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ABSTRACT 

In this study, the stability of conservative spring-mass running using a fixed angle of attack is 
addressed. For a given initial condition, different angles of attack result in periodic movement 
patterns. We apply a simple stride-to-stride analysis to prove the stability. Spring-like leg 
operation together with angle of attack control enables selfstabilised running. 

1 INTRODUCTION 

Legged locomotion aims to move an object in an intended direction. To achieve this goal, the 
system must provide enough energy to compensate losses within the system and with the 
environment. The system may reach a steady state movement, which is then characterised by 
a specific forward velocity and corresponding total mechanical energy. For instance, in 
human walking, a leg absorbs a certain amount of energy during the early stance phase and 
‘refills’ this energy before leaving the ground (active plantar flexion). The overall energy 
after one stride remains approximately balanced.  
 
A substantial requirement for locomotion is stability. The movement must not interrupt when 
a small obstacle occurs. For instance, a reduced or increased forward speed should be 
compensated to maintain the desired movement. This could be realized by controlling the 
system energy. Thus, stability requires a control of the mechanical system energy. However, 
even with a sufficiently adjusted energy, forward locomotion may fail. For instance, if a leg is 
not properly aligned with respect to ground, or the ground is higher than expected, the system 
might stumble and consequently fall. This indicates that there might be another quality of 
stability, which could lead to a robust locomotion without an energy-based control. 
 
In this study we aim to investigate the influence of the leg adjustment on the robustness of 
running. Therefore, we describe running using a biologically inspired spring-mass template 



(1). Stability is analysed assuming a given system energy according to the conservative nature 
of the considered model. 

2 METHODS 

Model. Running is represented using a simple planar spring-mass model (figure 1). During the 
flight phase, the leg is characterised by a fixed angle of attack α0 and a nominal leg length 
(l0 = 1 m). The centre of mass (m = 80 kg) trajectory is determined by a constant gravitational 
acceleration (g = 9.81 m/s2). During the stance phase, the dynamic behaviour is a 
consequence of the leg spring (stiffness kLEG = 20 kN/m) and the gravitation.  
 
Periodicity. To investigate the periodic behaviour of spring-mass running, we seek an infinite 
number of successful steps, starting at a given initial condition (apex height y0 = 1 m, forward 
speed vX,0 = 5 m/s). A step is defined as a sequence from one apex to the next in two 
subsequent flight phases including one stance phase. The simulation is stopped if (i) the 
centre of mass reaches the ground level (y = 0), or (ii) the forward velocity reaches zero 
(vX = 0). 
 
Stability. The stability of running is analysed using a return map yi+1(yi) of the apex height 
yAPEX. As the spring-mass model is conservative, for a given total system energy the state 
vector at apex (x, y, vX, vY)APEX is uniquely determined by the apex height yAPEX. This holds 
as at this instant the vertical velocity vanishes (vY,APEX = 0) and the horizontal position xAPEX 
has no influence on the further system dynamics. For stability, two conditions must be 
fulfilled: (i) the existence of a fixed point yFP = yi+1 = yi, and (ii) a slope of yi+1(yi) within (-1, 
1) in a neighbourhood of this fixed point yFP. 
 

 
 

Figure 1. Running with elastic legs. The leg angle before landing is kept constant  
(angle of attack α0): α(t) = α0 = const. 



3 RESULTS 

For different angles of attack (α0 = 66, 67, 68 and 69°), the vertical excursions of the centre of 
mass are shown in figure 2. For α0 = 67 and 68° periodic movement patterns are observed, 
whereas for α0 = 66° the system successively increases the vertical excursions (which 
consequently reduces the forward velocity), and for α0 = 69° the centre of mass falls on the 
ground (as it can not reach sufficient height after the first ground contact to land a second 
time). 
 
 

 
 

Figure 2. Influence of the chosen angle of attack (α0 = 66, 67, 68, 69°) on the trajectory 
in spring-mass running (k = 20 kN/m) starting at an initial forward velocity of 5 m/s and 

1 m apex height. Different angles of attack (67, 68°) may result in periodic solutions. 
Steeper angles bring the system to fall; flatter angles successively increase the vertical 

excursions. 
 

 
In the case of periodic solutions, the spring-mass system attracts different initial apex heights 
to a final steady-state height. To check this observation, we analyse the stability using the 
return map yi+1(yi) of the apex height yAPEX for different angles of attack α0 (figure 3).  
 
For the flattest angle in figure 2 (α0 = 66°), no intersection with diagonal (yi+1 = yi) is found 
(figure 3B). However, due to the close alignment with the diagonal, a limited number of steps 
with increasing apex heights are possible. In the case of the steepest angle of attack 
(α0 = 69°), a fixed point with yi+1 = yi exists. But, as the slope of yi+1(yi) at this point is 
somewhat smaller than -1, the fixed point is not stable.  
 



There are two return maps (for α0 = 67, 68°) with stable fixed points. Starting at different 
initial apex heights (e.g. 0.93 and 1 m), the return map predicts the attraction to the stable 
fixed point (a shown in figure 3B for α0 = 67°). 

 

A B  
 
Figure 3. (A) Selfstabilisation of spring-mass running can be shown in the return map of 
the apex height yi+1(yi) for different angles of attack. A small region of the left (yi+1, yi)-

plane in the 3D plot is magnified in section (B) to prove stability. 
 

4. DISCUSSION 

Spring-mass running with a fixed angle of attack is selfstabilising if the leg parameters are 
properly adjusted. For a given total system energy, even different angles of attack (at the same 
leg stiffness) can result in periodic movements, whereby the steady-state apex height is 
dependent on the selected leg angle α0.  
 
The same holds for the opposite situation, where the leg stiffness is varied and the angle of 
attack is kept constant (2). Consequently, there is a variable and adjustable distribution of the 
total system energy to the forward running speed and the vertical oscillation (figure 2). For 
instance, a higher apex height reduces the forward speed and vice versa. 
 
Spring-mass running does not incorporate dissipation or energy production and, therefore, can 
not address the mechanisms of stabilising the total system energy as usually studied in 
classical mechanics. In contrast to the traditional understanding of stability, here the system 
selects a favourite energy distribution and even resists to disturbances (of this energy 
distribution). This observation is called selfstabilisation of a conservative system. 
 
A similar finding was obtained in a study addressing the stability of cockroach running in the 
horizontal plane (3). The supporting tripod was represented by a massless leg spring with a 
fixed leg angle with respect to the body centreline at touch-down. The alternate contact of the 
two leg springs resulted in a periodic movement, which proved to be robust with respect to 
lateral perturbations. 
 



Selfstabilisation of spring-mass running requires a minimum total system energy if a fixed 
angle of attack α0 is used (2). Then, a proper adjustment of leg stiffness and angle of attack 
can guarantee robust running. These requirements can be considered as a movement criterion 
for running. 
 
To illustrate the consequences of selfstability, an example of running on a bumpy surface is 
given in figure 4.  Here, the system can handle perturbations in ground level of up to 20 cm if 
an  angle of attack (between 66 and 67°) resulting in high vertical excursions is used. 
 
 

 
 

Figure 4. Running on uneven ground. Using a constant angle of attack α0, considerable 
changes in ground level can be successfully managed by the spring-mass runner.  

 
 
The emergence of asymptotic stability in piecewise holonomic, conservative systems might 
be an important feature for the control of locomotion (4). However, the underlying 
mechanisms are only barely understood and need further investigation. In a second 
presentation (5), a method optimising selfstability in such systems (e.g. spring-mass runner) is 
proposed. In contrast to the simple control strategy used here (fixed angle of attack), which 
requires a precise adjustment of the leg angle during the flight phase, in (5) the rotational 
control of the leg during the swing phase will be taken into account.  
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