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We present a feedforward control for spring-legged systems in uneven terrain which 
keeps the running speed constant. The control uses the unique transformation between 
ground level and flight time to automatically adapt the system parameters during flight to 
the actual ground level without having to detect it. We further demonstrate how this 
control for constant speed running can simultaneously be combined with other control 
strategies in spring-legged systems to adapt their behavior to a desired locomotion task. 

1.   Introduction 

In recent years, robots using spring-like leg behavior have increasingly been 
developed. This development was pioneered in the 1980s by Raibert and 
colleagues who introduced a legged hopping robot that balances on an air-spring 
[1]. In the 1990s robots using more than one compliant leg were introduced (e.g. 
Spring Flamingo [2], Scout II [3]). Today, spring-legged robots from hexapods 
(RHex [4], Sprawlita [5]) to quadrupeds (Tekken series [6], BigDog [7]) to 
bipeds (JenaWalker series [8], Kenken series [9]) exist. 

Although more and more spring-legged robots are built, the theoretical 
potential of such dynamic locomotion systems has been explored to only a 
limited extent. Theoretical studies mainly focus on the stability of spring-like 
locomotion. For instance, based on the spring-mass model, it could be shown for 
the horizontal and sagittal plane that the running gait can be self-stable [10-12]. 
This stability analysis could later be extended to locomotion in three dimensions 
[13]. On the other hand, adding to the spring-mass model a clock that drives the 
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rotation of the spring leg, it could be shown how a feed-forward rhythmic 
pattern can also stabilize dynamic running robots [14]. 

While the stability of dynamic locomotion is critical, other criteria may be 
of similar importance to legged robots. For example, although the self-stability 
of spring-legged locomotion can be maximized with a swing-leg control [12], 
this control introduces large variations in running speed if the legged system 
encounters large changes in the ground level. Such random variations in running 
speed will not be desired if legged robots have to cover a distance in the shortest 
possible time, or if they need to maintain a constant speed. 

In this study, we investigate what alternative control strategies exist for 
spring-legged locomotion to keep the running speed constant on uneven ground. 
In particular, exploiting the spring-mass model’s different parameters for steady-
state solutions, we derive a swing-leg control strategy that keeps the running 
speed constant from step to step. Our control can be combined with other 
controls in spring-legged robots to adapt their behavior to the desired 
locomotion task. 

2.   Method 

The spring-mass model and its parameters are well known [15, 16], (Fig. 1A). 
The model consists of a point mass attached to a massless spring. In running, the 
model alternates between ballistic flight and spring-loaded stance phases. Four 
independent parameters define the model dynamics, for example, the angle of 
attack α with which the spring leg touches the ground, the dimensionless spring 
stiffness K, the dimensionless forward speed F, and the apex height y, where y is 
the maximum height reached by the point mass during flight. 

For all parameter configurations (α, K, y, F), the steady-state solutions of 
the model can be obtained by simulating its dynamics for a single step from one 
apex yi to the next yi+1. A steady-state solution corresponds to yi+1 = yi. We 
implemented the spring-mass model dynamics in Matlab/Simulink (Mathworks, 
MA, USA), simulated for each parameter configuration a single step, and 
assumed that it describes a steady-state solution if the deviation |(yi+1 - yi)| was 
smaller than 10-3m. 

3.   Results 

Our goal is to identify a control strategy which keeps the running speed 
constant on uneven ground. Since for any steady-state solution the running 
speed at the apices i and i+1 is equal, we fix the parameter F and constrain our 
search for steady-state solutions to the parameter subspace (α, K, y). All these 
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solutions automatically have the same running speed F. For four such running 
speeds F, the identified steady-state solutions are shown in figure 1B as four 
adjacent but separate domains in this parameter subspace. 
 
A 

 

B  

Fig 1. Spring-mass model and its parameter configurations for steady-state locomotion with 
constant running speed. (A) Schematic representation of the model and the four independent 
parameters (α, K, y, F). (B) From back to front, parameter subspaces of steady-state solutions for 
four different running speeds F = v2/(g L) = [0.41, 1.63, 2.25, 5.0]. Note that L is the leg length, g is 
the gravitational acceleration. Note further that the dimensionless running speeds F correspond to 
absolute speeds v of [2, 4, 5, 7] ms-1 for a human sized running system. 

 
For running on uneven ground, a control that keeps the speed F constant 

(for instance, F = 2.25) requires not only that the parameters (α, K, y) belong to 
the corresponding speed domain (second to front domain in Fig. 1B), but also 
that they have to match with the ground level. The apex height y cannot be 
chosen freely; it changes automatically with the actual ground level in each step. 
Therefore, the parameters α and K must be further constrained. To adapt these 
parameters to the current y, the ground level either must permanently be 
measured and embedded in a feedback control, or can more elegantly be 
encoded in a time law of a feedforward control during flight [12]. 

The feedforward time encoding exploits the fact that the time in flight from 
apex to touch down is uniquely coupled to the apex height y and the angle of 
attack α : tfall = sqrt [2/g ⋅ (y – L sinα)]. We use this equation to transform the 
parameter subspace (Fig. 1B) into a subspace that is independent of the apex 
height y. Figure 2B shows the result of this transformation for the parameter 
domain corresponding to F = 2.25. As long as the parameters α and K evolve 
with tfall in this domain, the running speed keeps constant at F = 2.25, 
independent of the ground level encountered in each step. Thus, there is no 
single control but an infinite number of controls for constant speed running. 

This variability can be used to combine different control strategies. For 
example, in figure 2B, the light curve along the domain combines constant speed 
running with a constant leg retraction rate in swing [17]. Because the constant 
leg retraction α (t) = α0 + ω ⋅ t defines the evolution of the angle of attack during 
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swing, the spring-leg stiffness K must also be adapted in swing to maintain a 
constant running speed, resulting in the light curve along the parameter domain. 

 
A 

 

B  

Fig 2. Constant speed running on uneven ground. (A) Schematic representation of the spring-mass 
model running on uneven ground. Note that, because the running speed is constant, the apex heights 
in flight must also be equal. (B) Time-dependent steady-state solutions for the speed F = 2.25. The 
model's parameters α und K must evolve with time in flight after apex, tfall. The light curve along 
the domain shows one possible parameter adaptation [α (t), K (t)]. 

4.   Discussion 

Our results show that an infinite number of control strategies exists to let 
spring-legged systems run on uneven ground with constant speed. We used a 
systematic scan of the model's independent parameter space (Fig. 1) and the 
unique transformation between ground level and flight time to identify these 
strategies and to encode them in a feedforward control during swing (Fig. 2). 
The second step ensures that the actual ground level need not be measured from 
step to step. We moreover demonstrated that the control of constant speed 
running on uneven ground can be combined with other controls for spring-
legged locomotion. 

This flexibility in control is an important requirement. By itself, constant 
speed running is unstable. A small error in the time dependent parameters α (t) 
and K (t) will result in a drift from step to step away from steady-state solutions. 
To prevent an eventual fall of the spring-legged system, the constant running 
speed control either has to be adapted after some steps or an additional control 
has to be applied that returns the system to steady-state solutions. To include 
such an automatic return control, we are currently working on generalizing the 
unique transformation between ground level and flight time to other control 
strategies stabilizing spring-legged locomotion. 

In conclusion, we identified control strategies for constant speed running on 
uneven ground, which can be combined with other control strategies in spring-
legged robots to adapt their behavior to a desired locomotion task. 
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