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Abstract. Authorization policies are not stand-alone objects: they are
used to selectively permit actions that change the state of a system.
Thus, it is desirable to have a framework for reasoning about the semantic
consequences of policies. To this end, we extend a rewriting interpretation
of linear logic with connectives for modeling affirmation, knowledge, and
possession. To cleanly confine semantic effects to the rewrite sequence, we
introduce a monad. The result is a richly expressive logic that elegantly
integrates policies and their effects. After presenting this logic and its
metatheory, we demonstrate its utility by proving properties that relate
a simple file system’s policies to their semantic consequences.

1 Introduction

Security-sensitive systems typically specify, if only informally, both policies and
their semantic effects. There is a close interplay between the two: the policies are
intended to permit the execution of only those operations that have semantic
consequences deemed to be safe. For example, a file system policy might be “A
principal may read a file if the file’s owner permits it,” while the semantic effect
might be “If a read request is permitted by the policies, then the requesting
principal may learn the file’s contents.”

Despite its critical importance, for most systems, the interface between poli-
cies and their semantics is rarely analyzed in a formal, rigorous manner. We
contend that only such an analysis can provide the high-level assurance of cor-
rectness that is so crucial for security-sensitive systems.

Our goal in this work is therefore to develop a general method for formally
representing a system and reasoning about the interface between its policies and
their semantic effects.

Cervesato and Scedrov’s rewriting view of linear logic, embodied in their ω
system [1], is an attractive launching pad toward our goal for two reasons. First,
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being based on linear logic [2], a logic of consumable resources, it inherently
supports mutable state. This will be central to modeling changes in the system
of interest. Second, most systems are concurrent, and ω has been shown to
encompass a wide variety of state- and process-based concurrency formalisms.

To construct ω, Cervesato and Scedrov identify a fragment of a Gentzen-style
sequent calculus for linear logic that consists primarily of left rules. They then
view the assumptions in a sequent as representing a state, with the sequence of
assumptions along a derivation corresponding to a rewrite sequence. By abandon-
ing an ingrained emphasis on the finiteness of a derivation, such rewrite sequences
are potentially unbounded, making it possible to model the infinite executions
often assumed for concurrent systems. To simplify their system, Cervesato and
Scedrov inline the minor premise of the left rule for implication as part of the
main rewrite sequence; thus all derivations are unbranched.

Despite its appeal, ω is not entirely satisfactory for our goal of modeling and
reasoning about policies and their semantic effects. One shortcoming is the lack
of modal operators to capture the knowledge and intent of principals. This means
that these concepts would need to be represented as ordinary atomic predicates,
which lack logical force. Therefore, we require the addition of special purpose
connectives, including a says-like connective [3] to model principals’ policies and
intent, and epistemic connectives to model the semantic concepts of knowledge
and possession.

Conceptually, we would like to place policies and their semantic effects in
separate layers: simply checking if access would be granted under some policy
should not induce an effect on a system’s state. (Proof-carrying authorization [4,
5] also makes this distinction implicitly by separating proof construction by the
user from proof verification and subsequent granting of access by the reference
monitor.) Moreover, in proving properties that relate policies to their semantic
consequences, it will be helpful if the rewrite sequence corresponds to the changes
in the system’s state and not the policy manipulations.

For these reasons, we do not want to inline the policy portions of the deriva-
tion into the rewrite sequence. Thus, Cervesato and Scedrov’s simplification
to unbranched derivations is no longer applicable. However, by permitting side
branches, we introduce a problem: semantic effects can now occur in branches.
They may therefore be invisible in the rewrite sequence, which focuses exclusively
on the main branch of the derivation.

To resolve this problem, we borrow the idea of a monad [6] as an isolating
device for derivations from the linear logic programming language LolliMon [7].
By marking the main branch of a derivation with the monad, we can confine
the semantic effects, and only the effects, to the main branch, ensuring that the
rewrite sequence corresponds exactly to the sequence of effects.

We also borrow the use of Andreoli’s focusing methodology [8] from LolliMon
to eliminate don’t-care and reduce don’t-know nondeterminism in derivations.
This limits the number of derivations of a given sequent, making it easier to
enumerate the possible rewrite derivations for a system and thereby prove system
properties. Focusing also ensures that semantic effects are applied atomically.
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The contributions of this paper are two-fold. First, we develop a novel rewrit-
ing interpretation of a linear logic having lax modalities for modeling policies
and having S4 modalities for modeling knowledge and possession, a substantial
extension of both ω and LolliMon. The S4 modalities also serve to provide each
principal with local state. To the best of our knowledge, this integration of poli-
cies, their semantics, and local state in a single framework makes the logic more
expressive than existing rewriting systems.

Second, we demonstrate the utility of our rewriting interpretation by prov-
ing some properties about the interface between policies and semantics for a
hypothetical file system. Though this system is small and simple, we believe it
strongly suggests that our approach will generalize to more realistic examples.

Organization of the Paper. The focused logic is presented in Sect. 2. We formalize
our notions of state and rewrite step in Sect. 3. In Sect. 4, we leverage these ideas
to prove a few properties of a hypothetical file system. Finally, Sect. 5 gives a
brief overview of related work.

2 A Weakly Focused Sequent Calculus

In this section, we present a focused linear logic of affirmation, knowledge, and
possession. Andreoli’s focusing methodology [8] for sequent calculi reduces the
number of nondeterministic choices made in a derivation in three ways: eagerly
applying invertible rules, which are rules whose conclusion imply the premises;
chaining non-invertible rules together; and controlling the use of atomic propo-
sitions in initial sequents. For technical reasons, we choose to present a weakly
focused logic in which eager application of invertible rules is not mandatory.

2.1 Syntax

We assume the following polarized syntax of propositions. Positive (negative)
propositions are those with invertible left (resp., right) rules and non-invertible
right (resp., left) rules.

A+ ::= p+ | A+ ⊗B+ | 1 | ∃x:τ.A+ | !A− | [K]A− | [[K]]A− | A−
A− ::= p− | A+ (B− | ∀x:τ.A− | 〈K〉A+ | {A+}

Special note should be taken of the existence of an implicit coercion from negative
propositions, A−, to positive propositions.

Standard Propositions from Linear Logic. Atomic propositions of both polarities,
p+ and p−, are included. A+⊗B+ is multiplicative conjunction; it represents the
simultaneous existence of resources A+ and B+. Its unit is 1, which represents
the empty set of resources. A+ ( B− is linear logic’s form of implication, in
which resource A+ is consumed to produce resource B−. !A− is the exponential,
and stands for an unrestricted number of copies (including zero) of resource A−.
∃x:τ.A+ and ∀x:τ.A− are first-order existential and universal quantification over
terms of type τ , respectively.
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Affirmation: 〈K〉A+. To model a principal’s policies, or affirmations, we follow
Garg et al. [9] and adopt a family of lax modalities [10], 〈·〉, indexed by principals,
which we polarize for our purposes. That is, 〈K〉A+ is read “principal K says
A+.” Each of these (unpolarized) lax modalities, 〈K〉, satisfies the following
axioms:

` A( 〈K〉A (T)
` 〈K〉(A(B) ( 〈K〉A( 〈K〉B (K)
` 〈K〉(〈K〉A) ( 〈K〉A (4)

We assume that every principal K is rational: it is willing to affirm any true
statement (T). (The converse, in general, does not hold because malicious or
ignorant principals may affirm false statements.) K’s affirmations are closed
under logical consequence (K). Finally, K should trust its own affirmations (4).

The choice of these axioms is by no means the only possible one, and indeed
there is much discussion in the literature on alternative axioms for affirmation
(see, e.g., [11]). However, the lax axioms represent a simple, and, as argued in [9,
12], reasonable, choice, permitting us to focus on issues relevant to the interface
between the policy and semantic layers. Moreover, we believe that the results of
this paper will easily extend to systems with other forms of affirmation.

Knowledge: [[K]]A−. Because we need to model the semantic concept of a prin-
cipal’s potential knowledge, we also borrow a family of S4 epistemic modalities
indexed by principals, [[·]], from Garg et al. [9]. (We again polarize the modali-
ties.) That is, [[K]]A− is read “principal K is capable of knowing A−.” Being an
S4 modality, each (unpolarized) [[K]] satisfies the following rule and axioms:

` A
` [[K]]A (nec)

` [[K]](A(B) ( [[K]]A( [[K]]B (K)
` [[K]]A(A (T)
` [[K]]A( [[K]]([[K]]A) (4)

Because we interpret [[K]]A as potential knowledge of A, and not immediate
knowledge of A, we are justified in assuming that each principal K is capable of
knowing all theorems (nec) and of reasoning logically from his potential knowl-
edge (K). If a principal K can know (contrast with belief) a fact, then that fact
will be provably true (T). Finally, K should be able to reflect upon his own
knowledge (4).

Possession: [K]A−. We also borrow the modality [K]A− (appropriately po-
larized) from Garg et al. [9] to model principals’ possessions. [K]A− is read
“principal K can possess resource A−.” Possession, like knowledge, is private.
But, unlike knowledge, possessions are expendable. For this reason, [K]A− is the
linear form of [[K]]A−, and also an S4 modality.

Monad: {A+}. As alluded to in the introduction, we include a monad (lax
modality) [6, 10] to mark the main branch of a derivation, following a related
use in LolliMon [7].
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2.2 Judgments

Following Martin-Löf’s philosophy [13], we now present the judgments that com-
pose our sequent calculus. There are three forms of sequent:

Neutral Γ ;∆ ` J
Right Focusing Γ ;∆ ` [A+]
Left Focusing Γ ;∆, [A−] ` J

Neutral sequents permit invertible left and right rules to be applied, and allow
transitions to right and left focusing sequents. Right and left focusing sequents
chain non-invertible right and left rules together, respectively. The polarized
syntax was chosen so that propositions with non-invertible right and left rules
are positive and negative, respectively. Thus, we need only consider right focusing
for positive propositions and left focusing for negative propositions.

Both unrestricted assumptions, Γ , and linear assumptions, ∆, are permitted:

Unrestricted Assumptions Γ ::= · | Γ,A− valid | Γ,K knowsA−

Linear Assumptions ∆ ::= · | ∆,A+ hyp | ∆,K hasA−

The judgments A− valid and K knows A− represent assumptions about the ex-
istence of resource A− and K’s knowledge of A−, respectively. They are un-
restricted in the sense that they may be used any number of times (including
zero) in the sequent’s derivation. The single-use counterparts to validity and
knowledge are the judgments A+ hyp and K hasA−: they must be used exactly
once in the sequent’s derivation. We overload ‘·’ to stand for empty contexts of
unrestricted and linear assumptions.

There are three forms of consequents J : A− true represents the existence of
resource A−; K affirms A+ is the judgmental form of 〈K〉A+; and A+ lax is the
judgmental form of {A+}.

Consequents J ::= A− true | K affirmsA+ | A+ lax

Note that we will typically omit the judgment labels valid, hyp, and true for
the sake of brevity; the intended labels can always be inferred from the context.

2.3 Inference Rules

The full set of inference rules for the weakly focused sequent calculus is given in
Fig. 1. However, we now describe a few rules in detail.

atom− Rule. When p− is under left focus, the consequent must be p−: there is
no other left focal rule for negative atoms.

(L Rule. When A+ ( B− is under left focus, the available resources ∆1, ∆2

must be split, with ∆1 used to prove the precondition A+ under right focus. We
are then justified in assuming B−, and must prove the consequent J from ∆2

and B−; left focus is retained on B−.

5



Initial Sequents

Γ ; p+ ` [p+]
atom+

Γ ; [p−] ` p− atom−

Positive Connectives

Γ ;∆1 ` [A+] Γ ;∆2 ` [B+]

Γ ;∆1,∆2 ` [A+ ⊗B+]
⊗R

Γ ;∆,A+, B+ ` J
Γ ;∆,A+ ⊗B+ ` J

⊗L

Γ ; · ` [1]
1R

Γ ;∆ ` J
Γ ;∆,1 ` J 1L

Γ ;∆ ` [[t/x]A+]

Γ ;∆ ` [∃x:τ.A+]
∃R

Γ ;∆, [a/x]A+ ` J
Γ ;∆,∃x:τ.A+ ` J

∃a
L

Γ,A−;∆, [A−] ` J
Γ,A−;∆ ` J

copy
Γ ; · ` A−

Γ ; · ` [!A−]
!R

Γ,A−;∆ ` J
Γ ;∆, !A− ` J

!L

Γ ;∆, [A−] ` J
Γ ;∆,K hasA− ` J

hasL

Γ |K ;∆|K ` A−

Γ ;∆|K ` [[K]A−]
[]R

Γ ;∆,K hasA− ` J
Γ ;∆, [K]A− ` J

[]L

Γ,K knowsA−;∆, [A−] ` J
Γ,K knowsA−;∆ ` J

knowsL

Γ |K ; · ` A−

Γ ; · ` [[[K]]A−]
[[]]R

Γ,K knowsA−;∆ ` J
Γ ;∆, [[K]]A− ` J

[[]]L

Γ ;∆ ` A−

Γ ;∆ ` [A−]
blur

Γ ;∆, [A−] ` J
Γ ;∆,A− ` J

lfoc

Negative Connectives

Γ ;∆,A+ ` B−

Γ ;∆ ` A+ (B− (R

Γ ;∆1 ` [A+] Γ ;∆2, [B
−] ` J

Γ ;∆1,∆2, [A
+ (B−] ` J

(L

Γ ;∆ ` [a/x]A−

Γ ;∆ ` ∀x:τ.A−
∀a

R

Γ ;∆, [[t/x]A−] ` J
Γ ;∆, [∀x:τ.A−] ` J

∀L

Γ ;∆ ` [A+]

Γ ;∆ ` K affirmsA+
affirmsR

Γ ;∆ ` K affirmsA+

Γ ;∆ ` 〈K〉A+
〈〉R

Γ ;∆,A+ ` K affirms C+

Γ ;∆, [〈K〉A+] ` K affirms C+
〈〉L

Γ ;∆ ` [A+]

Γ ;∆ ` A+ lax
laxR

Γ ;∆ ` A+ lax

Γ ;∆ ` {A+}
{}R

Γ ;∆,A+ ` C+ lax

Γ ;∆, [{A+}] ` C+ lax
{}L

Fig. 1. Inference rules for the weakly focused sequent calculus
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(·)|K = · (·)|K = ·
(∆,A+ hyp)|K = ∆|K (Γ,A− valid)|K = Γ |K

(∆,K hasA−)|K = ∆|K ,K hasA− (Γ,K knowsA−)|K = Γ |K ,K knowsA−

(∆,L hasA−)|K = ∆|K if L 6= K (Γ,L knowsA−)|K = Γ |K if L 6= K

Fig. 2. Restriction operator |K used in Fig. 1

hasL, []R, and []L Rules. We can use any possession K has A− by left focusing
on its component A− because the possession represents ownership of an existing
resource A− (hasL rule). To establish [K]A−, i.e., that K possesses A−, we must
show A− using only K’s knowledge and possessions, ensured by the restriction
operator |K on the assumptions ([]R rule). Finally, [K]A− is the propositional
form of the judgment K hasA− ([]L rule).

{}L Rule. When the monad {A+} is under left focus, we are justified in assum-
ing A+ and blurring the focus, provided that the consequent is a lax judgment.
This proviso (and the existence of no other left focal rule for {A+}) implies that
assumptions with monadic heads may only be used under lax consequents. More-
over, there is no other rule that terminates left focusing with a lax consequent.

These properties will be crucial to our approach. By careful construction of
the formal policies and semantic actions to ensure that the lax judgment appears
only on the main branch of the derivation and that only semantic actions have
monadic heads, we can ensure that semantic effects only occur along the main
branch. This will keep the resulting rewrite sequence sensible and further reduce
the space of available derivations, making it easier to prove properties of systems.

2.4 Metatheory

In our sequent calculus, the meanings of the connectives are given entirely by
their left and right rules, along with the necessary judgmental rules. We must
ensure that these rules respect the meaning of a sequent, consisting of two prop-
erties: the admissibility of cut and identity principles. The statements and proofs
of these properties are left to a companion technical report [14].

3 Notions of State and Rewrite Step

Having presented the inference rules of our sequent calculus, we can now make
formal the notions of state and rewrite step alluded to in the introduction.

Like Cervesato and Scedrov [1], we define a state as a pair of contexts Γ ;∆.
However, we make the additional restriction that all possible invertible left rules
have been applied:

Definition 1 (State). A pair of contexts Γ ;∆ is a state if and only if ∆ fits
the following grammar:

∆ ::= · | ∆,A− hyp | ∆, p+ hyp | ∆,K hasA−

7



A rewrite step occurs by using an assumption to transform the state:

Definition 2 (Rewrite Step). The rewrite step Γ ;∆ −→ Γ ′;∆′ holds if and
only if there exists a derivation of the form

Γ ′;∆′ ` C+ lax
...

Γ ;∆2, A
+
2 hyp ` C+ lax

Γ ;∆2, [{A+
2 }] ` C+ lax

{}L

...
Γ ;∆1, [A−1 ] ` C+ lax

Γ ;∆ ` C+ lax
∗

parametric in C+, where the rule marked ∗ is a rule transitioning from a neutral
sequent to a left focused sequent (lfoc, copy, hasL or knowsL), and the sub-
derivation above {}L uses only invertible left rules (⊗L, 1L, ∃a

L, !L, []L, or [[]]L).
Furthermore, we require both Γ ;∆ and Γ ′;∆′ to be states.

Because the rules above {}L are invertible and represent a don’t-care nondeter-
minism, the resulting rewrite sequence is still sound and nondeterministically
complete. We could make this precise with formal proof, but we elide these
details to focus on other aspects more germane to the main thread of this paper.

Finally, we would like to reiterate a salient point about this definition. The
main branch of this derivation is parametric in C+ lax. This monadic judgment
identifies the main branch, and forces the assumption, A−1 , under focus to have
a monadic head, {A+

2 }. If we ensure that only semantic actions have monadic
heads, then rewrite steps will contain only the semantic effects, as desired.

4 File System Example

In this section, we present a formal description of a simple file system and prove
two properties about its actions. The file system supports four operations: create,
read, write, and delete. Files are tagged with versions. Only the current version
of a file is readable, but the file system maintains records of all previous versions’
contents. For simplicity, we assume that there is no directory structure.

4.1 Policies and Semantic Actions

The formal policies and semantic actions are given in Fig. 3. For clarity, we omit
type annotations in the quantifiers, and omit polarity annotations on atoms since
all atoms in this example have negative polarity.

Operations. The four operations are represented by the grammar of terms
in Fig. 3. We separate the create operation from those operations O that act
on existing files and factor out the filename F with onfile to facilitate a clean
formulation of the owner and delegate policies. The write operation takes an
argument S that is the string to be written.
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Operations

O∗ ::= create | onfile(F,O) O ::= read | write(S) | delete

Policies

maycreate : 〈fs〉(∀K. user(K) ( may(K, create))

owner : 〈fs〉(∀K.∀F.∀O. owns(K,F ) ( may(K, onfile(F,O)))

delegate : 〈fs〉(∀K.∀L.∀F.∀O. 〈K〉may(L, onfile(F,O))⊗ owns(K,F ) (
may(L, onfile(F,O)))

Semantic Actions

create : ∀K. 〈K〉do(K, create)⊗ 〈fs〉may(K, create) (
{∃f.∃t. !〈fs〉owns(K, f)⊗

[fs]current(f, t)⊗
[[fs]]contents(f, t, ε)⊗
[[K]]contents(f, t, ε)}

read : ∀K.∀F.∀T.∀S. 〈K〉do(K, onfile(F, read))⊗ 〈fs〉may(K, onfile(F, read))⊗
[fs]current(F, T )⊗ [[fs]]contents(F, T, S) (

{[[K]]contents(F, T, S)⊗
[fs]current(F, T )}

write : ∀K.∀F.∀S.∀T. 〈K〉do(K, onfile(F,write(S)))⊗
〈fs〉may(K, onfile(F,write(S)))⊗ [fs]current(F, T ) (

{∃t. [fs]current(F, t)⊗
[[fs]]contents(F, t, S)⊗
[[K]]contents(F, t, S)}

delete : ∀K.∀F.∀T. 〈K〉do(K, onfile(F, delete))⊗ 〈fs〉may(K, onfile(F, delete))⊗
[fs]current(F, T ) (

{1}

environment : ∀K.∀O∗. {〈K〉do(K,O∗)}

Fig. 3. File system policies and semantic actions

Policies. The first policy, maycreate, states the file system fs’s affirmation that
any principal K who is a valid user may create files. The second, owner, states
fs’s affirmation that any principal K that owns file F may perform operation O
on F . The third policy, delegate, states fs’s affirmation that any principal L
may perform operation O on file F provided F ’s owner affirms this permission.

Semantic Actions. There are five semantic actions, one for each of the four
operations and an additional action to simulate the environment.
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create Action. create states that if: a principal K issues a command to create
a file (〈K〉do(K, create)); and the file system affirms that K may create a file
(〈fs〉may(K, create)); then a fresh filename f and fresh version tag t are gen-
erated (∃f.∃t.), and: the file system affirms that K is a permanent owner of
f (!〈fs〉owns(K, f)); the file system records t as the current version tag for f
([fs]current(f, t)); and the file system and K learn that the contents of version t
of file f are the empty string ε ([[fs]]contents(f, t, ε) and [[K]]contents(f, t, ε)).

Observe the use of a monad, indicated by {}, around the postcondition of
this action. This is typical of semantic actions in our framework: the monad
marks them so that they may only be used along the main branch of a rewriting
derivation and must therefore appear in the rewrite sequence.

read Action. read states that if: principal K issues a read request for file F ; the
file system permits K to read F ; the current version tag of F is T ; and the file
system knows that the contents of version T of file F are string S; then K learns
that the contents of version T of file F are S. Moreover, because [fs]current(F, T )
is linear and therefore consumed by the use of (, this information must be
regenerated.

Note that, because the ∀F. quantifier will be instantiated at runtime, this
action can be used with filenames freshly generated by previous create actions.
This observation also holds for the remaining actions.

write Action. write is roughly analogous to create: instead of writing the
empty contents, K chooses a string S for the new contents. However, because
writing is only sensible for existing files, we require the file to have some version
tag T . Linearity of [fs]current(F, T ) causes it to be consumed by the use of (,
critically ensuring that T is no longer considered the current version tag. After
the write operation, the current version is the new tag t, since new contents have
been written.

delete Action. The delete action consumes fs’s record of the current version
tag of F . As 1 is the empty set of resources, there are no outputs to this action.
Intuitively, because a [fs]current(F, T ) assumption is required in the read and
write actions and we maintain the invariant of keeping only one [fs]current(F, ∗)
assumption, consuming the record of F ’s current version prevents further reads
and writes to F . This effectively deletes F . This intuition is made precise in the
following Theorem 2.

environment Action. To simulate the environment outside the file system, we
use an action which, when taken, introduces a 〈K〉do(K,O∗). This corresponds
to users’ ability to issue an arbitrary request at any time during the system’s
execution. Since the act of issuing a request is a semantic effect, this action is
appropriately confined to the monad.

If we wished to reason about the effects of a particular sequence of requests,
we would need a more detailed model of the environment. But, for the kind of
properties that interest us, this action suffices. In fact, being agnostic about the
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specifics of the environment’s behavior strengthens our theorems: these security
properties will hold regardless of the sequence of requests made.

4.2 Proving Properties of the File System

Before proving a few properties of the file system, we must have a definition
of state specific to the file system. A file system state is a generic state (Defini-
tion 1), but is refined by enumerating the exact forms of permissible assumptions:

Definition 3 (File System State). A state of the file system is a pair of
contexts Γ ;∆, satisfying:

1. Each assumption in Γ has one of the forms: (i) a policy from Fig. 3;
(ii) a semantic action from Fig. 3; (iii) fs knows contents(F, T, S) or
K knows contents(F, T, S); (iv) 〈fs〉user(K); or (v) 〈fs〉owns(K,F ).

2. Each assumption in ∆ has one of the forms: (i) fs has current(F, T );
(ii) 〈K〉do(K,O∗); or (iii) 〈K〉may(L, onfile(F,O)).

3. For each file F , there exists at most one tag T such that ∆ contains
fs has current(F, T ).

Using this kind of specific definition of state and the definition of a rewrite
step (Definition 2), we can construct derived inference rules [15] for each left
focusing phase that might begin a rewrite derivation:

Theorem 1 (Rewrite Step Schemata). Each rewrite step from a file system
state has exactly one of the following forms:

1. Γ ; 〈K〉do(K, create), ∆1, ∆2

−→ Γ, 〈fs〉owns(K, f), fs knows contents(f, t, ε),K knows contents(f, t, ε);
∆2, fs has current(f, t)

such that Γ ;∆1 ` 〈fs〉may(K, create), for some fresh filename f and tag t.
2. Γ, fs knows contents(F, T, S);

〈K〉do(K, onfile(F, read)), ∆1, fs has current(F, T ), ∆2

−→ Γ, fs knows contents(F, T, S),K knows contents(F, T, S);
∆2, fs has current(F, T )

such that Γ, fs knows contents(F, T, S);∆1 ` 〈fs〉may(K, onfile(F, read)).
3. Γ ; 〈K〉do(K, onfile(F,write(S))), ∆1, fs has current(F, T ), ∆2

−→ Γ, fs knows contents(F, t, S),K knows contents(F, t, S);
∆2, fs has current(F, t)

such that Γ ;∆1 ` 〈fs〉may(K, onfile(F,write(S))), for some fresh tag t.
4. Γ ; 〈K〉do(K, onfile(F, delete)), ∆1, fs has current(F, T ), ∆2 −→ Γ ;∆2

such that Γ ;∆1 ` 〈fs〉may(K, onfile(F, delete)).
5. Γ ;∆ −→ Γ ;∆, 〈K〉do(K,O∗).

Moreover, the conclusions of these rewrite steps are file system states.

Proof. By Definition 2, a rewrite derivation must begin by left focusing on an
assumption with a monadic head. By construction, the only file system state
assumptions with monadic heads are the five semantic actions. We show the
case for delete; the others are similar.
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Case. Left focusing on delete yields the derived rule

Γ ;∆′1 ` 〈K〉do(K, onfile(F, delete))
Γ ;∆1 ` 〈fs〉may(K, onfile(F, delete))

Γ |fs;∆′2|fs ` current(F, T )
Γ ;∆2,1 ` C+ lax

Γ ;∆′1, ∆1, ∆
′
2|fs, ∆2 ` C+ lax

We appeal to Lemma 1 (below) to show that ∆′1 = 〈K〉do(K, onfile(F, delete)).
Also, given the permissible file system state assumptions, the third premise could
be derived only if ∆′2|fs = fs has current(F, T ). Finally, because the 1L rule is
invertible, we may drop 1 from the fourth premise without loss of generality. We
conclude that rewrite step 4 arises from focusing on delete. ut

Lemma 1. If Γ ;∆ is a file system state such that Γ ;∆ ` 〈K〉do(K,O∗), then
∆ = 〈K〉do(K,O∗).

Proof. By structural induction on the given derivation, where we generalize the
lemma so that ∆ may contain state affirmation assumptions with the outer
〈·〉 removed (e.g., ∀K. user(K) ( may(K, create) from maycreate). We also
generalize the given derivation’s consequent to K affirms do(K,O∗) and only
require either ∆ = 〈K〉do(K,O∗) or ∆ = do(K,O∗). This generalization implies
the original lemma by the invertibility of the 〈〉R rule. ut

Note that the proof of Theorem 1 is made considerably easier by focusing.
Its chaining of non-invertible rules allows us to go from an assumption under
focus to a derived rule. Also note that, from now on, we will implicitly assume,
for brevity, that all pairs Γ ;∆ that begin a rewrite step are file system states.

Because Theorem 1 gives the schemata for file system rewrite steps, we can
perform an easy case analysis to show that principals do not learn file contents
unless allowed by the policy to do so:

Theorem 2 (Knowledge Safety). If Γ ;∆ −→ Γ ′,Kknowscontents(F, T, S);∆′,
then either K knows contents(F, T, S) ∈ Γ or the step was a create, read, or
write step (1–3 in Theorem 1) triggered by K and permitted by the policy (as
evidenced by the Γ ;∆1 ` 〈fs〉may(K,O∗) derivation from the step).

By a simple induction, the previous theorem yields the following corollary
that states that principals may not learn the contents of deleted files, a nontrivial
result enabled by our rewriting system.

Corollary 1. Let −→∗ be the reflexive, transitive closure of −→. If

Γ ; 〈K〉do(K, onfile(F, delete)), ∆1, fs has current(F, T ), ∆2

−→ Γ ;∆2

−→∗ Γ ′, L knows contents(F, T ′, S);∆′

and Γ ;∆1 ` 〈fs〉may(K, onfile(F, delete)), then L knows contents(F, T ′, S) ∈ Γ .

Finally, we can also prove that if the record of a file’s current version is
consumed during a rewrite step, the step was a delete triggered by some principal
permitted to do so: deletes cannot happen spontaneously.
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Theorem 3 (Delete Safety). If Γ ;∆, fshascurrent(F, T ) −→ Γ ′;∆′ and there
exists no version tag T ′ such that fshascurrent(F, T ′) ∈ ∆′, then the rewrite step
was a delete step (4 in Theorem 1).

Proof. By Theorem 1, we know all possible forms of the given step. We case
analyze these forms (with appeals to Lemma 2) to obtain the result. ut

In principle, fs has current(F, T ) could be used in the policy derivation,
Γ ;∆1 ` 〈fs〉may(K,O∗), of the given rewrite step. However, we can prove a
form of strengthening in the following lemma, which shows such uses to be im-
possible.

Lemma 2 (Possession Strengthening). If Γ ;∆ is a file system state and
Γ ;∆ ` 〈fs〉may(K,O∗), then there exists no file F and version tag T such that
fs has current(F, T ) ∈ ∆.

Proof. By structural induction on the given derivation. To allow the induction
to go through, we use a generalization similar to the one in Lemma 1. ut

Note that this lemma only holds because the semantic concepts, including
possession, are stratified from the policies. This stratification is evidenced and
assisted by the controlled use of the monad to isolate such semantic effects.

5 Related Work

Our work is heavily inspired by a somewhat informal treatment of reasoning
about course registration and banking systems in prior work on a linear logic
of affirmation and knowledge by Garg et al. [9]. Indeed, our method affirma-
tively resolves their conjecture that the informal approach can be generalized
via focusing and forward chaining. However, our work differs in that it stratifies
policies from their semantic effects.

As previously discussed, other closely related works are the rewriting system
ω [1] and the linear logic programming language LolliMon [7], from which we
borrow the idea of rewriting and the use of a monad, respectively.

MultiSet Rewriting (MSR) [16–18] is a predecessor of ω that has been used
to analyze security protocols, notably to prove a correctness result for Ker-
beros 5 [19] and prove, using data access specification rules, that the Dolev-Yao
intruder can indeed emulate an arbitrary symbolic adversary [20]. MSR differs
from our logic in that it uses a lower level of abstraction, reasoning about atomic
certificates rather than policies, and does not support principals’ knowledge or
local state.

Other approaches to the problem of proving properties of protocols include
finite model checking and automated theorem proving. For example, Clarke et
al. [21] describe a logic of knowledge suitable for model checking commerce
protocols, and Paulson [22] uses inductive definitions of traces and the Isabelle
prover to verify protocols. Neither work, as presented, fully unifies principals’
policies and their knowledge: both lack a means of specifying principals’ policies,
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and Paulson’s treats principals’ knowledge only implicitly. It would be interesting
to consider whether these lines of work could be extended to cover policies.

With its emphasis on knowledge and targeted communication, the autho-
rization language DKAL [23] is also related to our work. However, in DKAL,
knowledge is fundamentally linked to communication, and possession (linear
knowledge) is not expressible. Also, it is not clear to us if properties of systems,
such as those in our example, can be proven using DKAL.

6 Conclusion

In this paper, we have extended the rewriting system ω and the linear logic
programming language LolliMon with modalities for modeling principals’ poli-
cies, knowledge, and possessions. By using a monad, we were able to confine all
semantic effects, and only semantic effects, to the rewrite sequence. We showed
our logic to be well defined by proving the admissibility of cut and identity.
Finally, we established knowledge and delete safety theorems for a hypothetical
file system, demonstrating the utility of our approach. Having a focused logic
simplified these proofs by eliminating nondeterminism in the derivations.

This line of work provides rich opportunities for future investigation. We
would like to extend the logic to support obligations at the semantic level. It
would also be instructive to test our logic against several real-world case stud-
ies. As a long-term goal, we intend to explore dynamic logic [24] as a possible
means for mechanically verifying the properties proved by our method (e.g.,
Theorems 2 and 3). Another long-term goal is to investigate compilation of se-
mantic actions to executable code, similar in spirit to work on compiling session
abstractions [25].
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