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Abstract. We present a technique for approximating the free energy
of protein structures using Generalized Belief Propagation (GBP). The
accuracy and utility of these estimates are then demonstrated in two
different application domains. First, we show that the entropy compo-
nent of our free energy estimates can be useful in distinguishing native
protein structures from decoys — structures with similar internal energy
to that of the native structure, but otherwise incorrect. Our method is
able to correctly identify the native fold from among a set of decoys
with 87.5% accuracy over a total of 48 different immunoglobin folds.
The remaining 12.5% of native structures are ranked among the top 4 of
all structures. Second, we show that our estimates of ∆∆G upon muta-
tion upon mutation for three different data sets have linear correlations
between 0.63-0.70 with experimental values and statistically significant
p-values. Together, these results suggests that GBP is an effective means
for computing free energy in all-atom models of protein structures. GBP
is also efficient, taking a few minutes to run on a typical sized protein,
further suggesting that GBP may be an attractive alternative to more
costly molecular dynamic simulations for some tasks.

Key words: Protein Structure, Decoy Detection, Free Energy, Proba-
bilistic Graphical Models

1 Introduction

This paper describes a technique for modeling protein structures as complex
probability distributions over a set of torsion angles, represented by a set of
rotamers. Specifically, we model protein structures using probabilistic graphical
models. Our representation is complete in that it models every atom in the
protein. A probabilistic representation confers several advantages including that
it provides a framework for predicting changes in free energy in response to
internal or external changes. For example, structural changes due to changes
in temperature, pH, ligand binding, and mutation, can all be cast as inference
problems over the model. Recent advances in inference algorithms for graphical
models, such as Generalized Belief Propagation (GBP), can then be used to
?? Corresponding author.
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efficiently solve these problems. This is significant because GBP is a rigorous
approximation to the free-energy of the system [36]. We will show that these
free energy estimates are accurate enough to perform non-trivial tasks within
structural biology. In particular, we use GBP to a) identify native immunoglobin
structures from amongst a set of decoys with 87.5% accuracy, and b) compute
changes in free energy after mutation that have a linear correlation of upto 0.70
to laboratory measurements.

The Free energy is defined as G = E−TS, where E is the enthalpy of the sys-
tem, T is the absolute temperature, and S is the entropy of the system. There are
numerous energy functions (i.e., E) from which to choose. These functions often
model inter- and intra molecular interactions (e.g., van der Waals, electrostatic,
solvent, etc.). Unfortunately, entropy estimates can be difficult to compute be-
cause they involve sums over an exponential number of states. For this reason,
the entropy term is often ignored altogether, under the assumption that it does
not contribute significantly to the free energy. This is equivalent to modeling
the system at 0 Kelvin. Not surprisingly, this simplification can sometimes limit
the accuracy, and thus the utility of the energy calculations. For example, it
has been conjectured [3, 30] that energy functions comprising sums of pairwise
interactions cannot distinguish a protein’s native structure from decoy struc-
tures within about 1 Å RMSD. If true, one likely explanation is that entropy
contributions become significant when structures are similar. Our findings are
consistent with this hypothesis. In particular, we find that the native structure is
usually the one with the highest entropy. This is in agreement with the findings
of others who have have demonstrated the practical benefits of including entropy
in energy calculations (e.g., [16]).

Numerous investigators have observed and attempted to address the limita-
tions of pairwise energy functions. Multi-body statistical potentials are a com-
mon alternative (e.g., [7, 28]). Such potentials do not model the physics directly,
but instead use statistics mined from the Protein Data Bank [2] under the as-
sumption that these statistics encode both the entropy and the internal energy.
Carter and co-workers [7], for example, have developed a 4-body statistical po-
tential that predicts ∆∆Gs upon mutations with significant accuracy. There are,
however, those that doubt the ultimate utility of statistical potentials (e.g., [29]).

We note that the contributions of this paper do not lie in the suggestion
that a protein’s structure be treated as a probability distribution — clearly this
is the very essence of statistical physics. Rather, our contribution lies in the
demonstration that an inference-based approach to free energy calculations is
sufficiently accurate to perform non-trivial tasks. Additionally, our technique is
efficient and runs in minutes on typical-sized proteins, suggesting it is well-suited
for large-scale proteomic studies.

2 A Markov Random Field Model for Protein Structure

In what follows, random variables are represented using upper case variables,
sets of random variables appear in bold face while lower case variables represent
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specific values that the random variables can take. Thus, the random variables
representing the position of all the backbone atoms is denoted by Xb, those rep-
resenting all the side chain atoms, by Xs, Xi

s is the random variable representing
the side chain conformation of the ith residue and xi

b represents a particular value
that the backbone of the ith residue takes.

Let X = {Xb,Xs} be the random variables representing the entire protein
structure. Xb can be represented by a set of 3-d coordinates of the backbone
atoms, or equivalently, by a sequence of bond lengths and dihedral angles. Thus,
Xb is typically a continuous random variable. Each Xi

s, is usually represented
by a set of dihedral angles 1 . While this too is a continuous random variable,
due to steric clashes not all dihedral angles are energetically favorable, allowing
a discretization of this state space into a set of discrete favorable conformations
called rotamers.

The probability of a particular conformation x can be written as

p(X = x|Θ) = p(Xb = xb)p(Xs = xs|Xb, Θ)

or more compactly,

p(X|Θ) = p(Xb)p(Xs|Xb,Θ)

where Θ represents any parameters used to describe this model, including se-
quence information, temperature etc. Frequently the backbone is assumed to be
rigid with a known conformation. Therefore Xb = xb for some particular xb.
The term of interest then becomes, p(Xs|Xb = xb,Θ).

This can be further simplified. Specifically, it is possible to list out conditional
independencies that the above probability distribution must satisfy. Consider the
random variables Xi

s, X
j
s representing the side chain conformations of residues

i, j. Due to the underlying physics, if the residues are not close to each other,
their direct influence on each other is negligible. Also, if the residues that directly
influence these residues are in specific conformations, Xi

s, X
j
s become condition-

ally independent of each other. Similar independencies can be listed between
side chain variables and backbone variables. These conditional independencies
can be compactly encoded using an undirected probabilistic graphical model,
also called a Markov Random Field(MRF).

For example, consider a particular backbone conformation xb of Lysozyme(pdb
id: 2lyz) shown in Fig. 1(a) with a few residues highlighted. Fig. 1(b) shows that
part of the Markov Random Field that is induced by the highlighted set of
residues. Two variables share an edge if they are closer than a threshold dis-
tance. Edges can thus be present between backbone atoms, between backbone
and side chain atoms and between side chain atoms. This MRF thus represents
the probability distribution of the side chain atoms of a protein with a given
backbone.

1 This is a slight abuse of notation, since it is actually the differences Xi
b −Xi−1

b and
Xi

s −Xi
b that are represented using bond lengths and angles.
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(a) (b)

Fig. 1. (a) Structure of the backbone atoms of lysozyme (pdb id: 2lyz) with a few
residues highlighted (b) Part of the random field induced by the highligted residues:
Xi

s’s are the hidden variables representing the rotameric state, the visible variables are
the backbone atoms in conformations xi

b

In general, an MRF encodes the following conditional independencies for each
vertex Xi and for any set of vertices X′ not containing Xi.

p(Xi|X′, Neighbors(Xi)) = p(Xi|Neighbors(Xi))

That is, a random variable Xi is conditionally independent of every other set of
nodes in the graph, given its immediate neighbors in the graph.

Given this representation, the probability of a particular side chain confor-
mation xs given the backbone conformation xb can be expressed as

p(Xs = xs|Xb = xb) =
1
Z

∏
c∈C(G)

ψc(xc
s ,x

c
b)

where C(G) is the set of all cliques in G, ψ is a potential defined over the
variables, and Z is the so called partition function.

To completely characterize the MRF, it is necessary to define the potential
function ψ. A common simplifying assumption is that of a pair-wise potential.
We use the Boltzmann Distribution to define a pairwise potential function in
the following manner:

ψ(Xip
s , X

jq
s ) = exp(−E(xip

s , x
jq
s )/kBT )

where Eip,jq is the energy of interaction between rotamer state p of residue Xi
s

and rotamer state q of residue Xj
s and kB is the Boltzmann constant. Similarly,

we can define the potential function between a side chain random variable Xi
s

and a backbone random variable Xj
b which is in an observed state xj

b

ψ(Xip
s , X

j
b ) = exp(−E(xip

s , x
j
b)/kBT )
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Fig. 2. Factor graph representation for the graph shown in Fig. 1(b). The observed
variables corresponding to the backbone atoms can be replaced by a factor at each side
chain variable

Finally, we define the potential function between two backbone random variables
to have the trivial value of 1, since both are observed, i.e. ψ(Xi

b, X
j
b ) = 1.

This undirected graphical model, characterized by the variables X, the edges
between the variables and the potential ψ can also be represented more conve-
niently, as a bipartite graph (X, F ) , called a factor graph. If we restrict ourselves
to pairwise potentials, as we have done already by our form of potential function,
the equivalent factor graph for the MRF of Fig. 1(b) is shown in Fig. 2. Each
edge between side chain variables has been replaced by edges to a factor repre-
senting the interaction between these variables. Also, it can be shown that the
observed backbone variables can be dropped from the factor graph by replacing
their interactions with each side chain variable by a factor. The probability of a
particular conformation can then be expressed using the factor notation, as

p(xs) =
1
Z

∏
fa∈F

fa(xa
s )

where Xa
s is the set of variables connected to factor fa in the factor graph.

3 Approximating Free Energy

A corollary of the second law of thermodynamics is that a physical system seeks
to minimize its free energy. Thus, the most accurate entropy estimates are ob-
tained when the system has the least free energy. Under the assumption of con-
stant temperature, the free energy of a system is given by

G = E − TS

where E is the enthalpy of the system, T the temperature and S, the entropy.
If we associate a belief b(x) with state x, this can be rewritten as

G =
∑
x

b(x)E(x) + T
∑
x

b(x)ln(b(x))
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where the first term and second terms on the right are the enthalpic and entropic
contributions respectively and the summation is over all possible x. Intuitively,
the enthalpic term corresponds to the energy of the system. However, the second
law of thermodynamics dictates that not all energy can be used to do work. The
free energy is the energy left to be used to do work after deducting the energy
that is “lost” which is the entropic deduction mentioned above.

There has been a considerable amount of work by physicists at developing
approximations to estimate these terms [4, 11, 22, 23]. The popular methods are
based on approximating the free energy using a region based free energy. Intu-
itively, the idea is to break up the factor graph into a set of regions R, each
containing multiple factors fR and variables XR, compute the free energy over
the region using estimates of the marginal probability over XR, and then ap-
proximate the total free energy by the sum of the free energies over these regions.
Since the regions could overlap, contributions of nodes – factors or variables –
which appear in multiple regions have to be subtracted out, so that each node
is counted exactly once. This can be done by associating weights wR to the con-
tribution of every node in region R, in such a way that the sum of weights of
the regions that the node appears in, sums to one.

This region graph formalism is fairly general and one can create approxima-
tions of varying degrees. For example, the Bethe approximation[4] is a region
graph with each region containining atmost one factor, while the Kikuchi ap-
proximation is a region graph where the regions are created using the so-called
cluster variational approach that allows regions to contain more than one factor,
and is therefore a better approximation[11, 36].

While the Kikuchi approximation has been extensively studied, until recently,
there was a dearth of algorithms that could compute such region graph based ap-
proximations efficiently. See [24] for a recent survey of previously used methods
and their performance relative to GBP. In fact, even computing exact marginals
for the purpose of computing these approximations is NP-Hard, if the graph,
like the MRF described above, has cycles. The Junction Tree algorithm for ex-
act inference has a running time that is exponential in the tree width of the
graph, which can be prohibitively expensive in large graphs. However, recent
advances within the Machine Learning community on approximate algorithms
for inference now allow efficient computation of these approximations 2[34, 36].

3.1 Generalized Belief Propagation

Generalized Belief Propagation(GBP) is a message passing based algorithm that
approximates the true marginals. As the name suggests, it is a generalization of
the famous Belief Propagation(BP) algorithm, due to Pearl, and differs from the
latter in the size of its regions that estimate the Free Energy. While BP attempts
to find a fixed point of the Bethe approximation to the free energy mentioned
above, GBP computes fixed points of the more general region based free energy.

2 The free energy is often referred to as the “Energy Functional” in this literature.
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There are many variants of GBP; we focus on the so called Two-Way [36]
algorithm since it naturally extends BP. The algorithm can be viewed as running
BP on the region graph, with one crucial difference in the messages – since the
same node can appear in multiple regions, its contribution to each region must
be weighed in such a way as to ensure it is counted only once. This is done,
by first defining the “pseudo” messages for a region R with parents P(R) and
children C(R)

n0
R→P (xr) = f̃R(xR)

∏
P ′∈P(R)\P

mP ′→R(xr)
∏

C∈C(R)

nC→R(xC)

m0
R→C(xC) =

∑
xR\xC

f̃R(xR)
∏

P∈P(R)

mP→R(xR)
∏

C′∈C(R)\C

nC′→R(xC′),

where f̃R(xR) = (
∏

a∈Ar
fa(xa))wR and then compensating for overcounting by

defining the actual messages as

nR→P (xr) = (n0
R→P (xr))βR(m0

R→C(xC))βR−1

mP→R(xr) = (n0
R→P (xr))βR−1(m0

R→C(xC))βR

where wR is the weight given to region R, pR the number of parents of region
R, and βR = pR/(2pR + wR − 1). The beliefs at R, are then given by

bR(xR) = f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xP)

Note that if βR = 1, this algorithm becomes equivalent to running BP directly
on the region graph.

The algorithm is typically started with randomly initialized messages and
run until the beliefs converge. If it does converge, GBP is guaranteed to find a
fixed point of the region based free energy. While convergence isn’t guaranteed,
in practice, it has been found to converge successfully in many cases, even when
BP doesn’t [33, 35] .

3.2 Related Work

Probabilistic graphical models have been used to address a number of problems
in structural biology, primarily in the area of secondary structure prediction (e.g.,
[8]). Applications of graphical models to tertiary structure are generally limited
to applications of Hidden Markov Models (HMMs) (e.g., [10]). HMMs make
severe independence assumptions to allow for efficient learning and inference, the
result of which is that long-range interactions cannot be modeled. Long-range
interactions are, of course, found in all protein structures. Our method models
these long range interactions. Graphical models have also been used in the area
of fold recognition/threading [17]. An important difference between threading
and our work is that we model every atom in the structure, while threading is
generally performed over reduced representations.
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We focussed on the problem of computing entropy using marginal probabil-
ities for the unobserved variables, Xs. This however isn’t the only interesting
inference problem. If our task was to find the single most likely structure, the
problem reduces to Side Chain Placement. Indeed, one of the recent approaches
to this problem of placing side chains [32] can be viewed as a variant of the
Junction Tree algorithm for computing the most likely estimate.

It must be noted that our model is essentially similar to that of [33]. While
they use it in a study to evaluate inference algorithms and perform Side Chain
Placement, our task is to use it to obtain entropy and free energy estimates.

Recent work [20] has shown that most message passing algorithms can be
viewed as minimizing the divergence between the actual probability distribution
and a family of distributions suitably parametrized. The different algorithms
differ in their choice of the divergence measure and their parametrization of the
family of distributions. The pioneering work of [14, 15] computes estimates using
a sampling scheme which can be computationally expensive, while [12] attempts
to solve the same problem using a mean-field approach. Mean field methods
minimize the Kullback-Leibler Divergence while Generalized Belief Propagation
(and BP) minimize an “inclusive” divergence. While the former is more accurate
at capturing the zeros of the actual distribution, the latter performs better at
predicting marginals. As we have shown in this section, marginal probabilities
allow us to compute estimates of the entropy and free energy of the distribution.
Thus, Generalized Belief Propagation is more suitable for the problem at hand.

4 Implementation and Results

We implemented the Two-way GBP algorithm described earlier, to compute
region graph estimates of free energy and entropy. We parsed the pdb files using
the pdb parser in the Molecular Biology Toolkit [21]. We then created the factor
graph by computing interatomic distances and creating a factor between residues
if the Cα distance between them was lesser than a threshold value. This threshold
is largely dictated by the sensitivity of the energy function. For the energy terms
we used, we found a threshold of 8.0 Å to be adequate. In the few datasets that
we tested, our results were not affected by small changes in this threshold. We
used the backbone dependent library provided by [6] and a linear approximation
to the repulsive van der Waals force used by [6, 33]. Each rotamer in the library
also had an associated apriori probability which we incorporated into the factor
as a prior. We set the temperature of the system to be 300K, which corresponds
to normal room temperature.

We used a region graph construction which created two levels of regions.
The top level contained “big” regions – regions with more than one variable –
while the lower level contained regions representing single variables. Since we
expect the interaction between residues closest in sequence to be very strong,
we placed all factors and nodes between residues within two sequence positions
of each other in one region. Each of the rest of the factors, representing edges
between residues connected in space, formed “big” regions with two nodes in
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them. Thus, in the example shown in Fig. 2, (X1
s , X

2
S , X

3
S , f1, f2, f3, f12, f23),

(X2
s , X

3
S , X

4
S , f2, f3, f4, f23, f34) and (X1

s , X
7
s , f17) would be examples of big re-

gions which appear in the top level, while (X1
s ) would be an example of a small

region in the lower level. Finally, we add edges from “big” regions to all small
regions that contain a strict subset of the “big” region’s nodes. In our exam-
ple, the region encompassing X1

s , X
2
s , X

3
s would thus be connected to the small

regions corresponding to each of X1
s ,X2

s , and X3
s .

Since the region graph formalism is very flexible, other equally valid alterna-
tives for creating the graph exist. The best choice of regions will largely depend
on the application at hand and the computational constraints. Our choice of
regions reflects a balance between accuracy and running time by focussing on
residues which are expected to be closely coupled together and placing them in
bigger regions. [1] studies this class of region graphs in more detail.

We initialized the GBP messages to random starting points and ran until
beliefs converged or a maximum number of iterations was reached. It must be
noted that we did not have any problems with convergence: the beliefs converged
in all cases.

We ran our program on datasets obtained from the “Decoys R Us” database[26].
We used the immunoglobin datasets from the “multiple decoy sets”. Each such
dataset consisted of multiple decoy structures along with the native structure of
a protein. We selected immunoglobin because it had a large number of decoys
close to the native structure and has been used extensively to test methods for
decoy detection[28].

Under our assumption of a rigid backbone, our estimates of entropy of dif-
ferent structures will be comparable only when the other sources of entropy are
largely similar. Thus, our estimates will be most relevant only when the struc-
tures have largely similar backbones. To ensure that we didn’t have backbones
very different from the native structure among our decoys, we removed all decoys
with a Cα RMSD greater than 2.0 Å to the native structure, from each dataset.
We then removed any dataset that ended up with less than 5 decoys so that we
didn’t end up with too few decoys in a dataset. We also removed three datasets
which had missing backbone atoms. At the end of this pruning, there were 48
datasets left with an average of around 35 decoys per data set.

Fig. 3 shows our results on the immunoglobin dataset. When we ranked the
structures in the decreasing order of their entropy, the native structure ended
up at the top in 42 of the 48 datasets (87.5%). In no dataset was the native
structure ranked higher than 4. Fig. 3(b) shows the scatter plot of the entropy
estimates for a dataset where the native structure(3hfm) has the highest entropy.

To study the structures further, we ran PROCHECK[13] – a program for
structure validation that runs a suite of structural tests. PROCHECK reported
a very high number of main chain bond angles (nearly 13 angles on an average)
as “off graph” – bond angles so far away from the mean that they don’t show
up on the output plots of PROCHECK – for the four native structures which
have a rank three or four.
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(a) (b)

Fig. 3. (a) Histogram shows the distribution of the rank of the native structure, when
ranked in decreasing order of entropy for the culled immunoglobin decoy dataset. Over
this dataset, the native structure has the highest entropy 87.5% of the time(b) Entropy
estimates for 3hfm and its decoys, with the value of the entropy along the Y-axis and
the rmsd to native structure along the X-axis. The horizontal line indicates the value
of the entropy of the native structure; all other structures have a lower entropy in this
dataset

For example, a total of 27 angles were determined to be “off graph” for 1igc.
In contrast, there were an average of around 2 such angles, among the rest of the
structures. However, not all datasets in which the native structure had bad main
chain bond angles had a decoy as the best rank. 1jel, for example, had 21 main
chain bond angles “off graph” and yet had the best rank among its dataset. This
is not unexpected, since the rank of the native structure is not only determined
by its quality, but also by the quality of the decoys. Thus, our results seem to
be affected, but not solely determined, by unusual main chain conformations.

Since the structures have very similar backbones, we expect that the entropic
contributions from the backbone atoms and our entropy estimates to be most
meaningful in relative order and magnitude. However, in order to test the efficacy
of these estimates in decoy detection, we repeated our experiments on the entire
immunoglobin dataset. Our hope is that while the magnitudes of the entropy
estimates might not be meaningful, the relative order of the native structure will
still be useful.

Figure Fig. 4(a) shows the results of our experiments on the entire im-
munoglobin dataset. As can be seen, despite the addition of the dissimilar back-
bones, the ranking of the native structure isn’t affected much – in 84% of the
datasets, the native structure has the highest entropy. We then compare our
results to the following different energy functions as reported in [28]: a four
body statistical potential(“4body”) developed in [28], the coulombic part of the
CHARMM19 forcefield [5], “RAPDF” [27], “DFIRE” [37] and the sum of vander-
wal and coulombic terms of the AMBER force field [31]. These energy functions
are described in detail in [28].
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(a) (b)

Fig. 4. (a) Histogram showing the distribution of the rank of the native structure. (b)
Comparison of Results using various energy functions as reported in [28], along with
rankings based on our Entropy estimates. These results are on the 51 Immunoglobin
datasets for which data was available, including decoys with RMSD greater than 2.0
Å. Overall, the entropy estimates outperform all energy functions.

It must be noted that “4body” has a distance parameter; the numbers re-
ported are the best results obtained across different values of this parameter.
In contrast, the temperature T, which is the only tunable parameter in our
approach, was set to room temperature. Yet, our entropy estimates calculated
using a simple linear potential function, marginally outperforms “4body” and
significantly outperforms all the other pairwise energy terms on this dataset.

Thus these results show that our entropy estimates are very successful in
detecting the native structure from a set of decoys. However, they do not pro-
vide any evidence about the relative magnitude of these estimates. To test this,
we perform a different experiment. We compare experimentally determined val-
ues of difference in the free energy, between the native structures of Barnase,
T4 Lysozyme and Staphylococcal Nuclease (pdb ids: 1BNI, 1L63 and 1STN re-
spectively) and their multiple single point mutants selected from the ProTherm
database[19], with corresponding estimates obtained using GBP. Only mutations
in buried positions were considered in order to minimize the effects of the sol-
vent. All the ∆∆G experiments in a single dataset were conducted at the same
pH value.

Since these mutants have different sequences, the free energy of the denatured
state has to be estimated along with that of the crystal structure, in order
to estimate ∆∆G values. We estimate the free energy of the denatured state
by computing the free energy of the system before inference. Fig. 5 shows our
results on the three datasets. The correlation coefficient between our estimates of
∆∆G and the experimentally determined values varied from 0.63 to 0.70 with p
values between 1.5*10−5 to 0.0063. This compares favorably with the estimates
– correlations between 0.7 and 0.94 – obtained using the four body potential of
[7] over all their (much smaller) datasets. This gives evidence that our estimates
predict the relative magnitude of ∆∆G with reasonable accuracy.
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(a) (b)

(c)

Fig. 5. Plots showing variation of experimental ∆∆G (on the X-axis) with computed
estimates of ∆∆G, along with a least squares fit for (a) thirty one mutants of barnase
(pdb id: 1BNI), R=0.70, p=1.5*10−5 (b) twenty eight mutants of T4 Lysozyme(pdb
id:1L63), R=0.63, p=3.0*10−4 and (c) fourteen mutants of staphylococcal nuclease
(pdb id:1STN), R=0.69, p=0.0063
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5 Conclusions

We have shown that free energy calculations for all-atom models of protein struc-
tures can be computed efficiently using Generalized Belief Propagation. More-
over, these estimates are sufficiently accurate to perform non-trivial tasks. We
first demonstrated that it is possible to identify native immunoglobin structure
from a set of decoys, with high accuracy, by comparing the computed entropies.
We then demonstrated that our ∆∆G predictions for a set of mutations achieved
high linear correlations with experimentally measured quantities. This suggests
that our predictions are not only in the right relative order, but also have ap-
proximately the right relative magnitudes.

Our results have implications for a number of problem domains. First, we
believe that our method could be used in the contexts of protein structure pre-
diction and comparative modeling. Our decoy-detection results suggest that our
method could be used in conjunction with protein structure prediction programs
that produce multiple putative folds, like rosetta [25]. The accuracy of existing
homology modeling methods is acknowledged to be an important issue in struc-
tural biology (e.g., [18, 9]). We are presently extending our technique to allow
backbone flexibility. This would facilitate refining of homology models towards
a lower free-energy configuration, and potentially higher accuracy. Second, we
note that one of the advantages of a graphical model is that it is easily extended.
For example, we could enhance our edge potentials to incorporate experimen-
tal measurements from X-ray crystallography, Nuclear Magnetic Resonance, or
Cryogenic Electron microscopy. These enhancements could be very beneficial in
the context of structure determination experiments where the data are sparse
or low-resolution. Third, we can also extend our model to include ligands by
adding nodes to our graph. This, plus a combination of a backbone flexibility
and a somewhat more sophisticated energy term may lead to more accurate
∆∆G calculations which, in turn, may be useful in the context of ligand binding
and docking studies. Finally, while our experiments assumed a known protein
sequence, it is possible to simultaneously perform inference over the sequence
and structure, leading to new techniques for performing protein design. We are
actively pursuing these goals as part of ongoing research into the application of
graphical models to protein structures.
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