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Abstract. In single-particle reconstruction, a 3D structure is reconstructed from
a large number of randomly oriented 2D projections, using techniques related to
computed tomography. Unlike in computed tomography, however, the orienta-
tions of the projections must be estimated at the same time as the 3D structure,
and hence the reconstruction process can be error-prone, converging to an incor-
rect local optimum rather than the true 3D structure. In this paper, we discuss and
further develop a maximum-likelihood approach to reconstruction, and demon-
strate that this approach can help avoid incorrect local optima for both 2D and
3D reconstructions.

1 Introduction

Cryo-Electron Microscopy (cryo-EM) uses a transmission electron microscope to ac-
quire 2D projections of a specimen preserved in vitreous ice. A 3D electron density map
can then be reconstructed from the 2D projections computationally. In “single-particle”
cryo-EM, the specimen consists of many ostensibly identical copies of randomly ori-
ented particles, and the reconstruction process must estimate the unknown orientations
at the same time that it estimates the 3D structure. (Other types of cryo-EM specimens,
such as 2D crystals or helical filaments, exhibit naturally ordered arrangements that
greatly simplify the orientation problem.)

Cryo-EM is emerging as an important technique in structural biology, because it
can determine 3D structures without the need for crystallization. It is especially well-
suited to the study of large molecular complexes, which are vitally important but very
difficult to study by other means [1]. Single particle cryo-EM [14] has been used quite
extensively to study the ribosome, achieving about 10 Å resolution with 20,000–50,000
images. Cryo-EM can also be used in conjunction with x-ray crystallography, with x-ray
data supplying atomic resolution (3 Å or better) for subunits whose overall arrangement
in natural conditions is determined by cryo-EM. A recent demonstration [20] of the
tremendous potential of such a combined approach is the atomic-resolution structure of
an 11-subunit bacterial flagellar filament (a helical specimen).

The central issue in single particle reconstruction is the chicken-and-egg problem
of determining image orientations without knowing the particle shape, and determining
particle shape without knowing the orientations. The solution developed over the last
20 years [5, 18] is an iterative process that starts from an initial guess of the shape,
perhaps as simple as an ellipsoid, and then iteratively aligns images to the current shape
and reconstructs a new shape from the aligned images, as shown in Figure 1. In the
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Fig. 1. The processing pipeline for single-particle cryo-EM includes particle picking, followed by
iterations of orientation estimation and 3D reconstruction. (Figure adapted from [17])

standard approach [15], (sometimes called “angular reconstitution” [18]), each particle
image contributes equally to the reconstruction, with a single orientation set by the
image’s best alignment, typically determined by maximum correlation. The standard
approach—implemented in three major software packages, IMAGIC [18], SPIDER [6],
and EMAN [10]—is remarkably successful, giving correct structures from images that
to the human eye appear to be almost pure noise. Yet occasionally, depending upon the
initial guess, the standard approach gives an incorrect structure, close to a fixed point
for the iteration but nowhere near the true structure. See Figure 8(c).

What can be done to prevent such a disaster? One possible solution is a better initial
guess. If the particle has strongly preferred orientations, as many do, then it is possible
with the “random conical tilt” approach [5] to obtain a set of projections with known
relative orientations. Similarly, cryo-electron tomography [9] images the very same par-
ticle from a number of known orientations. In either case the result is a low-resolution
(say 30–40 Å) 3D reconstruction that can be used as the initial guess for a subsequent
single-particle reconstruction. (Why not use tomography for the entire problem? The
answer is that accumulated electron dose destroys the particle, so the number of pro-
jections that can be gathered from a single particle is quite limited.) Obtaining tilted
images, however, requires special equipment and set-up, and even with the better initial
guess there is no guarantee that the orientation/reconstruction cycle will converge to the
right answer. Hence we would also like an algorithmic solution to the problem of incor-
rect local optima. In this paper we investigate such a solution, based on an approach to
single-particle reconstruction due to Sigworth [16].



3

Sigworth’s approach assumes a probabilistic model of cryo-EM imaging and seeks
the maximum-likelihood (ML) reconstruction. The well-known Expectation Maximiza-
tion algorithm (EM applied to EM!) is used to maximize the likelihood [3]; this amounts
to adding each image into the reconstruction for each possible orientation weighted ac-
cording to the probability of that orientation (that is, “soft” rather than “hard” orienta-
tion assignments). Sigworth demonstrated his ML approach for an analogous 2D prob-
lem of independent interest: reconstructing an image from a number of noisy copies,
randomly rotated and translated. The ML approach showed reduced sensitivity to the
initial guess and recovered structures from images with lower signal-to-noise ratio. In
this paper, we demonstrate that the ML approach can also avoid incorrect local op-
tima, first with synthetic 2D examples (Section 3), and then with real 2D and 3D data
(Sections 4 and 5).

2 Reconstruction Algorithms

Following Sigworth [16], we describe reconstruction algorithms for an analogous 2D
problem, rather than for the full 3D problem. The analogy between the two problems
is not perfect, because the 2D problem does not involve projections (integrals of the
density along parallel viewing lines) of the original structure; nevertheless both include
the central chicken-and-egg problem. The 2D problem arises as a subproblem in 3D
reconstruction in each of the major software packages [5, 6, 10].

Let the particle images—the data—be denoted . Each image
is assumed to be a noisy copy of the same original image , rotated and translated
by some unknown amounts. We are assuming that the ’s have been located by a
particle picking process that approximately locates the center of each particle, but leaves
the rotation and the precise translation unknown [16]. Let denote
the alignment parameters for image , with the rotation angle and the
translation vector. That is,

(1)

where is the noise, is a constant with , and the notation means
transformed by the rotation and translation (so that the alignment parameters

return to its original orientation). Assuming and have the same variance,
gives the signal-to-noise ratio (SNR), defined as the ratio of signal variance

to noise variance [5]. When we refer to images as 95% noise we mean that .

2.1 The Standard Method

The standard method [12, 15] attempts to directly determine the alignment parameters.
Given the reconstruction after iterations, this method computes a number of ref-
erence images, denoted , all possible rotations and translations of

quantized to some pre-determined level of precision.3 To determine the alignment

3 In practice, references are produced only for different rotations, and translations are deter-
mined by convolution using the Fast Fourier Transform.
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parameters for image , the standard method finds the that maximizes the cross-
correlation and sets to be equal to the rotation and translation values of

the maximizing . As usual the cross-correlation is the inner product of the images,
treated as vectors.

Once the alignment parameters are determined, then the next reconstruction is sim-
ply the aligned average of the data images,

(2)

For continuous values of the alignment parameters, this iteration converges to a lo-
cal maximum of the Euclidean norm of the reconstruction , in other words the
strongest-contrast reconstruction [12, 16]. With quantized alignment parameters, how-
ever, the iteration does not necessarily converge but rather reaches a small limit cycle.
Limit cycles are not usually reached in real biological projects, which use 1000’s of data
images, 1000’s of reference images, and fewer than 50 iterations, but they are indeed
observable in our small 2D experiments (Figure 4).

2.2 Maximum-Likelihood Method

For low-SNR images, random correlation peaks cause mistakes in the alignment pa-
rameters, and the standard method can give poor results. Sigworth’s method [16] never
actually determines the alignment parameters, but rather treats them as hidden random
variables with probability distributions over possible values, and then attempts to max-
imize the likelihood of the data images as a function of the reconstruction and the
parameters of the probability distributions. Sigworth derives his algorithm, a version of
the Baum-Welch or EM algorithm [3], assuming that the data arises from a specific gen-
erative model: additive Gaussian pixel noise (independent and identically distributed),
normally distributed image translations, and uniformly distributed image rotations. In
this section, we rederive the ML approach in a more realistic setting. In Section 2.3 we
discuss the key step of the algorithm in more detail. Then in Section 2.4 we develop
three variations on the ML approach that address some of the practical issues.

The likelihood is the probability that the observed data set arises
from a given model. Our model assumes an original image and alignment parameters

for the data images. Assume that the alignment parameters, rather than
being continuous random variables as they are in real life, are discrete variables that
take exactly the same values as the rotation angles and translations of the reference im-
ages . Assume that the data images are produced by a
random process that first selects a reference according to any probability
distribution and then sets to be a copy of with added noise. This mixture model
is more realistic than Sigworth’s classical parametric model, because cryo-EM target
particles usually have preferred orientations and are not uniformly distributed over 3D
rotations. Let denote the probability of selecting reference , with . For
the model just described, the likelihood is a function of (through the reference copies

) and . Assuming independence of the random variables as-
sociated with the individual data images, we can express the logarithm of the likelihood
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1. Compute references from the current reconstruction
2. for each data image , do

2.1. for , compute , an estimate of probability

2.2. Normalize values so they sum to 1, that is,

2.3. for , add to the next reconstruction
with orientation and weight

3. and go to 1.

Fig. 2. The EM algorithm applied to single particle reconstruction.

(log likelihood) as a sum of the log likelihoods of the individual images.

(3)

The expression in equation (3) is difficult to maximize directly, due to the sum of terms
inside the logarithm. So we introduce unobserved “latent” variables , with

if came from and otherwise. (See [7], pp. 236–241, for a similar
development of the EM algorithm.) This trick allows the sum to be pulled outside the
logarithm, and the log likelihood becomes

(4)

The EM algorithm given in Figure 2 is the standard way to maximize a likelihood
expression of this form [7]. In its “E-step” (Steps 2.1 and 2.2), this algorithm makes a
soft assignment to ; that is, rather than using a value in for , the algorithm

uses a fractional value , the expectation of given the current reconstruction

and references . Rather remarkably, this algorithm for maximizing also
monotonically increases the original log likelihood until it reaches a local
maximum [7]; indeed the two log likelihoods agree at a joint maximum.

2.3 Estimating the Image Probabilities

The algorithm as given in Figure 2 is not fully specified. We must give a way to com-
pute , which is an estimate of the probability that image is a noisy copy of

reference . One possibility is simply to set if maximizes

and otherwise. With these crude estimates of , the EM algorithm reduces

to the standard method of Section 2.1. A more principled estimate of assumes a
probabilistic model of image formation. Sigworth’s model [16] assumes independent
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Gaussian noise with variance in the image pixels, and hence

(5)

where is the -th pixel of , and is the -th pixel of . Since mul-

tiplying all the ’s by the same constant does not change the reconstruction, we can

simply set in Step 2.1 to the expression on the right in equation (5). To do so, we
must also have an estimate of the noise variance . In our synthetic-data experiments,
we simply plugged in the true value for . In attempting to add an EM option to EMAN,
however, Ludtke (personal communication) found that setting a value for that works
for real data images was the major stumbling block. The exponential in equation (5)
makes quite sensitive to incorrect and to deviations of the real data from the
imaging model. The problem is not estimating the noise variance, which is relatively
easy, but rather the assumption of independent pixels. Another issue is numerical un-
derflow, as values are small, something like for our synthetic images, so
calculations must be done with logarithms. Assuming these difficulties can be over-
come, a well-known shortcut to computing the expression in equation (5) is to use the
cross-correlation and the relation

(6)

Step 2.2 also has an impact on the image probabilities. This step sets equal
to one, which has the consequence that each contributes equally to the reconstruction

. Sigworth’s version of the EM algorithm omits this step, because it is derived
from a continuous probabilistic model, rather than from a discrete mixture model that
assumes that one of the reference orientations is indeed correct. Step 2.2 turns out to be
essential. Due to the huge range of values, if Step 2.2 is omitted a small subset of
data images—those that happen to be closest to reference image angles—will dominate
the reconstruction.

We can imagine interesting ways to modify Step 2.2; for example, if we had an
independent measurement of the probability that is indeed a good data image,

we could normalize the values to sum to rather than to one. Such a variable
normalization could be useful, as cryo-EM particle images vary quite substantially in
quality (see Section 4), and the quality of an image cannot be easily assessed a priori.

2.4 Three Variations

In this section, we describe three variations of the EM algorithm. The first variation,
which we call EM-BASIC, is essentially the same as Sigworth’s original algorithm us-
ing Equations (5) and (6). The original algorithm, however, is very slow (over an hour
for a reconstruction from 200 images), so EM-BASIC incorporates some practical tricks
that speed up the processing by a factor of 20, yet give reconstructions almost visually
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indistinguishable from those of the original algorithm. An obvious speed-up is to round
the smallest values to zero, and thus skip Step 2.3 for most pairs. We rounded

to zero. A further speed-up, found empirically, is to set all except the

single largest of the values corresponding to the same rotation angle to zero (be-
fore the normalization in Step 2.2), and then to low-pass filter (Gaussian filter with
standard deviation pixels) before adding it into the reconstruction with orien-
tation to approximate the effect of using multiple translations. This speed-up works

because tends to vary in a smooth and predictable way over small translations, but
in a much less predictable way over rotations.

Running time is a significant issue in cryo-EM reconstruction, as large-scale recon-
structions (say 20,000 images) can take more than a day on a compute cluster. Indeed,
large-scale reconstruction almost always includes speed-ups to the standard method, for
example, only testing a data image against reference images for orientations
that had matched fairly well in previous iterations.

The second variation is called EM-MULTI for multiresolution. EM-MULTI is the
same as EM-BASIC, with the addition that it low-pass filters data images heavily in
early iterations, and gradually reduces this filtering in later iterations. The standard de-
viation of the filter is pixels, where is the iteration
number, running from 1 to 20 in our experiments. Multiresolution optimization is com-
mon in pose estimation problems in computer vision [2]. Low-pass filtering can change
the SNR of the images, because the signal (the particle) has more low-spatial-frequency
content than the noise, so for fair comparison, all our algorithms (including our imple-
mentation of the standard method) low-pass filtered images with , the final
value used by EM-MULTI.

Our third variation, EM-ROBUST, addresses the problem reported by Ludtke, that
is, the difficulty of robustly estimating for real data images. EM-ROBUST

is the same as EM-MULTI, but for each , EM-ROBUST blindly sets for

the maximizing , and for the second best , and for
the third best, and so forth. Thus EM-ROBUST does not even attempt to map image
correlations to probabilities. EM-ROBUST could be used in the case that the matching
scores for data and reference images cannot be interpreted as probabilities. For example,
EMAN uses a two-stage approach that would be difficult to treat as probabilities: it first
matches data images to projections and then reclusters data images, as in the -
means algorithm, by matching them to the average of the data images that matched
each . In Section 6, we further discuss the problem of setting the ’s. We are not
advocating EM-ROBUST as the solution, but rather we show that even a “deliberately
dumb” algorithm such as EM-ROBUST can give reasonable results.

3 Experiments with Synthetic 2D Data

For our 2D experiments we generated synthetic data, grayscale images with values 0–
255 and size pixels. We used uniformly distributed rotation angles , and
normally distributed x- and y-translations and with zero mean and pixels;
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(a) (b) (c) (d)

Fig. 3. Synthetic images: (a) the original particle, (b) with 80% noise, (c) with 90% noise, and (d)
with 95% noise, the value used in most of our experiments. The particle shape was chosen to have
a likely incorrect local optimum: a square. We used periodic boundary conditions (wrap-around)
as seen in (c), to avoid edge effects.

we used bilinear interpolation for subpixel accuracy. The pixel noise, denoted in
equation (1), was independent Gaussian noise with zero mean and gray levels.
We imposed periodic boundary conditions (wrap-around), so that a a pixel moved off
the right boundary reappeared on the left, and similarly for top and bottom; wrap-around
neatly handles the issue of filling in missing pixels [16]. We did not quantize the rotation
angle; hence our data images were not exact matches to any of the reference images,
giving a more realistic test of the EM algorithm than was done previously [16].

In all experiments, we used references with rotations of . Each
reference image is the average image over three rotations in order to represent “patches”
of orientations. For example, the reference image for is the average of the rotations
at , , and two copies of . Rotations every may seem rather coarse, but it
would take over 1000 reference images to cover the sphere of views of a 3D particle
this densely (not counting planar rotations as separate orientations), and hence this level
of quantization is realistic for most biological studies.

We used one additional data image, with , and all equal to zero, as the initial
guess . After each iteration, we linearly transformed the grayscale of the recon-
struction so that it had mean 128 and standard deviation 36. This normalization
helps with some numerical issues and also enhances the contrast in the reconstructions,
making them easier to compare by eye.

Figure 3 shows some examples of synthetic data. Our synthetic particles were de-
liberately chosen to pose difficult reconstruction problems. For example, the particle
shown in Figure 3 has no rotational symmetry, yet is close to a particle—a square—
with rotational symmetry. Incorrect orientations, approximately or away
from the correct rotation, can easily lead the reconstruction algorithm to converge to a
square.

Results are given in Figures 4–6. STANDARD is the standard algorithm of Sec-
tion 2.1, which uses maximum correlation to give a single hard orientation assignment
to each data image. We found that all the algorithms including STANDARD perform
well with high-SNR images, images that are at most 92% noise.4 As the noise level

4 For black-and-white particles, 92% noise corresponds to SNR of
, where is signal variance and is noise variance. Sim-
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(a) (b) (c)

Fig. 4. The success of the STANDARD algorithm depends upon the signal-to-noise ratio. (a) With
93% noise (SNR = 0.072) the algorithm gives a correct reconstruction. (b) With 95% noise (SNR
= 0.035) the algorithm falls into an incorrect local optimum. (c) With 94% noise (SNR = 0.051)
the algorithm finds a limit cycle with a rotating particle that alternately resembles reconstruc-
tions (a) and (b). All reconstructions were made using 200 data images and 20 iterations, but
reconstructions changed little after the first 10–12 iterations, except in the case of the limit cycle.

(a) (b) (c) (d) (e) (f)

Fig. 5. The max-likelihood approach is more resistant to local optima. (a) EM-BASIC is just
starting to fail at 95% noise (SNR = 0.035), but (b) EM-MULTI and (c) EM-ROBUST give correct
reconstructions. All these results (from 200 images and 20 iterations) are significantly better than
Figure 4(b). (d) EM-BASIC fails at 96% noise (SNR = 0.023), but (e) EM-MULTI is still correct
and (f) EM-ROBUST is borderline.

grows larger, STANDARD is always the first algorithm to fail, with the various versions
of the EM algorithm giving reasonable results with somewhat higher noise percentages.
Typically STANDARD fails with noise percentage at about 94% (SNR = 0.052) and the
EM algorithms fail with noise percentage at about 96% (SNR = 0.023). We found that
results were surprisingly insensitive to initial guess: reconstructions that failed with a
data image as the initial guess always failed with the original black-and-white particle
as the initial guess as well. Because of its hard orientation assignments, STANDARD

also fails in a qualitatively different way from the EM algorithms: it often falls into a
noticeable limit cycle with an unstable reconstruction as shown in Figure 4. The EM
algorithms reach more stable reconstructions with only slight variations from iteration
to iteration.

The noise percentage failure thresholds for the various EM algorithms are typically
close, differing by less than 1%. Generally EM-MULTI is the best algorithm. For ex-
ample, Figure 5(e) not only looks better than Figure 5(d), but also achieves 1.1% larger
value on an objective measure of reconstruction quality, the sum of maximum image

ilarly 95% noise corresponds to SNR = 0.035, and 96% corresponds to SNR = 0.023. Realistic
SNR values for cryo-EM are generally in the range from 0.01 to 0.5, depending upon the
particle and the defocus.
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(a) (b) (c) (d) (e) (f)

Fig. 6. (a) This particle is an attempt to fool EM-MULTI and EM-ROBUST, which will blur away
the doubled edge until late iterations. Yet (b) EM-BASIC, (c) EM-MULTI, and (d) EM-ROBUST

achieve fairly similar results at 94% noise. They all start to fail at 95% noise; shown are (e)
EM-BASIC and (f) EM-MULTI.

Fig. 7. (a) A piece of a micrograph showing images of hemocyanin particles (at about m
defocus). (b) An isosurface (side and top views) of a 3D reconstruction of hemocyanin made
from about 1100 particle images. (c) A 2D reconstruction of the top view made by STANDARD

from 250 images. (d) A 2D reconstruction made by EM-MULTI from the same 250 images. (e)
A 2D reconstruction made by EM-MULTI from the 25 “best” images.

correlation scores: for . EM-ROBUST falls between

the other two EM algorithms, as its score is 0.6% better than that of EM-BASIC.

4 Real 2D Data

We also applied the algorithms described above to a real 2D data set. The particle is
keyhole limpet hemocyanin [11], a didecamer cylindrical “cage” about 400 Å long. This
particle shows strongly preferred orientations; for our 2D reconstruction experiment
we used 250 automatically selected, pixel, “top” views [19] with the same
nominal defocus, ostensibly identical up to rotation and translation. The question we
asked was whether the 2D reconstruction would find the 5-fold rotational symmetry
of the particle, or whether it would fall into a circularly symmetric local optimum. As
above, we used reference images every . For in Equation (5) we used the image
variance, in effect treating the image as independent pixels of pure noise.

As it turned out, none of the algorithms fell into a circularly symmetric local op-
timum, even when we used as few as 10 data images. There was a slight difference,
however, between STANDARD and the EM algorithms. As seen in Figure 7(c) and (d),
STANDARD gives a less symmetric solution, with some sides of the knobby, white, inner
ring more clearly dumbbell-shaped than others. (The strongest dumbbell side, bottom
left in Figure 7(c), also “rotates” as in Figure 4.) We believe that many of the top views
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a

Fig. 8. (a) A piece of a micrograph showing images of p97 AAA ATPase particles (the dark
blobs). (b) An isosurface of a correct reconstruction of p97 made from about 4000 particle images.
(c) An incorrect reconstruction made from 617 images, using EMAN’s default initial guess, an
extruded shape. What went wrong is that some of the “top” and “bottom” views (hexagonal rings)
of the particle were mistaken for “side” views. (d) A better reconstruction using EMAN with the
same initial guess, along with multiresolution refinement and “annealing” of image orientations.
(e) A “best-possible” reconstruction from the 617 images using the reconstruction from (b) as the
initial guess.

are slightly tipped, and STANDARD, with its single orientation per image, tends to align
the images by tip, whereas EM-MULTI spreads the asymmetry around.

A major difference between synthetic and real data is variation in the quality of
the particle images. Synthetic images are essentially all of the same quality, differing
only in pseudorandom noise and in how well the random rotation fits the references.
Real images, on the other hand, vary due to particle conformations, defocus values, ice
thickness, sample charging, and electron-beam-induced motion, to name only some of
the known and suspected phenomena. We used a delete-half jackknife [4] to estimate the
variance of reconstruction quality, as measured by the sum of maximum correlations,

, over all the images. (For speed we ran only 10 iterations.)
We computed 20 reconstructions, each time leaving out a randomly chosen half of the
images. For 200 synthetic images (those used in Figure 5), for the delete-half
subsamples ranged from 97.2% to 99.1% of the achieved by the entire data set.
For 250 real images, for the delete-half subsamples ranged from 95.4% to 101.1%.

We also ran an experiment to see if we could sense the high-quality images. The al-
gorithm used to make Figure 7(e) considers all the images, but at each iteration chooses
only the best 10% (by maximum correlations) to go into the reconstruction. The best
10% of the real images give a reconstruction with that is 97.1% of the given
by all 250 images; whereas, the same procedure with the synthetic images gave
that is 95.5% of the given by all the images. Interestingly, the “best” 50% of the
real images gave with 99.4% of the given by all the images, which seems
quite good until compared with the 101.1% achieved by the best delete-half subsample.
This experiment suggests that maximum correlation gives only a weak assessment of
image quality.

5 Real 3D Data

Finally we applied our ideas to a 3D reconstruction problem from a real biological
study, shown in Figure 8. The particle is p97 AAA ATPase [13], a 6-fold symmetric
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particle about 150 Å across. A large p97 data set converges to the correct optimum
(Figure 8(b)), whereas a small data set converges to an incorrect local optimum (Fig-
ure 8(c)). The incorrect optimum seems to occur more often with EMAN than with
SPIDER, perhaps due to EMAN’s reclassification of image orientations, which tends to
accelerate convergence.

We modified EMAN in an attempt to correct the problem. Actually implement-
ing some version of the ML algorithm would have required extensive modifications
to EMAN, so we tried an approximation instead: we added a random component to
EMAN’s matching score for each image-orientation pair. Thus suboptimal asssignments
occasionally win by chance, as in a Monte Carlo sampling algorithm. If each parti-
cle orientation is represented by a number of images in the data set, these random-
ized assignments approximate the soft assignments of the ML algorithm, but with
rather arbitrary “probabilities” as in EM-ROBUST. Specifically, at each iteration , for

, for each image , we added a random component, uniform in the range
to each correlation score , where

is the maximum correlation score for image at iteration .
The size of the random component is reduced in later iterations, so that the best

assignment becomes relatively better as the reconstruction grows more reliable. This
reduction step, akin to simulated annealing [8], enables the sampling algorithm to reach
a stable reconstruction. Reduction is unnecessary for stability in the 2D versions of the
EM algorithm, because they use continuous weights for the soft assignments.

Our modified version of EMAN also includes the multiresolution idea of EM-MULTI.
We blur images very heavily at first and gradually reduce the amount of blurring in later
iterations. Both Monte Carlo sampling with annealing and multiresolution seem to be
necessary to avoid the local optimum for the 617-image p97 data set, as either one alone
gives a reconstruction more closely resembling Figure 8(c) than (d).

We specified symmetry in EMAN, so the symmetry of the reconstructions in
Figure 8 is imposed rather than discovered as in Figure 7. Following EMAN’s guide-
lines, we used 49 reference orientations—not counting planar rotations as separate
orientations—for all the reconstructions from 617 images. The 617 images are ones
picked automatically by a model-based particle picker we developed [19]. Figure 8(d)
shows the results from our modified EMAN.

6 Discussion

In this paper we have confronted the most vexing problem of single-particle reconstruc-
tion: convergence to incorrect local optima. In experiments with synthetic 2D data, we
found that variations of Sigworth’s ML approach can indeed avoid incorrect local op-
tima at lower signal-to-noise ratios than the standard approach. We have left open the
question of how to estimate the probabilities in a robust and effective way. Ac-
curate estimates may require good models of both the signal (projections of the target
particle) and the noise, including the dependencies between neighboring pixels, which
are largely due to the point spread, or contrast transfer function (CTF), of the imaging
system. Such detailed models could be obtained, at least in principle; for example, the
CTF is often estimated using the power spectrum of an entire micrograph. It would be
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more convenient, however, if a very simple method, such as that used in EM-ROBUST,
could give reliable results. Here we are imagining an empirically determined sched-
ule of probabilities, rather than the exponentially decreasing sequence used by EM-
ROBUST. Such a method would have to be trained on a variety of real data sets, so it is
beyond the scope of the present work.

Although the 2D experimentation described in this paper involved very simple sig-
nal and noise models, it apparently served as a reasonable guide for algorithm develop-
ment, as the multiresolution idea, first implemented in EM-MULTI, proved effective on
a real 3D data set when incorporated into EMAN. We now believe that the key to solving
the problem of incorrect local optima is to slow convergence and allow the initial itera-
tions to explore the space of reconstructions. Besides multiresolution, other techniques
from areas such as machine learning and computer vision, could find useful application
in cryo-EM.
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