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ABSTRACT
Motivation: Backbone resonance assignment is a critical bottleneck
in studies of protein structure, dynamics, and interactions by nuclear
magnetic resonance (NMR) spectroscopy. A minimalist approach to
assignment, which we call “contact-based,” seeks to dramatically
reduce experimental time and expense by replacing the standard
suite of through-bond experiments with the through-space (NOESY)
experiment. In the contact-based approach, spectral data are repre-
sented in a graph with vertices for putative residues (of unknown
relation to the primary sequence) and edges for hypothesized NOESY
interactions, such that observed spectral peaks could be explained
if the residues were “close enough.” Due to experimental ambiguity,
several incorrect edges can be hypothesized for each spectral peak.
An assignment is derived by identifying consistent patterns of edges
(e.g., for α-helices and β-sheets) within a graph, and mapping the
vertices to the primary sequence. The key algorithmic challenge is to
be able to uncover these patterns even when they are obscured by
significant noise.
Results: This paper develops, analyzes, and applies a novel algo-
rithm for the identification of polytopes representing consistent pat-
terns of edges in a corrupted NOESY graph. Our randomized algo-
rithm aggregates simplices into polytopes and fixes inconsistencies
with simple local modifications, called rotations, that maintain most
of the structure already uncovered. In characterizing the effects of
experimental noise, we employ an NMR-specific random graph model
in proving that our algorithm gives optimal performance in expected
polynomial time, even when the input graph is significantly corrupted.
We confirm this analysis in simulation studies with graphs corrupted
by up to 500 percent noise. Finally, we demonstrate the practical app-
lication of the algorithm on several experimental β-sheet data sets.
Our approach is able to eliminate a large majority of noise edges and
uncover large consistent sets of interactions.
Availability: Our algorithm has been implemented in platform-
independent Python code. The software can be freely obtained for
academic use by request from the authors.
Contact: cbk@cs.dartmouth.edu; gopal@cs.purdue.edu

1 INTRODUCTION
Nuclear Magnetic Resonance (NMR) spectroscopy is a key expe-
rimental technique for studying protein structure, dynamics, and
interactions in physiological conditions. Efforts instructural geno-
micsseek to conduct these studies at a massive scale (Montelione
et al., 2000; Stevens et al., 2001), but are rate-limited by the neces-
sity of interpreting the spectral data provided by NMR experiments.

∗to whom correspondence should be addressed.

One such interpretation bottleneck is that of determining theback-
bone resonance assignment, which specifies the mapping from
backbone atoms to their seemingly arbitrary but relatively unique
identities in the spectra (Fig. 1). While substantial progress has
been made in traditional approaches to backbone resonance assi-
gnment (e.g., Zimmerman et al., 1997; Moseley and Montelione,
1999; Lin et al., 2002; Vitek et al., 2004, 2005), some investi-
gators are pursuing alternativeminimalistapproaches that seek to
reduce the experimental complexity, circumvent traditional barriers
to interpretation, and open the door to higher-throughput, lower-cost
structural studies (e.g., Stefano and Wand, 1987; Nelson et al., 1991;
Bailey-Kellogg et al., 2000; Erdmann and Rule, 2002; Grishaev and
Llin ás, 2002; Langmead and Donald, 2004).

This paper pursues an algorithmic basis for a minimalist back-
bone assignment protocol, which we callcontact-based assignment,
that is centered on the through-space NOESY (nuclear Overhauser
enhancement spectroscopy) experiment (Stefano and Wand, 1987;
Nelson et al., 1991; Bailey-Kellogg et al., 2000; Erdmann and Rule,
2002) rather than the standard suite of sequential backbone experi-
ments. Contact-based assignment turns “upside down” the standard
approach of first deriving a backbone assignment and using it in
assigning the NOESY and solving for the structure. It instead
analyzes unassigned backbone NOESY data in order to derive
the backbone resonance assignment. One successful contact-based
approach, Jigsaw (Bailey-Kellogg et al., 2000), focused on assi-
gnment within secondary structure elements, which produce regular
patterns in graph representations of NOESY data (Fig. 2) due to
biophysical and geometric constraints. Identified pattern instances
can subsequently be aligned against the primary sequence, accor-
ding to spectral “fingerprints” of amino acid type, thereby producing
an assignment. Jigsaw needed data from only four straightforward
NMR experiments that require only days of spectrometer time and
relatively cheap and easy15N-labeled (rather than13C-15N-labeled)
protein. It was successfully applied to experimental spectra for three
different proteins.

While contact-based assignment has displayed much potential,
work so far has not demonstrated how to deal with the combina-
torial explosion due to experimental ambiguity—there are several
mutually-exclusive edges potentially explaining each spectral peak,
and we want to identify relatively large consistent sets (α-helices
andβ-sheets). This paper thus develops and analyzes an algorithm
that efficiently uncovers consistent edge patterns in the presence
of substantial noise. Consistent sets of edges are represented as
simplices, which are aggregated into polytopes that explain the
experimental data and are consistent with biophysical and geometric
constraints. While the identification of large polytopes in general
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Fig. 1. HSQC spectrum. The axes indicate HN and N chemical shifts, so that
a peak corresponds to a bonded HN–N atom pair with those shifts. Howe-
ver, the correspondence (assignment) between chemical shifts and atoms is
unknown.
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Fig. 2. NOESY interaction graphs: (top)α-helix and (bottom)β-sheet;
(left) actual atomic interactions and (right) graph representation. Due to the
regular geometry of these secondary structure elements, an15N-NOESY
detects regular patterns of interactions (“contacts”) between HN atoms and
both HN (dotted line) and Hα (solid line) partners. These atomic-level inter-
actions can be collected into a graph in which vertices represent residues
and edges represent hypothesized HN-HN and Hα-HN interactions between
the respective atoms of the residues. These graphs show perfect patterns, but
graphs for experimental NMR data contain many extra incorrect edges and
some missings.

is NP-hard, as it involves subgraph isomorphism, our algorithm
employs a key insight to work effectively:in searching for good
structures, the best ones tend to share a lot of substructure. In
branching-based searches (Bailey-Kellogg et al., 2000), such shared
substructure can appear on many different branches (e.g., multiple
different polytopes each adding a common simplex and growing
from that simplex in the same fashion). Thus, instead of back-
tracking upon discovering an inconsistency, our algorithm employs
a much more efficient local fix with a generalized simplex rota-
tion step that moves a simple or small number of simplices to a
new context, while leaving most of the structure intact. Thisreuse-
based approach avoids wasteful undoing and redoing and tends
to produce large, correct polytopes. This algorithm significantly
generalizes our earlier approach to finding paths for traditional
sequential assignment (Bailey-Kellogg et al., 2005), in order to
handle higher-order patterns like those appropriate forβ-sheets
(Fig. 2).

Contribution: Our algorithm represents the first approach that
gives optimal performance in expected polynomial time for the pro-
blem of uncovering secondary structures (and thereby backbone
assignment) in significantly corrupted NOESY graphs. In addition
to analyzing its expected behavior, we demonstrate and characterize
its effectiveness in simulation studies with up to 500 percent noise,
and experimental datasets forβ-sheet regions of several proteins.

2 MATERIALS AND METHODS
We first summarize the underlying graph representation of the input
NMR data, along with a random graph model that allows us to rea-
son about the algorithm and conduct simulation studies. We then
present our randomized simplex rotation algorithm, discussing the
general mechanism and instantiating for theβ-sheet case.

2.1 Graph Representation of NMR Data
NMR spectra capture magnetic interactions between atoms as peaks
in R2 or R3, where each dimension indicates the coordinates (reso-
nance frequencies, in units calledchemical shifts) of one of the
interacting atoms (see again Fig. 1). In the15N-edited spectra
employed here, each peak is generated by interactions between an
15N and HN in a residue, and possibly an additional1H atom in the
same or another residue. We assume that the spectra have been pro-
cessed and the peaks picked, thereby yielding lists of peak maxima
and intensities.

Following Bailey-Kellogg et al. (2000, 2005), we represent the
input NMR spectra in a labeled, weighted, directed graphG =
(V, E), called aNOESY interaction graph(see Fig. 2). The verti-
ces correspond (via an unknown mapping) to residues (or to noise,
for extras). An edgee = (v1, v2) ∈ E represents a possible expla-
nation — interaction between atoms ofv1 andv2 — for a NOESY
peak. A vertex is labeled with a secondary structure type, either
α or β. An edge is labeled with aninteraction type, either HN or
Hα, and amatch score, estimating the confidence in the edge as an
explanation for the peak.

A NOESY interaction graph is constructed from peak lists for
four 15N-edited spectra as follows.(Vertices)The HSQC spectrum
establishes vertices by identifying a set of chemical shift pairs for
bonded HN and15N. There is one such pair per residue, ignoring
side-chain amide groups. The HNHA and TOCSY spectra aug-
ment a vertex by identifying the chemical shift of its Hα by an
interaction with the anchor HN-15N. The HNHA further allows
labeling vertices by hypothesized secondary structure type: theJ
coupling constant, 3JHNHα , is correlated with theφ bond angle of
a residue and thus is characteristically different forα-helices and
β-sheets.(Edges)The NOESY spectrum establishes edges by indi-
cating possible interactions among N-HN-1H triplets. An edge is
placed between two vertices when the N and HN chemical shifts
of a NOESY peak match the those of the first vertex (by reference
to the HSQC) and the1H chemical shift matches that of either the
HN (by reference to the HSQC) or Hα (by reference to the HNHA
and TOCSY) of the second vertex. The match type labels the inter-
action as either HN or Hα accordingly. The match score evaluates
the degree of confidence in the match, according to the similarity in
chemical shift. It is worth noting that in the15N-only approach, the
HN interactions are symmetric, but the Hα interactions are only in
one direction. For simplicity, we assume here that symmetric edges
have been merged into a single edge with a joint score.

Chemical shift degeneracyis a key source of noise corrupting a
NOESY interaction graph. Uncertainty in the measured chemical
shifts of the protons leads to ambiguity in matches, and thus the
construction of spurious noise edges. These noise edges are not ran-
domly distributed, but in fact can be modeled by a random graph
model that properly captures their correlation structure (Bailey-
Kellogg et al., 2005). In particular, note that when two vertices
have atoms that are fairly similar in chemical shift, by the above
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construction they will tend to share edges, since a proton chemi-
cal shift matching the one (within some tolerance) will also likely
match the other. This relationship can be modeled by treating atoms
as being sorted in chemical shift order, i.e., in some random per-
mutationπ according to their magnetic environments as probed by
the experiment. We then consider as ambiguous all atoms within
some “window” of sizew around a particular atom. Noise edges for
an edge(u, v) are introduced for eachu′ in the window of width
w aroundπ(u). Thus, there arew noise edges for every correct
edge. Note that this definition ofw is slightly different from that
of Bailey-Kellogg et al. (2005), where it describes half the width
of the window. Typical scoring rules (e.g., Zimmerman et al., 1997;
Güntert et al., 2000; Vitek et al., 2004, 2005) compare absolute or
squared difference in chemical shift. Except for noise (reasonably
modeled as Gaussian), the correct edge should match exactly and
have the best score. Thus with respect to the permutation model,
scores are a function of distance within the permutation, perturbed
by a zero mean Gaussian distribution.

In practice there are several other sources of noise, including mis-
sing and extra vertices and incorrect secondary structure labels. In
order to maintain our focus on the problem of dealing with signifi-
cant numbers of noise edges, we ignore here these other sources of
noise and their effects on the assignment algorithm, and save such
analysis for future research.

2.2 Randomized Simplex Rotation Algorithm
A NOESY interaction graph contains geometric information
(Fig. 2). Due to the rapid fall-off of the nuclear Overhauser effect
with distance (proportional to1/r6), detected interactions are bet-
ween protons at most 6̊A apart. Thus NOESY peaks correspond to
“contacts” in a protein structure. The regularity of secondary struc-
ture elements, by geometric and biophysical constraints, produces
regular patterns in a NOESY interaction graph (Fig. 2). The pat-
terns can naturally be represented with simplices aggregated into
polytopes (Erdmann and Rule, 2002), as follows.

A k-simplexis defined by a set ofk + 1 residues that are pair-
wise adjacent in the input graph; here, we consider points (k=0),
segments (1), triangles (2), and tetrahedra (3). Ak-simplex has
(k − 1)-simplices as itsproper faces; the facesof the simplex
include its proper faces, their proper faces, and so forth. For exam-
ple, the proper faces of a triangle are segments and the proper faces
of the segments are points; the faces of the triangle include both
the segments and the points. Twok-simplices whose intersection
is a (k − 1)-simplex areadjacent. A set of k-simplices that are
transitively adjacent define ak-polytope. For a polytope to be well-
formed, an intersection between any two simplices must be a face
of each, and each(k − 1)-simplex must be a proper face of at most
two k-simplices. For example, in aβ-sheet, two triangles can only
share one edge and each edge can appear in at most two triangles.

With this simplex-based representation, we formulate the assi-
gnment problem as follows:

• Input: A NOESY interaction graphG = (V, E) and all
simplicesS formed from edges inE.

• Output: An optimal consistent set ofk-polytopes formed from
a subset of the inputk-simplices.

• Consistency: Polytopes do not intersect; and they obey any
additional constraints (e.g., canonicalβ-sheet structure as in
Fig. 2).
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Fig. 3. Polytope growth in 2D: adding simplex (triangle)r to polytopeP

via shared edgef , in the presence of polytopeQ. Several cases can result:
no conflicts (f is the only intersection), a self conflict (a = b), a boundary
conflict (a = c), or an overlap conflict (a = d). A conflict can be resolved
by rotating a simplex to its new context and performing local modifications
to the polytope(s).

• Optimality: Minimal score for the polytope set, defined as the
total score of edges, plus a penalty for each vertex not in any
polytope.

We focus on simplices and polytopes of a single dimension (homo-
geneous); the discussion section mentions possible extensions.

Our algorithm maintains a setP of consistent polytopes, as well
as a free setS of simplices that don’t appear in any of the current
polytopes. At each iteration, the algorithm either initiates a new
polytope or attempts to grow from a polytopeP ∈ P that has a
simplexs with a free proper facef . Growth adds toP a simplexr
from the free set that is adjacent tos onf . Fig. 3 illustrates the cases.
If the only intersection betweenr andP is f , then we simply addf
to P . If r intersectsP in some other (not necessarily proper) face,
or r intersects some other polytopeQ ∈ P, then there is aconflict.
When faced with a conflict, we can fix up the polytope(s) by moving
a simplex out of its current context into a new one, and perfor-
ming any other modifications necessary to restore consistency (next
paragraph). In deference to the terminology employed by randomi-
zed algorithms for finding Hamiltonian paths (Angluin and Valiant,
1979), we call such simplex movesrotations. Another way to handle
a conflict is simply to decide not to grow with the chosen simplex.
The choice between keeping the original vs. growing and rotating is
made randomly with probabilities proportional to the scores of the
polytopes. Thus the algorithm naturally encourages improving the
current interpretation but may occasionally be more destructive in
order to change direction.

To handle a boundary conflict, the two polytopes are merged
by way of the new simplex. To ensure that the resulting polytope
is well-formed, we may need to add another “bridging” simplex
to complete the simplex adjacency relationship. In Fig. 3, such a
bridging simplex would share the diagonal edge withr and link
the top strand ofP with the bottom strand ofQ (flipping Q upside
down). To handle a self conflict or overlap conflict, all simplices
intersecting the added simplex are removed. If this leads to a poly-
tope that is not well-formed (e.g., the removal leaves a hole), then
the polytope is broken into sub-polytopes by removing additional
simplices. If the removed simplices are contiguous, we create new
polytopes from them directly, rather than adding them back to the
free poolS. While it is possible that a rotation step might cause the
loss of a large number of triangles, in practice (see the results sec-
tion) we found that the we never lost more than 6 correct triangles.
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We also show in the analysis section that the algorithm will still
make progress if the probability of such an event occurring is low.

The generality of our grow/rotate mechanism allows identifica-
tion of arbitrary regular polytopes. In fact, the randomized sequen-
tial cover algorithm of Bailey-Kellogg et al. (2005) can be seen as a
special case of this general framework. That specialization is suffi-
cient to uncoverα-helices in a noisy NOESY graph; while there are
non-sequential(i, i + 3) edges in anα-helix, the main structure is
that of a sequential path, and the “jumps” can be used simply to pro-
vide extra support for a path. Thus for the rest of this paper we will
focus on theβ-sheet case (i.e., 2D), although our method and ana-
lysis can be generalized to other polytopes in finding 3D structures
(see the discussion section).

Algorithm 1 provides pseudocode for theβ-sheet instantiation.
The algorithm repeats the basic growing/rotating process until either
all the data are explained (i.e., each peak is represented by one edge
in P) or until a maximum number of iterations is reached. A signi-
ficant implementation detail is that, in order to efficiently identify
intersections upon simplex growth, we maintain vertex coordinates
in 2D (this can be done uniquely up to rigid-body motions). This
requires updating coordinates of an entire polytope upon merging,
but we found in practice this to be a negligible cost in time. In addi-
tion, we enforce adherence to the canonicalβ-sheet pattern (see
Fig. 2); the discussion section describes possible relaxation of this
rule.

3 RESULTS
In order to gain insights into the behavior of our algorithm, we
study it from three different perspectives—theory, simulation, and
experiment. We first analyze the amount of noise our algorithm can
tolerate under an NMR-specific random graph model that captures
the structure of chemical shift degeneracy, the key source of edge
ambiguity. We show that our algorithm can tolerate a large amount
of ambiguity while still giving optimal performance in expected
polynomial time. We then employ a set of simulation studies, in
which we vary the degree of ambiguity, to show that the algorithm
can recover nearly an entire structure correctly in the presence of
significant noise. We use insights from these simulations to develop
a method for obtaining a posterior confidence score for edges, and
show how to use this in handling missing edges. Finally, we present
our results on experimental data sets, showing that our approach is
able to eliminate a large majority of noise edges and uncover large
consistent sets of interactions.

3.1 Algorithm Analysis
To gain insight into the performance of our algorithm, we analyze
it in a simplified setting under a few assumptions. We assume that
the correct graph is a actually aβ-sheet torus—each triangle is in
the interior and has a full complement of neighbors. Thus we need
not list all the special cases that arise due to boundary effects. We
note that the vertices have a constant maximum degree∆, due to
packing constraints. We assume a scoring model for the edges such
that the expected score for a correct edge is larger than that for a
noise edge (as is the case under our Gaussian model). Thus, if we
try to grow from a correct edge in a polytope, we choose a correct
triangle with probability> 1/2, since with high probability (i.e.,
1 − o(1)) there is at most one wrong triangle per correct edge (cf.
Lemma 1). Finally, we assume that there is some functionf such

Data: NOESY interaction graphG = (V, E) and all triangles
S formed from edges inE

Result: SetP of polytopes (triangulations)
initializeP with ∅;
repeat

choose at random a vertexv ∈ V , such that eitherv /∈ P
(unvisited) orv has at least one edge appearing in only one
triangle in a polytopeP ∈ P;
if v is unvisitedthen

choose a triangler ∈ S with v as a vertex, with
probability proportional to its score;

else
choose an edgee incident onv which appears in only
one triangles in P ;
choose a triangler ∈ S − {s} that also has edgee,
with probability proportional to its score;

end
if r conflicts with trianglesC in P then

randomly choose betweenr andC with probability
proportional tor’s score and the sum of scores ofC;
if chooser then

remove trianglesC from their polytopes (breaking
the polytopes if necessary);
S ← S

S
C;

addr and its vertices and edges toP (merging
polytopes if necessary);

end
else

if v is not in a polytopethen
create a new polytopeP containingv;

end
addr and its vertices and edges tov’s polytopeP
(merging polytopes if necessary);
P ← P

S
{P};

end
until P explains all data, or MAXITER iterations performed;
return P;

Algorithm 1 : Randomized simplex rotation algorithm.

that any rotation removesk correct triangles with probability at most
f(k). This function is determined by the quality of scores: the better
the quality of scores, the smaller the probability of breaking correct
triangles. We can precisely characterize this probability with respect
to a particular scoring model (e.g., Vitek et al., 2004, 2005), but
the exact form is not crucial to our analysis. In practice we found
f(k) = 0, for all k ≥ 6. We will denote byM =

P∞
k=1 kf(k) and

V = (
P∞

k=1 k2f(k))−M2, the mean and variance of the number
of correct triangles removed in an iteration. As we have observed
in practice, we assume thatM andV are bounded by some fixed
constant (independent of the size of the graph).

We account for the correlated noise structure of NMR interaction
graphs by employing the random graph model of Bailey-Kellogg
et al. (2005), described in Section 2.1. Given a window widthw
defining the amount of chemical shift degeneracy, a correct graph is
corrupted by generating for each edge a set of noise edges replacing
the original from-node with vertices within distancew of it in a
random vertex permutation (modeling chemical shift order).
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We now proceed to characterize the algorithm’s performance on
a corrupted version of a graph withn correct triangles, in terms of
the noise parameterw. We show that, ifw = o(n1/4), then the
algorithm makes progress towards finding then-triangle polytope
and is expected to find it in polynomial time (as in a “gambler’s
ruin” problem (Grimmett and Stirzaker, 1992)). Thus the algorithm
can tolerate a relatively large amount of noise.

We model the progress of the algorithm, over its iterations, as a
random walk on a line from0 to n, with positioni indicating that
the current polytope hasi of the correct triangles. Since we have a
β-sheet torus, we can assume without loss of generality that in each
iteration, the algorithm chooses to grow from a particular triangle
via one of its edges. We also assume, without loss of generality,
that it starts from a correct edge in the very first iteration. We call
the state of the algorithm at each iterationprogressiveif the chosen
triangle is correct, andregressiveotherwise. To show that the algo-
rithm makes progress, we bound the of number of correct triangles
that can be removed in any state.

LEMMA 1. Supposew = o(n1/4). Given an edgee, the proba-
bility p of an incorrect triangle existing withe as one of its edges
is 1 − (1 − ∆w

n
)∆w ≈ (∆w)2/n, where∆ (a constant) is the

maximum number of correct edges from any vertex. Furthermore,
the probability that there exists a correct edge with more than one

wrong triangle is≈ (∆w)4

n
= o(1).

PROOF. Let edgee = (i, j). The number of incorrect edges
to j is ∆w. An incorrect triangle with edgee exists if for any of
the wrong edges(k, j), there exists an incorrect edge(i, k). The
probability that this edge exists is∆w/n by our random graph
model. Therefore, the probability that no such triangle exists is
p0 = (1 − ∆w

n
)∆w. The probabilityp that it does is therefore

1 − (1 − ∆w
n

)∆w ≈ (∆w)2/n (for largen). The probability that
exactly one such triangle exists isp1 = ∆w(1− ∆w

n
)(∆w−1)(∆w

n
).

The probability that at least two wrong triangles exist is therefore

1− (p0 + p1) ≈ 1− (1− (∆w)2

n
+ (∆w)2

n
(1− (∆w)2

n
)) = (∆w)4

n2 .
By the union bound, the probability of at least two wrong triangles

for any correct edge is(∆w)4

n
. �

THEOREM 1. Let M and V be the mean and variance of the
number of correct triangles removed in an iteration. As assumed
earlier, letM andV be bounded above by a constant (independent
of n). If w = o(n1/4) and0 ≤ M ≤ 1/3, then the algorithm finds
all n correct triangles in expected polynomial time.

PROOF. In a progressive state the expected number of correct tri-
angles added is at least1/2 since, according to our assumption, with
probability at least1/2 we add a correct triangle, and the probabi-
lity of removing another correct triangle conditioned on the event
of adding a correct triangle is zero (e.g., Pandurangan, 2005). The
expected number of correct triangles lost in a progressive state is
at most(1/2)M . Hence the expected gain in correct triangles in a
progressive state is at least(1/2)(1−M).

Now consider a regressive state. We cannot add a correct trian-
gle, but we can bound the number of correct triangles lost in a
sequence of regressive states before returning to a progressive state.
If w = o(n1/4), the probability that we enter a regressive state from
any state can be bounded byp (by Lemma 1) and hence the expected
number of successive regressive states before we return to a progres-
sive one is bounded by1/(1 − p). The expected number of correct

triangles removed in a sequence of regressive states can be bounded
by 1

1−p
M .

For a net positive drift in progressive and regressive states we
want

1/2(1−M)− (1/(1− p))M > 0

By the Lemma,p ≈ (∆w)2/n, so

(∆w)2/n < 1− 2M

1−M
,

which yields the condition that

w <
1

∆

s
n

„
1− 2M

1−M

«
= O(n1/2)

Havingw = o(n1/4) satisfies both the condition of Lemma 1 and
the above progress condition. For expected drift to be positive,p
needs to be positive and hence0 ≤M ≤ 1/3. Polynomial expected
time can be shown using standard probabilistic techniques (e.g., Fel-
ler, 1968, Chapter 14), since each iteration takes polynomial time,
the varianceV is bounded, and the expected drift is positive over an
expected constant (1 + 1/(1− p)) number of steps. �

In effect, the theorem also shows the conditions under which there
is enough information in the data, i.e., conditions under which it is
possible to perform resonance assignment using sparse data sets. In
a qualitative sense, our theoretical analysis predicts that if the noise
is not large, our randomized rotation algorithm will converge to the
optimum in a polynomial number of steps. Our simulation studies,
described next, agree well with this prediction, showing that our
algorithm tolerates noise as high as 500%.

3.2 Simulation Studies
We started with aβ-sheet graph with 100 triangles, configured as
eleven 6-residue strands, for a total of 66 vertices and 215 edges.
This large graph allows us to readily study the behavior of our algo-
rithm under varying noise and sparsity. It also demonstrates that
our algorithm is efficient enough to handle graphs much larger than
would be possible with exhaustive search algorithms.

We generated noise edges for this graph according to the random
graph model described in the methods section, varying the win-
dow sizew to control the amount of chemical shift degeneracy. We
tested with window sizes up to 5, yielding up to 1075 noise edges
obscuring the 215 true edges. For each test, we formed random per-
mutations of the residues individually for Hα and HN (representing
sorting by the corresponding chemical shift), and generated noise
edges for each true edge by replacing the from-node with each other
node within a distance ofw in the appropriate permutation. This
simulates ambiguity introduced by chemical shift degeneracy. We
set an edge’s score toe−(x−µ)2 wherex is the position in the win-
dow generating the edge,{−w/2, . . . ,−1, 0, 1, . . . , w/2} (0 for
the true edge), andµ ∼ N (0, (w/4)2). This approach follows typi-
cal scoring rules (e.g., Zimmerman et al., 1997; Güntert et al., 2000;
Vitek et al., 2004, 2005).

Our theoretical analysis (in a simplified setting) predicts that in
the low noise case, the algorithm makes progress, i.e., the number
of correct triangles it uncovers increases with time until it recovers
the entire structure. We measured the progress of the algorithm for
varying amounts of noise with complete data (no missing edges).

5



Kamichetty et al.

 0

 20

 40

 60

 80

 100

 0  10000  20000  30000  40000

# 
co

rr
ec

t t
ria

ng
le

s

# iterations

w = 1
w = 2
w = 3
w = 4
w = 5

Fig. 4. Number of correct triangles selected by the algorithm as a function
of the number of iterations. The amount of noise varies from 1 to 5 incorrect
edges for every correct one.

 100

 200

 300

 400

 500

 0  0.2  0.4  0.6  0.8  1

# 
ed

ge
s

usage score threshold

correct edges
noise edges

Fig. 5. Number of correct (red) and wrong edges (green) exceeding usage
score values, forw = 4 and 20 missing edges.

Fig. 4 shows that for the low noise cases (w = 1 or 2, i.e., 100–
200% noise), the algorithm makes progress and uncovers the entire
sheet quickly (less than 1000 iterations). As the noise increases, the
rate of progress of the algorithm generally decreases while the num-
ber of mistakes (due to which the rate of progress is not monotone)
increases. (Due to randomization, progress is better for this particu-
lar w = 4 run than for thew = 3 one.) The algorithm recovers most
of the structure, even for high values ofw (as much as 500% noise).

The algorithm takes significantly longer forw = 5 than for the
other cases. To gather intuition for the abrupt change, we measu-
red how often the algorithm chose the correct triangle at each step
(closely related to the probability of progress when

P
kf(k) is low,

as in our case). We found that the average frequency of making the
correct choice was0.48 whenw = 4 but only around0.37 when
w = 5. Thusw = 5 was the first case when the probability of pro-
gress fell well below0.5, resulting in a significant increase in the
running time as predicted by our analysis.

While our focus here is on handling significant noise and ambi-
guity, in order to analyze experimental data we need to handle the
missing edges of incomplete data sets. To simulate this, we ran-
domly removed differing fractions (up to 10%) of the correct edges.
Fig. 6(left) shows the number of correct triangles recovered in each
case. The results show that while in the low noise case the algorithm
is able to recover the rest of the correct triangles, as the noise incre-
ases the number of triangles found decreases rapidly. For example,
with w = 2, when 15 edges are missing, the algorithm is able to
recover around 70 out of the 85 correct triangles present. However,
with w = 4, the algorithm recovers only 60 triangles and withw =
5, the number of triangles recovered falls further to 40.

With missing data and high amounts of noise, it might not be pos-
sible to recover the entire sheet. However, we still expect to find
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Fig. 6. Performance of the algorithm under varying amounts of noise (w

from 1 to 5) and missing edges (0 to 20): (left) without and (right) with edge
reconstruction.

sizable chunks of the sheet during the process of growing. We then
need to estimate our confidence for every edge. To do this, we use
the following observations. (1) A good triangle is consistent with the
global structure of a sheet and should therefore be used frequently
(in different polytope states) during growing. (2) The dependency
between adjacent triangles is strong. Thus, we have more confidence
in a triangle which is surrounded by (good) triangles. (3) Since it is
less likely that a large number of bad triangles can conspire to form
a consistent polytope, we have more confidence in a triangle which
appears in a big polytope than one which appears in a small poly-
tope. We encapsulate these observations in a “usage score”: for each
step of the algorithm in which a triangle is used in some polytope,
we increment its usage score by the sum of its score and those of
its neighbors, weighted by the size of the polytope. A triangle that
appears frequently, in a big polytope, surrounded by good neigh-
bors thus gets higher usage score than one that does not. We split a
triangle’s score equally among its edges, and normalize edges gene-
rated for the same spectral peak (i.e., those produced by chemical
shift degeneracy) to obtain confidences. Any edge with a confidence
greater than a cutoff value is classified as a correct edge.

In Fig. 5, we show the number of correct and wrong edges excee-
ding different usage score thresholds for one of the noisier cases
(w = 4, 20 missing edges). Most wrong edges have low scores,
and their number falls off rapidly as the threshold increases; on the
other hand, most correct edges have high scores. Since the results
are fairly insensitive to a broad range of thresholds, we use 2/3 as
the threshold in the remainder. For a peak to be assigned, the highest
scoring edge for the peak must therefore have a score at least twice
as high as the sum of the scores of the remaining edges for the peak.

To counter the problem of missing edges, we “reconstruct” mis-
sing edges for which there is reasonable evidence that they exist.
Since experimental data (and geometric intuition) suggest that inβ-
sheets, HN edges are more prone to be missing, we reconstruct only
that type of edge. If either of the two HN edges needed to form a tri-
angle is missing, we create it. Each such reconstructed edge gets a
low score (one standard deviation out, a value empirically consistent
with experimental data). To prevent the addition of too many incor-
rect edges in this process, we add edges only if the existing edges
have a high score. We first grow with edges reconstructed according
to the input score, and we then iterate the process, using the usage
score from one round to restrict reconstruction for the next round.
Note that we use the usage scores from the previous run only in
reconstruction; our growing algorithm uses the original scores in all
its decisions.

Fig. 6(right) shows the percentage of correct edges identified
using this method. The performance of the algorithm improves
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significantly when there are a reasonable number of missing edges.
For example, when there are 6 (3%) missing edges, the algorithm
identifies around 20 (10%) more edges correctly when edges are
reconstructed than when they are not. However, as the number of
missing edges increases, the improvement in the performance of the
algorithm decreases. For example, when there are around 15 (7%)
missing edges, the improvement in performance is only around 2–6
more edges (1–3%). Thus while reconstructing edges does improve
performance, it is most effective when there is only a moderate
amount of sparsity.

3.3 Experimental Data
We study the results of our algorithm on experimental data sets
from four proteins: Human Glutaredoxin (HUGRX) and Core Bin-
ding Factorβ (CBF), as previously reported (Bailey-Kellogg et al.,
2000), as well as two larger data sets, the catalytic domain of
GCN5 histone acetyltranferase (GCN5) and single chain T cell
receptor (SCTCR). In each case, a graph was constructed from the
experimental NOESY peaks, restricted to knownβ-sheet residues
(simulating high-quality HNHA) and scored according to our Gaus-
sian model. We ran our algorithm to compute usage scores, and used
the determined scores to reconstruct edges. We then ran our algo-
rithm again with the modified graph, and used the resulting usage
scores to select edges for output.

Fig. 7 illustrates theβ-sheets identified for CBF and GCN5 using
the edges selected by our algorithm. For CBF, 58 of the 89 correct
edges are recovered and all but 17 of the 111 incorrect edges are eli-
minated. Most of the false positives (not illustrated) are due to the
fact that the last strand (connecting vertices 55–58 to vertices 65–
68) is very poorly connected to the rest of the sheet. Therefore the
two polytopes corresponding to this strand and the rest of the sheet
do not form a consistent set (residue 58 is present in both). Instead,
the algorithm selects edges from these residues to other parts of the
sheet. The other errors occur around residues at the end of the first
strand (103, 104, 108, 109) which again are loosely connected to

Protein correct noise true-+ false-+ Spec. Sens.

HUGRX 29 26 10 1 0.95 0.34
CBF 89 111 58 17 0.65 0.65
GCN5 124 142 79 11 0.80 0.64
SCTCR 174 373 117 68 0.46 0.68

Table 1. Summary of results on experimental datasets. Each protein is cha-
racterized by the number of correct and noise edges in the input graph.
Results indicate the number of true and false positive edges identified by
our algorithm, summarized in specificity (true-− / (true-− + false-+)) and
sensitivity (true-+ / (true-+ + false-−)).

the sheet. For GCN5, we identify 79 of the 124 correct edges and
eliminate all but 11 of the 142 incorrect ones. Our algorithm yields
some reasonable alternate assignments for a few peaks — not the
same as those determined by the experimentalist, but still consistent
with the structure of theβ-sheet. As with CBF, most of the errors are
in incomplete regions. For example, residues 5, 58, 57 and 62 are
connected to the rest of the sheet with only one correct edge each.
However they are connected with noise edges to other parts of the
sheet, causing errors in assignment. Another source of errors is vio-
lations of canonicalβ-sheet structure between 79 and 80. Again,
due to noise edges, there are alternate assignments (selected by
the algorithm) which meet the canonical structure. The reasons for
some errors aren’t immediately obvious. For example, residue 51 is
connected by two edges to the sheet. It is however incorrectly assi-
gned. This was due to the fact that the peak corresponding to the
(correct) edge from residue to 51 to 52 also explains the (wrong)
edge between 11 and 52. Furthermore, residue 52 has noise edges
with good scores connecting it to 154, leading to a feasible alternate
assignment.

Tab. 1 summarizes the results on all experimental datasets. The
sensitivity on HUGRX and CBF is similar to that of Jigsaw (Bailey-
Kellogg et al., 2000); the specificity is a bit lower, in a trade-off
for being able to handle larger and noisier datasets such as GCN5
and SCTCR. For SCTCR, our largest, noisiest, and sparsest data-
set, the algorithm yields a number of false positives. One of the
reasons is that, unlike the other test cases, SCTCR has 3 different
β-sheets. It is possible to consistently connect vertices at the ends
of two sheets, and our algorithm could be fooled in this manner. A
peculiarity of this dataset is the number of deviations from the cano-
nical β-sheet structure. This, along with missing edges, explains
many of the assignment errors. For example, due to incomplete data,
residues 92 and 242 are poorly connected to their sheets. Howe-
ver, 92 has noise edges to 243 and 75, both residues being towards
the end of their strands. Thus these noise edges are consistent with
the expected structure of aβ-sheet, and form a largerβ-sheet using
some of the correct edges. We discuss below possible extensions for
non-canonicalβ-sheet structure.

4 DISCUSSION
This paper shows that a naturalreuse-based randomized algorithm
can be quite successful in overcoming significant noise and ambi-
guity in contact-based resonance assignment. We demonstrated in
earlier work (Bailey-Kellogg et al., 2005) that a special case of the
reuse approach was successful in finding long paths for sequential
backbone assignment and for uncoveringα-helices in NOESY data.
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The present work significantly generalizes the paradigm of sub-
graph reuse and, in fact, shows that this is even more effective for
uncovering higher-order patterns such asβ-sheets.

We focus here on the information content available in hypothe-
sized connectivity alone. This complements investigations into the
proper modeling and use of amino acid type information in assi-
gnment (e.g., Pons and Delsuc, 1999; Güntert et al., 2000; Marin
et al., 2004; Vitek et al., 2004, 2005). In practice, an integrated
approach could help reduce the impact of incorrect edges, and could
provide another constraint on hypothesized missing edges.

In our study of connectivity information, we accounted for chemi-
cal shift degeneracy, the key source of combinatorial explosion, and
developed an algorithm able to handle a large amount of degeneracy
(up to 500%). However, we did not study the impact of such noise
factors as missing and extra vertices and incorrect secondary struc-
ture labels. In the experimental datasets we have used here and in
other studies (Vitek et al., 2005), we have found only a small num-
ber of missing vertices, randomly distributed. Their effect on the
algorithm would simply be to artificially break polytopes, and there
appears to be little to be gained in explicitly accounting for them.
Uncertain secondary structure labels present a more important prac-
tical concern, and we could readily extend our graph and algorithm
to incorporate a probabilistic label. Results with Jigsaw (Bailey-
Kellogg et al., 2000) show that enforcing consistentβ-sheet patterns
is the key to successful assignment, trumping noise in secondary
structure labels.

Although our study concentrates on the effects of noisy edges,
practical concerns require us to deal with missing edges as well.
Since our analysis and simulation studies suggest that our algorithm
is robust to noise, we hypothesize that errors for the experimental
datasets are due primarily to missing edges. We devised a simple
test, extending the experimental graphs with simulated data for the
missing edges, along with noisy edges (w = 2) due to chemical
shift degeneracy according to the chemical shift data in the BioMa-
gResBank (Seavey et al., 1991). In the case of GCN5, our algorithm
found a total of 130 (up from 79) correct edges with 20 false posi-
tives. For CBF, our algorithm found 78 correct edges (up from 57)
with 21 false positives. This significant improvement suggests that
missing edges do cause most of the errors.

The presented algorithm deals with the regular graph patterns
displayed byβ-sheets. Our general mechanism for subgraph reuse
could also be applied in more complex cases in which the desired
graph (or its subgraph components) is known, and the goal is to
find it within a corrupted instance. A three-dimensional (tetrahe-
dral) version would support assignment given a known structure or
high-quality homology model. A non-homogeneous representation
would be required to stich together subgraphs of mixed dimension.
Similarly, to allow “non-canonical”β-sheets without artificially
reconstructing missing edges, we could move from a simplex repre-
sentation to a more general cell complex representation. Edges
for interactions with side-chain protons could be incorporated, and
might be particularly useful in the three-dimensional case. These
extensions do come at some increase in implementation comple-
xity, since regularity yields a simple data structure and efficient
conflict test (current polytopes have a unique embedding up to rigid
motions). The work presented here represents a major step in the
development of an algorithmic basis for contact-based backbone
assignment and shows the way forward for these future goals.
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Grishaev, A. and M. Llińas (2002). CLOUDS, a protocol for deriving a molecular
proton density via NMR.PNAS 99, 6707–6712.

Güntert, P., M. Saltzmann, D. Braun, and K. Wüthrich (2000). Sequence-specific
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