Vol. 00 no. 00
Pages 1-8

An Efficient Randomized Algorithm for Contact-Based

NMR Backbone Resonance Assignment

Hetunandan Kamichetty 2, Chris Bailey-Kellogg *, Gopal Pandurangan®*

2 Department of Computer Science, Purdue University, West Lafayette, IN 47907. P Department of
Computer Science, Dartmouth College, Hanover, NH 03755.

ABSTRACT

Motivation: Backbone resonance assignment is a critical bottleneck
in studies of protein structure, dynamics, and interactions by nuclear
magnetic resonance (NMR) spectroscopy. A minimalist approach to
assignment, which we call “contact-based,” seeks to dramatically
reduce experimental time and expense by replacing the standard
suite of through-bond experiments with the through-space (NOESY)
experiment. In the contact-based approach, spectral data are repre-
sented in a graph with vertices for putative residues (of unknown
relation to the primary sequence) and edges for hypothesized NOESY
interactions, such that observed spectral peaks could be explained
if the residues were “close enough.” Due to experimental ambiguity,
several incorrect edges can be hypothesized for each spectral peak.
An assignment is derived by identifying consistent patterns of edges
(e.g., for a-helices and (-sheets) within a graph, and mapping the
vertices to the primary sequence. The key algorithmic challenge is to
be able to uncover these patterns even when they are obscured by
significant noise.

Results: This paper develops, analyzes, and applies a novel algo-
rithm for the identification of polytopes representing consistent pat-
terns of edges in a corrupted NOESY graph. Our randomized algo-
rithm aggregates simplices into polytopes and fixes inconsistencies
with simple local modifications, called rotations, that maintain most
of the structure already uncovered. In characterizing the effects of
experimental noise, we employ an NMR-specific random graph model
in proving that our algorithm gives optimal performance in expected
polynomial time, even when the input graph is significantly corrupted.
We confirm this analysis in simulation studies with graphs corrupted
by up to 500 percent noise. Finally, we demonstrate the practical app-
lication of the algorithm on several experimental 3-sheet data sets.
Our approach is able to eliminate a large majority of noise edges and
uncover large consistent sets of interactions.

Availability: ~ Our algorithm has been implemented in platform-
independent Python code. The software can be freely obtained for
academic use by request from the authors.

Contact: cbk@cs.dartmouth.edu; gopal@cs.purdue.edu

1 INTRODUCTION

One such interpretation bottleneck is that of determiningotek-
bone resonance assignmemwhich specifies the mapping from
backbone atoms to their seemingly arbitrary but relatively unique
identities in the spectra (Fig. 1). While substantial progress has
been made in traditional approaches to backbone resonance assi-
gnment (e.g., Zimmerman et al., 1997; Moseley and Montelione,
1999; Lin et al., 2002; Vitek et al., 2004, 2005), some investi-
gators are pursuing alternativeinimalistapproaches that seek to
reduce the experimental complexity, circumvent traditional barriers
to interpretation, and open the door to higher-throughput, lower-cost
structural studies (e.g., Stefano and Wand, 1987; Nelson et al., 1991;
Bailey-Kellogg et al., 2000; Erdmann and Rule, 2002; Grishaev and
Llinas, 2002; Langmead and Donald, 2004).

This paper pursues an algorithmic basis for a minimalist back-
bone assignment protocol, which we aahtact-based assignment
that is centered on the through-space NOESY (nuclear Overhauser
enhancement spectroscopy) experiment (Stefano and Wand, 1987;
Nelson et al., 1991; Bailey-Kellogg et al., 2000; Erdmann and Rule,
2002) rather than the standard suite of sequential backbone experi-
ments. Contact-based assignment turns “upside down” the standard
approach of first deriving a backbone assignment and using it in
assigning the NOESY and solving for the structure. It instead
analyzes unassigned backbone NOESY data in order to derive
the backbone resonance assignment. One successful contact-based
approach, Jigsaw (Bailey-Kellogg et al., 2000), focused on assi-
gnment within secondary structure elements, which produce regular
patterns in graph representations of NOESY data (Fig. 2) due to
biophysical and geometric constraints. Identified pattern instances
can subsequently be aligned against the primary sequence, accor-
ding to spectral “fingerprints” of amino acid type, thereby producing
an assignment. Jigsaw needed data from only four straightforward
NMR experiments that require only days of spectrometer time and
relatively cheap and easyN-labeled (rather that? C-'°*N-labeled)
protein. It was successfully applied to experimental spectra for three
different proteins.

While contact-based assignment has displayed much potential,
work so far has not demonstrated how to deal with the combina-
torial explosion due to experimental ambiguity—there are several

Nuclear Magnetic Resonance (NMR) spectroscopy is a key expehutually-exclusive edges potentially explaining each spectral peak,

rimental technique for studying protein structure, dynamics, andnd we want to identify relatively large consistent setshglices
interactions in physiological conditions. Effortsstructural geno- ~ and/3-sheets). This paper thus develops and analyzes an algorithm
micsseek to conduct these studies at a massive scale (Montelior{Bat efficiently uncovers consistent edge patterns in the presence
et al., 2000; Stevens et al., 2001), but are rate-limited by the nece§f substantial noise. Consistent sets of edges are represented as

sity of interpreting the spectral data provided by NMR experiments Simplices, which are aggregated into polytopes that explain the
experimental data and are consistent with biophysical and geometric

constraints. While the identification of large polytopes in general
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-:,"3., :»‘ 2 MATERIALS AND METHODS
= o~ 2 o ﬁ) & ﬁ) fin ﬁ) We first summarize the underlying graph representation of the input
= O N—C—Cr NMR data, along with a random graph model that allows us to rea-
He B e son about the algorithm and conduct simulation studies. We then
present our randomized simplex rotation algorithm, discussing the

general mechanism and instantiating for theheet case.

Fig. 1. HSQC spectrum. The axes indicat® ldnd N chemical shifts, so that

a peak corresponds to a bongeHJeN atom pair with thpse sh_ifts. Howe- 2.1 Graph Representation of NMR Data
ver, the correspondence (assignment) between chemical shifts and atoms Is o .
unknown. NMR spectra capture magnetic interactions between atoms as peaks

in R? or R?, where each dimension indicates the coordinates (reso-
nance frequencies, in units callettemical shifts of one of the

Mmﬁi = LLVTLLT_TJM interacting atoms (see again Fig. 1). In thtN-edited spectra
ol ek

oW HOR o employed here, each peak is generated by interactions between an
v m,. '»N and H in a residue, and possibly an additionkl atom in the
same or another residue. We assume that the spectra have been pro-
cessed and the peaks picked, thereby yielding lists of peak maxima

H

HY T [TLE— ﬁ He
Q\TV%N /kﬁ )‘N\f/c‘s“ /kﬁ“ and inter_lsities._
P PR S P R | * 7 Following Bailey-Kellogg et al. (2000, 2005), we represent the
. o input NMR spectra in a labeled, weighted, directed gréph=

Q 7 ”*I\{ P Pl p. (V, E), called aNOESY interaction grapksee Fig. 2). The verti-
wﬁ/ S‘N/C\T"/L\W/ S‘N/F\fV ~ ces correspond (via an unknown mapping) to residues (or to noise,
o H—H 0 for extras). An edge = (v1,v2) € E represents a possible expla-

nation — interaction between atoms«@f andv, — for a NOESY
geak. A vertex is labeled with a secondary structure type, either

HY » S
3 o

HY—H

Fig. 2. NOESY interaction graphs: (top)-helix and (bottom)s-sheet;

(left) actual atomic interactions and (right) graph representation. Due to th . . . . .
regular geometry of these secondary structure element$? fiNOESY a or . An edge is labeled with amteraction type either H' or

detects regular patterns of interactions (“contacts”) betwe¥ratems and ~ H, and amatch scorgestimating the confidence in the edge as an
both HY (dotted line) and K (solid line) partners. These atomic-level inter- €Xplanation for the peak.
actions can be collected into a graph in which vertices represent residues A NOESY interaction graph is constructed from peak lists for
and edges represent hypothesizesHN and H*-HN interactions between  four '5N-edited spectra as follow$Vertices)The HSQC spectrum
the respective atoms of the residues. These graphs show perfect patterns, bigtablishes vertices by identifying a set of chemical shift pairs for
graphs f_or _experimental NMR data contain many extra incorrect edges anfonded H' and°N. There is one such pair per residue, ignoring
some missings. side-chain amide groups. The HNHA and TOCSY spectra aug-
ment a vertex by identifying the chemical shift of its*Hy an
interaction with the anchor ™!°N. The HNHA further allows
is NP-hard, as it involves subgraph isomorphism, our algorithmlabeling vertices by hypothesized secondary structure typed the
employs a key insight to work effectivelyn searching for good  coupling constant® Jy~ya, is correlated with the bond angle of
structures, the best ones tend to share a lot of substructure a residue and thus is characteristically different dehelices and
branching-based searches (Bailey-Kellogg et al., 2000), such sharetisheets(Edges)The NOESY spectrum establishes edges by indi-
substructure can appear on many different branches (e.g., multipkeating possible interactions among NYHH triplets. An edge is
different polytopes each adding a common simplex and growingplaced between two vertices when the N and ehemical shifts
from that simplex in the same fashion). Thus, instead of backof a NOESY peak match the those of the first vertex (by reference
tracking upon discovering an inconsistency, our algorithm employgo the HSQC) and théH chemical shift matches that of either the
a much more efficient local fix with a generalized simplex rota- HY (by reference to the HSQC) or*Hby reference to the HNHA
tion step that moves a simple or small nhumber of simplices to and TOCSY) of the second vertex. The match type labels the inter-
new context, while leaving most of the structure intact. Thisse action as either M or H* accordingly. The match score evaluates
based approach avoids wasteful undoing and redoing and tendke degree of confidence in the match, according to the similarity in
to produce large, correct polytopes. This algorithm significantlychemical shift. It is worth noting that in théN-only approach, the
generalizes our earlier approach to finding paths for traditionaHY interactions are symmetric, but thé'Hhteractions are only in
sequential assignment (Bailey-Kellogg et al., 2005), in order toone direction. For simplicity, we assume here that symmetric edges
handle higher-order patterns like those appropriate f@heets have been merged into a single edge with a joint score.
(Fig. 2). Chemical shift degeneradg a key source of noise corrupting a
Contribution: Our algorithm represents the first approach thatNOESY interaction graph. Uncertainty in the measured chemical
gives optimal performance in expected polynomial time for the pro-shifts of the protons leads to ambiguity in matches, and thus the
blem of uncovering secondary structures (and thereby backboneonstruction of spurious noise edges. These noise edges are not ran-
assignment) in significantly corrupted NOESY graphs. In additiondomly distributed, but in fact can be modeled by a random graph
to analyzing its expected behavior, we demonstrate and characterineodel that properly captures their correlation structure (Bailey-
its effectiveness in simulation studies with up to 500 percent noiseKellogg et al., 2005). In particular, note that when two vertices
and experimental datasets féwrsheet regions of several proteins.  have atoms that are fairly similar in chemical shift, by the above




no conflict boundary conflict

construction they will tend to share edges, since a proton chemi- p P Q
cal shift matching the one (within some tolerance) will also likely = A . ¢
match the other. This relationship can be modeled by treating atoms s s

as being sorted in chemical shift order, i.e., in some random per-
mutations according to their magnetic environments as probed by  wt conia overlap oorilt
the experiment. We then consider as ambiguous all atoms within ,_ P . P Q
some “window” of sizew around a particular atom. Noise edges for jf 0o ; e
an edge(u, v) are introduced for each’ in the window of width vl 1
w aroundr(u). Thus, there arev noise edges for every correct
edge. Note that this definition af is slightly different from that  Fig. 3. Polytope growth in 2D: adding simplex (triangle)to polytope P
of Bailey-Kellogg et al. (2005), where it describes half the width Via shared edg¢, in the presence of polytop@. Several cases can result:
of the window. Typical scoring rules (e.g., Zimmerman et al., 1997:h0 cc_mflicts ( is the only intersectiqn), a self confliot'(: b), a boundary
Guntert et al., 2000; Vitek et al., 2004, 2005) compare absolute oﬁonﬂ'Ct (a = ¢), oran overlap conflict{ = d). A conflict can be resolved
. : . . . y rotating a simplex to its new context and performing local modifications
squared difference in chemical shift. Except for noise (reasonabl){0 the polytope(s).
modeled as Gaussian), the correct edge should match exactly and
have the best score. Thus with respect to the permutation model,
scores are a function of distance within the permutation, perturbed
by a zero mean Gaussian distribution. e Optimality: Minimal score for the polytope set, defined as the
In practice there are several other sources of noise, including mis- ~ total score of edges, plus a penalty for each vertex not in any
sing and extra vertices and incorrect secondary structure labels. In  polytope.
order to maintain our focus on the problem of dealing with signifi-
cant numbers of noise edges, we ignore here these other sourceswé focus on simplices and polytopes of a single dimension (homo-
noise and their effects on the assignment algorithm, and save sudeneous); the discussion section mentions possible extensions.
analysis for future research. Our algorithm maintains a s@ of consistent polytopes, as well
. . . . as a free sef of simplices that don’t appear in any of the current
2.2 Randomized Simplex Rotation Algorithm polytopes. At each iteration, the algorithm either initiates a new
A NOESY interaction graph contains geometric information polytope or attempts to grow from a polytope € P that has a
(Fig. 2). Due to the rapid fall-off of the nuclear Overhauser effectsimplexs with a free proper face’. Growth adds taP a simplexr
with distance (proportional to/r°), detected interactions are bet- from the free set that is adjacentson f. Fig. 3 illustrates the cases.
ween protons at most& apart. Thus NOESY peaks correspond to |f the only intersection betweenand?P is f, then we simply adg'
“contacts” in a protein structure. The regularity of secondary structo P. If  intersectsP in some other (not necessarily proper) face,
ture elements, by geometric and biophysical constraints, producesr » intersects some other polytoge € P, then there is @onflict
regular patterns in a NOESY interaction graph (Fig. 2). The patiVhen faced with a conflict, we can fix up the polytope(s) by moving
terns can naturally be represented with simplices aggregated int@ simplex out of its current context into a new one, and perfor-
polytopes (Erdmann and Rule, 2002), as follows. ming any other modifications necessary to restore consistency (next
A k-simplexis defined by a set of + 1 residues that are pair- paragraph). In deference to the terminology employed by randomi-
wise adjacent in the input graph; here, we consider pok#®),  zed algorithms for finding Hamiltonian paths (Angluin and Valiant,
segments (1), triangles (2), and tetrahedra (3)k-8implex has  1979), we call such simplex movestations Another way to handle
(k — 1)-simplices as itsproper faces the facesof the simplex  a conflict is simply to decide not to grow with the chosen simplex.
include its proper faces, their proper faces, and so forth. For examFhe choice between keeping the original vs. growing and rotating is
ple, the proper faces of a triangle are segments and the proper facgade randomly with probabilities proportional to the scores of the
of the segments are points; the faces of the triangle include botRolytopes. Thus the algorithm naturally encourages improving the
the segments and the points. Twesimplices whose intersection current interpretation but may occasionally be more destructive in
is a (k — 1)-simplex areadjacent A set of k-simplices that are  order to change direction.
transitively adjacent define/apolytope For a polytope to be well-  To handle a boundary conflict, the two polytopes are merged
formed, an intersection between any two simplices must be a facgy way of the new simplex. To ensure that the resulting polytope
of each, and eacfk — 1)-simplex must be a proper face of at most is well-formed, we may need to add another “bridging” simplex
two k-simplices. For example, in @-sheet, two triangles can only to complete the simplex adjacency relationship. In Fig. 3, such a
share one edge and each edge can appear in at most two trianglesridging simplex would share the diagonal edge witland link
With this simplex-based representation, we formulate the assithe top strand of? with the bottom strand of) (flipping Q upside
gnment problem as follows: down). To handle a self conflict or overlap conflict, all simplices
e Input A NOESY interaction graphG — (V,E) and all intersectir)g the added simplex are removed. If this leads to a poly-
simplicesS formed from edges itk tope that is npt Well-formed (e.g., the removal Ieaveg a hole_),. then
) ) the polytope is broken into sub-polytopes by removing additional
e Output An optimal consistent set df-polytopes formed from  gimpjices. If the removed simplices are contiguous, we create new
a subset of the input-simplices. polytopes from them directly, rather than adding them back to the
e Consistency Polytopes do not intersect; and they obey anyfree poolS. While it is possible that a rotation step might cause the
additional constraints (e.g., canonigaisheet structure as in loss of a large number of triangles, in practice (see the results sec-
Fig. 2). tion) we found that the we never lost more than 6 correct triangles.
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We also show in the analysis section that the algorithm will still
make progress if the probability of such an event occurring is low.
The generality of our grow/rotate mechanism allows identifica-
tion of arbitrary regular polytopes. In fact, the randomized sequen
tial cover algorithm of Bailey-Kellogg et al. (2005) can be seen as §

Data: NOESY interaction grapliy = (V, E') and all triangles
S formed from edges i

Result SetP of polytopes (triangulations)

initialize P with 0;

repeat

special case of this general framework. That specialization is suffit
cient to uncover-helices in a noisy NOESY graph; while there are
non-sequentiafi, ¢ + 3) edges in am-helix, the main structure is
that of a sequential path, and the “jumps” can be used simply to prd
vide extra support for a path. Thus for the rest of this paper we wil
focus on the3-sheet case (i.e., 2D), although our method and ana
lysis can be generalized to other polytopes in finding 3D structuref
(see the discussion section).

Algorithm 1 provides pseudocode for tifesheet instantiation.
The algorithm repeats the basic growing/rotating process until eithgr

all the data are explained (i.e., each peak is represented by one edge

in P) or until a maximum number of iterations is reached. A signi-
ficant implementation detail is that, in order to efficiently identify
intersections upon simplex growth, we maintain vertex coordinateg
in 2D (this can be done uniquely up to rigid-body motions). This
requires updating coordinates of an entire polytope upon merging
but we found in practice this to be a negligible cost in time. In addi-
tion, we enforce adherence to the canoni@adheet pattern (see

Fig. 2); the discussion section describes possible relaxation of this
rule.

3 RESULTS

In order to gain insights into the behavior of our algorithm, we
study it from three different perspectives—theory, simulation, and
experiment. We first analyze the amount of noise our algorithm ca
tolerate under an NMR-specific random graph model that captur

the structure of chemical shift degeneracy, the key source of edde
ambiguity. We show that our algorithm can tolerate a large amou

choose at random a vertexc V, such that eitheo ¢ P
(unvisited) orv has at least one edge appearing in only g
triangle in a polytopeP € P;
if v is unvisitedthen
choose a triangle € S with v as a vertex, with
probability proportional to its score;
Ise
choose an edgeincident onv which appears in only
one triangles in P;
choose atriangle € S — {s} that also has edge
with probability proportional to its score;
nd

f r conflicts with triangle<” in P then
randomly choose betweerandC' with probability

proportional tor's score and the sum of scores@f

if chooser then
remove triangle€’ from their polytopes (breaking
the polytopes if necessary);
S—8SUc;
addr and its vertices and edges Bb(merging
polytopes if necessary);
end
else
if v is not in a polytopeghen
| create a new polytop® containingv;
end
addr and its vertices and edgests polytopeP
(merging polytopes if necessary);
P—PU{PL

[¢)

= 0D

of ambiguity while still giving optimal performance in expected end
polynomial time. We then employ a set of simulation studies, in| until P explains all data, or MAXITER iterations performed
which we vary the degree of ambiguity, to show that the algorithm| return P;
can recover nearly an entire structure correctly in the presence o&f
significant noise. We use insights from these simulations to develop
a method for obtaining a posterior confidence score for edges, and
show how to use this in handling missing edges. Finally, we present
our results on experimental data sets, showing that our approach iEat any rotation removescorrect triangles with probability at most
able to eliminate a large majority of noise edges and uncover largg (k). This function is determined by the quality of scores: the better
consistent sets of interactions. the quality of scores, the smaller the probability of breaking correct

. . triangles. We can precisely characterize this probability with respect
3.1 Algorithm Analysis to a particular scoring model (e.g., Vitek et al., 2004, 2005), but
To gain insight into the performance of our algorithm, we analyzethe exact form is not crucial to our analysis. In practice we found
it in a simplified setting under a few assumptions. We assume thaf (k) = 0, for all k > 6. We will denote byM = >"7° | kf(k) and
the correct graph is a actually@&sheet torus—each triangle is in vV = (332, k> f(k)) — M?, the mean and variance of the number
the interior and has a full complement of neighbors. Thus we needf correct triangles removed in an iteration. As we have observed
not list all the special cases that arise due to boundary effects. W practice, we assume thaf andV are bounded by some fixed
note that the vertices have a constant maximum dedredue to  constant (independent of the size of the graph).
packing constraints. We assume a scoring model for the edges suchWe account for the correlated noise structure of NMR interaction
that the expected score for a correct edge is larger than that for graphs by employing the random graph model of Bailey-Kellogg
noise edge (as is the case under our Gaussian model). Thus, if ve al. (2005), described in Section 2.1. Given a window width
try to grow from a correct edge in a polytope, we choose a correctlefining the amount of chemical shift degeneracy, a correct graph is
triangle with probability> 1/2, since with high probability (i.e., corrupted by generating for each edge a set of noise edges replacing
1 — o(1)) there is at most one wrong triangle per correct edge (cfthe original from-node with vertices within distanee of it in a
Lemma 1). Finally, we assume that there is some funcfi@uch  random vertex permutation (modeling chemical shift order).

Algorithm 1: Randomized simplex rotation algorithm.




We now proceed to characterize the algorithm’s performance oiriangles removed in a sequence of regressive states can be bounded
a corrupted version of a graph withcorrect triangles, in terms of by TlpM.

the noise parametar. We show that, ifw = o(nl/ ), then the For a net positive drift in progressive and regressive states we
algorithm makes progress towards finding thériangle polytope  want
and is expected to find it in polynomial time (as in a “gambler’s 1/20-M)—-(1/(1—-p))M >0

ruin” problem (Grimmett and Stirzaker, 1992)). Thus the algorithm
can tolerate a relatively large amount of noise.

We model the progress of the algorithm, over its iterations, as a IM
random walk on a line frond to », with positioni indicating that (Aw)?/n < 1— T
the current polytope haisof the correct triangles. Since we have a
[-sheet torus, we can assume without loss of generality that in eaclhich yields the condition that
iteration, the algorithm chooses to grow from a particular triangle
via one of its edges. We also assume, without loss of generality, 1 IM
that it starts from a correct edge in the very first iteration. We call w < AN (1 1 M)
the state of the algorithm at each iteratimogressivef the chosen

triangle is correct, antegressiveotherwise. To show that the algo- Havingw — o(n'/*) satisfies both the condition of Lemma 1 and

:Ezmgagssr;;%%r:j?r’] \;’ﬁyb;:?g the of number of correct trlangleisne above progress condition. For expected drift to be positive,
) needs to be positive and heritel M < 1/3. Polynomial expected
LEMMA 1. Supposev = o(n'/*). Given an edge, the proba-  time can be shown using standard probabilistic techniques (e.g., Fel-
bility p of an incorrect triangle existing witk as one of its edges ler, 1968, Chapter 14), since each iteration takes polynomial time,
is1— (1— 22)2 ~ (Aw)?/n, whereA (a constant) is the the variancé’ is bounded, and the expected drift is positive over an
maximum number of correct edges from any vertex. Furthermoregxpected constant (- 1/(1 — p)) number of steps. a
the probability that there exists a correct edge with more than one

wrong triangle is~ 290 = (1),

By the Lemmap ~ (Aw)?/n, so

=0(n'?)

In effect, the theorem also shows the conditions under which there
is enough information in the data, i.e., conditions under which it is
PROOF. Let edgee = (i,4). The number of incorrect edges possib_le to perform resonance gssignmeqt using sparse _data sets. In
to j is Aw. An incorrect triangle with edge exists if for any of gqualltatlve sense, outheoretlce}l analy5|_s predl_cts that if the noise
the wrong edgesk, j), there exists an incorrect edgé k). The 1S not Iarg.e, our randomlzed rotation algorithm WI.|| converge to ‘the
probability that this edge exists dw/n by our random graph OPtimumina polynomial numper of steps. Our S|mulat.|on studies,
model. Therefore, the probability that no such triangle exists isdescribed next, agree well with this prediction, showing that our
po = (1 — A»)Av The probabilityp that it does is therefore algorithm tolerates noise as high as 500%.
1— (1 — A=) o (Aw)? /n (for largen). The probability that 35 Simulation Studies

i istaris — _ Aw\(Aw—1)(Aw
exactly one such triangle existsris = Aw(1 - 52) (52)- We started with g3-sheet graph with 100 triangles, configured as

The probability that at least two wrong triangles exist is thereforeeleven 6-residue strands, for a total of 66 vertices and 215 edges.

Aw)? Aw)? Aw)? Aw)?
1—(po +_P1) ~1—(1- ¢ 2) 'i_‘_( ZJ) (1- ( :f) ) = ( nuz)_) . This large graph allows us to readily study the behavior of our algo-
By the union bound, the probability of at least two wrong trianglesrithm under varying noise and sparsity. It also demonstrates that
for any correct edge iéAnL). O our algorithm is efficient enough to handle graphs much larger than

would be possible with exhaustive search algorithms.

We generated noise edges for this graph according to the random
raph model described in the methods section, varying the win-
dow sizew to control the amount of chemical shift degeneracy. We
tested with window sizes up to 5, yielding up to 1075 noise edges
obscuring the 215 true edges. For each test, we formed random per-

PROOF. In a progressive state the expected number of correct trimutations of the residues individually forHand H' (representing
angles added is at leaist2 since, according to our assumption, with sorting by the corresponding chemical shift), and generated noise
probability at least /2 we add a correct triangle, and the probabi- edges for each true edge by replacing the from-node with each other
lity of removing another correct triangle conditioned on the eventnode within a distance oi in the appropriate permutation. This

of adding a correct triangle is zero (e.g., Pandurangan, 2005). Theimulates ambiguity introduced by chemical shift degeneracy. We
expected number of correct triangles lost in a progressive state iset an edge’s score to @1 wherez is the position in the win-
at most(1/2) M. Hence the expected gain in correct triangles in adow generating the edgd—w/2,...,-1,0,1,...,w/2} (O for
progressive state is at legdt/2)(1 — M). the true edge), and ~ N (0, (w/4)?). This approach follows typi-

Now consider a regressive state. We cannot add a correct triarcal scoring rules (e.g., Zimmerman et al., 199ungrt et al., 2000;

gle, but we can bound the number of correct triangles lost in avitek et al., 2004, 2005).
sequence of regressive states before returning to a progressive stateOur theoretical analysis (in a simplified setting) predicts that in
If w= o(n1/4), the probability that we enter a regressive state fromthe low noise case, the algorithm makes progress, i.e., the number
any state can be boundedbyby Lemma 1) and hence the expected of correct triangles it uncovers increases with time until it recovers
number of successive regressive states before we return to a progreéke entire structure. We measured the progress of the algorithm for
sive one is bounded by/(1 — p). The expected number of correct varying amounts of noise with complete data (no missing edges).

THEOREM 1. Let M and V' be the mean and variance of the
number of correct triangles removed in an iteration. As assume%;
earlier, let M andV be bounded above by a constant (independen
ofn). If w = o(n*/*) and0 < M < 1/3, then the algorithm finds
all n correct triangles in expected polynomial time.
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Fig. 6. Performance of the algorithm under varying amounts of naise (
from 1 to 5) and missing edges (0 to 20): (left) without and (right) with edge

Fig. 4. Number of correct triangles selected by the algorithm as a functionreconstruction.
of the number of iterations. The amount of noise varies from 1 to 5 incorrect
edges for every correct one.
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sizable chunks of the sheet during the process of growing. We then
need to estimate our confidence for every edge. To do this, we use
the following observations. (1) A good triangle is consistent with the
global structure of a sheet and should therefore be used frequently
(in different polytope states) during growing. (2) The dependency
between adjacent triangles is strong. Thus, we have more confidence
in a triangle which is surrounded by (good) triangles. (3) Since it is
less likely that a large number of bad triangles can conspire to form
a consistent polytope, we have more confidence in a triangle which
appears in a big polytope than one which appears in a small poly-

tope. We encapsulate these observations in a “usage score”: for each
Fig. 5. Number of correct (red) and wrong edges (green) exceeding usagstep of the algorithm in which a triangle is used in some polytope,
score values, fow = 4 and 20 missing edges. we increment its usage score by the sum of its score and those of
its neighbors, weighted by the size of the polytope. A triangle that
appears frequently, in a big polytope, surrounded by good neigh-
Fig. 4 shows that for the low noise cases & 1 or 2, i.e., 100—  bors thus gets higher usage score than one that does not. We split a
200% noise), the algorithm makes progress and uncovers the entitéangle’s score equally among its edges, and normalize edges gene-
sheet quickly (less than 1000 iterations). As the noise increases, thrated for the same spectral peak (i.e., those produced by chemical
rate of progress of the algorithm generally decreases while the nunshift degeneracy) to obtain confidences. Any edge with a confidence
ber of mistakes (due to which the rate of progress is not monotongjreater than a cutoff value is classified as a correct edge.
increases. (Due to randomization, progress is better for this particu- In Fig. 5, we show the number of correct and wrong edges excee-
larw = 4 run than for thev = 3 one.) The algorithm recovers most ding different usage score thresholds for one of the noisier cases
of the structure, even for high valueswf(as much as 500% noise). (w = 4, 20 missing edges). Most wrong edges have low scores,
The algorithm takes significantly longer far = 5 than for the  and their number falls off rapidly as the threshold increases; on the
other cases. To gather intuition for the abrupt change, we measwther hand, most correct edges have high scores. Since the results
red how often the algorithm chose the correct triangle at each steare fairly insensitive to a broad range of thresholds, we use 2/3 as
(closely related to the probability of progress wiehk f (k) is low, the threshold in the remainder. For a peak to be assigned, the highest
as in our case). We found that the average frequency of making thgcoring edge for the peak must therefore have a score at least twice
correct choice wa8.48 whenw = 4 but only around).37 when  as high as the sum of the scores of the remaining edges for the peak.
w = 5. Thusw = 5 was the first case when the probability of pro-  To counter the problem of missing edges, we “reconstruct” mis-
gress fell well below0.5, resulting in a significant increase in the sing edges for which there is reasonable evidence that they exist.
running time as predicted by our analysis. Since experimental data (and geometric intuition) suggest thét in
While our focus here is on handling significant noise and ambi-sheets, M edges are more prone to be missing, we reconstruct only
guity, in order to analyze experimental data we need to handle ththat type of edge. If either of the two'Hedges needed to form a tri-
missing edges of incomplete data sets. To simulate this, we rarangle is missing, we create it. Each such reconstructed edge gets a
domly removed differing fractions (up to 10%) of the correct edges.low score (one standard deviation out, a value empirically consistent
Fig. 6(left) shows the number of correct triangles recovered in eachvith experimental data). To prevent the addition of too many incor-
case. The results show that while in the low noise case the algorithmect edges in this process, we add edges only if the existing edges
is able to recover the rest of the correct triangles, as the noise incrérave a high score. We first grow with edges reconstructed according
ases the number of triangles found decreases rapidly. For exampl& the input score, and we then iterate the process, using the usage
with w = 2, when 15 edges are missing, the algorithm is able toscore from one round to restrict reconstruction for the next round.
recover around 70 out of the 85 correct triangles present. HoweveNote that we use the usage scores from the previous run only in
with w = 4, the algorithm recovers only 60 triangles and with- reconstruction; our growing algorithm uses the original scores in all
5, the number of triangles recovered falls further to 40. its decisions.
With missing data and high amounts of noise, it might not be pos- Fig. 6(right) shows the percentage of correct edges identified
sible to recover the entire sheet. However, we still expect to findusing this method. The performance of the algorithm improves




e o ’“\' I 04 | Protein || correct| noise || true—+ | false-+ | Spec.| Sens.|
i N
11°/ o 18 HUGRX [[ 29 | 26 10 1 0.95 [ 0.34
CBE 12 * 130 CBF 89 | 111 58 17 | 0.65 | 0.65
31 S 27 GCN5 124 142 79 11 0.80 | 0.64
- 60 SCTCR 174 373 117 68 0.46 | 0.68
k‘ :\-< .65 Table 1. Summary of results on experimental datasets. Each protein is cha-
racterized by the number of correct and noise edges in the input graph.
B z : s B©  u Results indicate the number of true and false positive edges identified by
\J ’ our algorithm, summarized in specificity (true/ (true— + false-+)) and
o B = N v sensitivity (true+ / (true—+ + false—)).
GCN5 £ & & & 8 B T 7 7 %
w_ome o n_ o the sheet. For GCN5, we identify 79 of the 124 correct edges and
) e S eliminate all but 11 of the 142 incorrect ones. Our algorithm yields

some reasonable alternate assignments for a few peaks — not the
EI. x same as those determined by the experimentalist, but still consistent
with the structure of thg-sheet. As with CBF, most of the errors are
Fig. 7. Experimental results fof-sheets of (top) CBF and (bottom) GCN5 i incomplete regions. For example, residues 5, 58, 57 and 62 are
as computed by our algorithm. Solid lines indicate true positives and dotte¢synected to the rest of the sheet with only one correct edge each.
lines |_nd|cate false neg_atlves. Alterp_atlve assignments are indicated with Blowever they are connected with noise edges to other parts of the
question mark. For clarity, false positives are not shown. sheet, causing errors in assignment. Another source of errors is vio-
lations of canonical3-sheet structure between 79 and 80. Again,

R . due to noise edges, there are alternate assignments (selected by
significantly when there are a reasonable number of missing edgeﬁm algorithm) which meet the canonical structure. The reasons for

For e_x_ample, when there are 6 (3%) missing edges, the algorlthrQome errors aren’t immediately obvious. For example, residue 51 is
identifies around 20 (10%) more edges correctly when edges ar

&nnected by two edges to the sheet. It is however incorrectly assi-
reconstructed than when they are not. However, as the number%P

o - 4 . ned. This was due to the fact that the peak corresponding to the
missing edges increases, the improvement in the performance of t

algorithm decreases. For example, when there are around 15 (79 %orrect) edge from residue to 51 to 52 also explains the (wrong)
9 : P'e, ge between 11 and 52. Furthermore, residue 52 has noise edges

missing edges, the |mprovem(_ant in performe_lnce is only arou_nd 2~ ith good scores connecting it to 154, leading to a feasible alternate
more edges (1_—3’_%). Thus whll_e reconstructlng_edges does 'mprovfssignment.

performance, it s most effective when there is only a moderate Tab. 1 summarizes the results on all experimental datasets. The
amount of sparsity. sensitivity on HUGRX and CBF is similar to that of Jigsaw (Bailey-
Kellogg et al., 2000); the specificity is a bit lower, in a trade-off
for being able to handle larger and noisier datasets such as GCN5

We study the results of our algorithm on experimental data _Setﬁnd SCTCR. For SCTCR, our largest, noisiest, and sparsest data-
from four proteins: Human Glutaredoxin (HUGRX) and Core Bin- set, the algorithm yields a number of false positives. One of the

ding Factor (CBF), as previously reported (Bailey-Kellogg et al., reasons is that, unlike the other test cases, SCTCR has 3 different

2000), as well as two larger data sets, the cgtalytlc dpmaln OB_sheets. It is possible to consistently connect vertices at the ends
GCNS5 histone acetyltranferase (GCN5) and single chain T cel f two sheets, and our algorithm could be fooled in this manner. A

recepf[or (SCTCR). In each case, a graph was constructeql from tlbeeculiarity of this dataset is the number of deviations from the cano-
experimental NOESY peaks, restricted to knodsheet residues ) 5 sheet structure. This, along with missing edges, explains
(simulating high-quality HNHA) and scored according to our Gaus- .,y of the assignment errors. For example, due to incomplete data,
sian model. We ran our algorithm to compute usage scores, and Usgg;q 65 92 and 242 are poorly connected to their sheets. Howe-
the determined scores to reconstruct edges. We then ran our alggs, 95 nas noise edges to 243 and 75, both residues being towards
rithm again with the modified graph, and used the resulting Usag, enq of their strands. Thus these noise edges are consistent with
scores to select edges for output. the expected structure ofsheet, and form a largék-sheet using

Fig. 7 illustrates theg-sheets id_entified for CBF and GCNS5 using some of the correct edges. We discuss below possible extensions for
the edges selected by our algorithm. For CBF, 58 of the 89 Corre(illon-canonicaﬁ-sheet structure

edges are recovered and all but 17 of the 111 incorrect edges are eli-

minated. Most of the false positives (not illustrated) are due to the

fact that the last strand (connecting vertices 55-58 to vertices 654 DISCUSSION

68) is very poorly connected to the rest of the sheet. Therefore th&his paper shows that a naturalsebased randomized algorithm
two polytopes corresponding to this strand and the rest of the sheean be quite successful in overcoming significant noise and ambi-
do not form a consistent set (residue 58 is present in both). Insteaduity in contact-based resonance assignment. We demonstrated in
the algorithm selects edges from these residues to other parts of tlearlier work (Bailey-Kellogg et al., 2005) that a special case of the
sheet. The other errors occur around residues at the end of the firsguse approach was successful in finding long paths for sequential
strand (103, 104, 108, 109) which again are loosely connected tbackbone assignment and for uncoveriigelices in NOESY data.

3.3 Experimental Data
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