model into a central force system
(see appendix). In consequence, the exemplified ap-
proach combines a comparatively simple solution with
surprising accuracy well extending into the physiologi-
cally motivated parameter domain (compare Fig. 5).
Although a Hooke’s law spring has been considered in
this study, the applied ideas might be transferable to
other spring potentials as well.

However, it should not be overlooked that, for any
approximation based on the central force system
approach during stance, the conservation of system
energy is inherently violated for asymmetric contact
phases (take-off height unequal to touch-down height).
A pragmatic solution to this is to simply restore the
preset system energy at take-off, for instance, by
artificially manipulating the vertical and/or horizontal
take-off velocity (Saranli et al., 1998; Ghigliazza et al.,
2003). We resolved this discrepancy in the same manner
(by forcing Es to be constant, the horizontal velocity is
automatically adapted in the next flight phase), but
would like to emphasize that, in a formal mathematical
sense, there is not yet any justification of such a method
guaranteeing the exact same qualitative behavior of
approximate solution and complete spring-mass model.
The only confidence we can reach is that (i) steady-state
solutions are characterized by symmetric contact phases,
where the conservation of system energy equally holds
for central force approximations, and (ii) in a small
neighborhood of such an equilibrium state the change in
system energy seems negligible compared to the system
energy itself.



ARTICLE IN PRESS
H. Geyer et al. / Journal of Theoretical Biology 232 (2005) 315–328326
Without doubt, if flat spring angles are considered,
the quality of the solution decreases, and further
approximation refinements are required incorporating
the effects of the accurate alignment of the gravitational
force during stance. For instance, it could be tested
whether the derived approximate solution would pro-
vide a better zeroth iterate for the algorithm suggested in
Schwind and Koditschek (2000). As gravity has been
taken into account except for the exact alignment with
the vertical axis, the iterative solution might converge
faster to a result within a certain, small error tolerance
compared to numerical calculations. On the other hand,
since the misalignment of gravity only causes rather
small changes for steep spring angles, classical perturba-
tion theory might be applicable, possibly yielding better
results for a larger angular range.

5.2. Self-stability and control of spring-mass running

Before investigated in sagittal plane running, the self-
stabilizing property of the spring-mass system could be
demonstrated when modeling the alternating tripod of
six-legged insects in the horizontal plane (Schmitt and
Holmes, 2000). As gravity is not interfering in this case,
the authors benefitted from the mean value approxima-
tion of Schwind and Koditschek (2000) (compare last
section) replacing the numerical computation of the
angle swept during stance with an analytical expression.

In a simulation study, it could later be shown that, by
simply resetting the spring orientation (angle of attack)
during the flight phase, the spring-mass model can also
exhibit self-stable behavior in sagittal plane running in
the presence of gravity (Seyfarth et al., 2002). By
mapping the model behavior throughout the parameter
space (spring stiffness, angle of attack, and initial
running velocity), the required parameter combinations
for self-stable spring-mass running were compared with
data from human running. It was found that biological
systems seem well to adapt to the predicted parameter
domain. Subsequently, in Ghigliazza et al. (2003) this
model was investigated within a more theoretical
framework. Apart from the angle swept during stance,
which was still calculated by numerical integration, the
authors derived an explicit expression for the return
map of spring-mass running by neglecting gravity
during stance. By not aiming at quantitative compar-
isons with specific animals or machines, they could (i)
clarify some of the general observations made in
Seyfarth et al. (2002) (e.g. minimum running speed),
and (ii) illustrate key behaviors of the derived return
map (e.g. bifurcation and period doubling).

In contrast to other approaches, the stability analysis
performed in this study is based on the apex return map
derived from an approximate solution of the stance
phase dynamics including gravity. For a special case
(a ¼ 0), we could show the existence of stable fixed point
solutions in spring-mass running without having to
recourse numerical integrations. We hereby confirmed
the qualitative behavior of an empirically found para-
metric dependency for stable running between spring
stiffness and angle of attack, and extended it by the
system energy. Furthermore, by comparing the pre-
dicted parameter combinations for stable running with
numerical results, we observed a quantitative agreement
far beyond the valid range of the approximate solution,
suggesting that, whether in biomechanics or robotics, if
the stability of bouncing gaits is of concern, the
presented solution may well serve as an analysis tool.

For instance, it could be investigated to what extent
the stability of movement trajectories can be manipu-
lated when incorporating leg swing policies other than
the fixed leg orientation (Seyfarth et al., 2002; Ghigliaz-
za et al., 2003) during flight. In a recent investigation
(Altendorfer et al., 2003), a necessary condition for
asymptotic stability could be derived when incorporat-
ing specific leg recirculation schemes relevant for the
robot RHex (Saranli et al., 2001). Based on the
factorization of return maps, in this special application,
the condition was formulated as an exact algebraic
expression without having to resort to the actual stance-
phase dynamics.

However, no information about the system’s behavior
could be obtained from this condition when applied to a
retracting swing leg policy. Here, recent simulation
studies (Seyfarth and Geyer, 2002; Seyfarth et al., 2003)
suggest that the stability of running can largely be
enhanced. In particular, it could be demonstrated that a
simple feedforward kinematic leg-angle program aðt �
tapexÞ during flight can enforce the movement trajectory
of spring-mass running to a ‘dead beat’ (Saranli et al.,
1998) behavior: independent of the actual apex height yi;
the next apex height yiþ1 resumes to a preset steady-
state height ycontrol ; guaranteeing ‘maximum’ stability
yiþ1ðyiÞ ¼ ycontrol : Of course, this can only be achieved if
a critical apex height ymin ¼ ‘0 sin aapex is exceeded.
Different initial apex heights can also be considered as
alternating ground levels with respect to one absolute
apex height and, thus, the kinematic leg program allows
to choose a high level of running safety (ycontrol far above
ymin; bouncy gait as observed in kangaroos). As the
model is conservative, such a ‘secure’, bouncy move-
ment would exhaust the energy available for forward
locomotion, which might not be required in flat,
predictable terrain. Accordingly, by selecting an apex
height ycontrol close to the minimum height ymin; the
kinematic leg program allows to maximize the energy
efficiency (the share of system energy spent for forward
locomotion). Such a flexibility, strongly reminiscent of
animal behavior, could largely enhance the repertoire of
movement patterns available to legged machines.

Despite these progresses, whether the observed self-
stabilizing behavior has been ascribed to ‘angular
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momentum trading’ (Schmitt and Holmes, 2000) or
‘enforced energy distribution among the systems degrees
of freedom’ (Geyer et al., 2002), we still lack a
comprehensive understanding of the key features
responsible for its emergence. What properties of the
system dynamics during stance allow a proper interac-
tion with the gravitational force field during flight
yielding self-stability in the regime of intermittent
contacts? And, further on, in how far can we manipulate
these properties? Intensifying theoretical approaches
seems desirable at this point since they might not only
support suggested control strategies, but could also
disclose further and maybe not obvious alternatives.

5.3. Conclusion

Considering this lack of knowledge and comparing
the ease and maneuverability distinguishing animal and
human locomotion with the skills of legged machines,
the investigation of gait stabilization in biological
systems seems to be a substantial research direction.
Here, the planar spring-mass model served as an
efficient analysis tool in the past. Benefitting from its
parametric simplicity, its stabilizing behavior could well
be investigated by purely numerical means (dependence
on three parameter groups only). Yet the situation
rapidly changes if more complex models of locomotion
are addressed, for instance, when incorporating leg
recirculation strategies during flight and/or investigating
the stability of locomotion in three dimensions. At this
point, numerical approaches become more difficult and
tractable analytical descriptions more important. In the
simplest case, approximate solutions could substitute
the numerical calculation of the stance phase dynamics
significantly reducing the computational effort. In the
best case, they could provide the parametric insight
themselves (e.g. as exemplified by Eq. (33)). In that
sense, the relevance of the presented approximate
solution may be seen in its simplicity and predictive
power within the physiological parameter domain,
which allows to experimentally validate further control
strategies of biological systems likely to be disclosed in
more complex models of legged locomotion than the
simple planar spring-mass system.
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Appendix A. Mixed accuracy approximation of 1
ð1þrÞ2

The central force approximation of the stance phase
dynamics captures an important feature of the planar
spring-mass model: the presence of the centrifugal force
Fc ¼ mr _j2er accelerating the compression-decompres-
sion cycle of the spring. In consequence, the oscillation
frequency ô0 of the planar system is increased when
compared to the frequency o0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
of the corre-

sponding one-dimensional system (vertical spring-mass
model). To account for such an increase, the Taylor
expansion of 1

ð1þrÞ2
must be performed to at least second

order in r (9). Otherwise, ô0 would equal o0 and the
radial motion (12) or (21) would represent the motion of
a vertical spring-mass system hardly resembling the
planar dynamics.

On the other hand, the central force approximation
also introduces a substantial drawback: the conservation
of initial angular momentum PTD ¼ m‘2

0 _jTD throughout
stance. Although the net change in angular momentum
is zero for symmetric (time-reflection symmetry about
midstance tmid ¼ tc=2) contacts of the planar spring-
mass system, the mean angular momentum

�P ¼
1

tc

Z tc

0

PðtÞdt (A.1)

changes ( �PaPTD). Expressing PðtÞ by the initial value
and the rate of change PðtÞ ¼ PTD þ

R t

0
_Pðt0Þdt0; and

using _Pðt0Þ ¼ �mgrðt0Þ cos jðt0Þ ¼ �mgxðt0Þ for the pla-
nar spring-mass system, we obtain

�P ¼ PTD �
mg

tc

Z tc

0

Z t

0

xðt0Þdt0 dt

¼ PTD �
mg

tc

Z tmid

0

Z t

0

xðt0Þdt0 dt

�

þ

Z tc

tmid

Z tmid

0

xðt0Þdt0 þ

Z tc

tmid

Z t

tmid

xðt0Þdt0 dt

�
: ðA:2Þ

Using that, for symmetric contacts, at midstance the
horizontal position x switches from negative-to-positive
values, Eq. (A.2) can be written as

�P ¼ PTD þ
mg

tc

Z tmid

0

Z t

0

jxðt0Þjdt0 dt

�

þ

Z tc

tmid

Z tmid

0

jxðt0Þjdt0 dt

�

Z tc

tmid

Z t

tmid

jxðt0Þjdt0 dt

�
: ðA:3Þ

The time reflection symmetry about midstance yieldsR tc

tmid
¼
R tmid

0 ; and (A.3) simplifies to

�P ¼ PTD þ
mg

tc

Z tc

tmid

Z tmid

0

jxðt0Þjdt0 dt

¼ PTD þ
mg

2

Z tmid

0

jxðt0Þjdt0: ðA:4Þ
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The mean angular momentum is increased compared to
the initial value, which, however, means that the amount
of mean angular momentum decreases j �PjojPTDj since
the initial value PTD is negative (according to the
definition of the coordinate system in Fig. 1 the angular
velocity _j is defined negative for forward motion).

The miscalculation of angular momentum in the
central force approach (P � PTD) has a more profound
effect on the angular motion (P � _j) than on the
radial (P � r2). Considering that, due to the alignment
of the gravitational force with the radial axis
(�mg sin j ! �mg in (3)), the spring compression is
increased, this leads to a clear overestimation of the
angular velocity.

Here, an approximation of the central force system
dynamics with an error decreasing this inherent over-
estimation may result in a better performance when
compared to the actual spring-mass dynamics. Con-
sidering 1

ð1þrÞ2
; the Taylor expansion to the nth order

about r ¼ 0 is given by

1

ð1 þ rÞ2

����
r¼0

¼
Xn

i¼0

ð�1Þiði þ 1Þri: (A.5)

Since rp0 during contact, this simplifies to

1

ð1 þ rÞ2

����
r¼�0

¼
Xn

i¼0

ði þ 1Þjrji

¼ 1 þ 2jrj þ 3jrj2 þ � � � þ ðn þ 1Þjrjn

ðA:6Þ

showing that the approximation of angular velocity
_j ¼ o

ð1þrÞ2
increases with each expansion term. Hence, it

might be advantageous to cancel this expansion earlier
than second order. In fact, it turns out it is. Comparing
different order (zeroth-to-second) approximations of

1
ð1þrÞ2

for _j with numerical computations of the actual

spring-mass dynamics, the first-order approximation
performs best.
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