Palo Alto Research Center

Using Speakeasy for Ad Hoc Peer-to-Peer Collaboration

W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, Trevor F Smith,
Dirk Balfanz, D. K. Smetters, H. Chi Wong, Shahram Izadi

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304 USA

November 15, 2002

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights
therein are retained by authors or by other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

Copyright ©2002 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481,
or permissions@acm.org

Using Speakeasy for Ad Hoc Peer-to-Peer Collaboration

W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, Trevor F Smith,
Dirk Balfanz, D. K. Smetters, H. Chi Wong, Shahram Izadi
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304 USA
{kedwards, mnewman, sedivy, tfsmith, balfanz, smetters, hcwong, izadi} @parc.com

ABSTRACT

Peer-to-peer systems appear promising in terms of their
ability to support ad hoc, spontaneous collaboration.
However, current peer-to-peer systems suffer from several
deficiencies that diminish their ability to support this
domain, such as inflexibility in terms of discovery
protocols, network usage, and data transports. We have
developed the Speakeasy framework, which addresses
these issues, and supports these types of applications. We
show how Speakeasy addresses the shortcomings of current
peer-to-peer systems, and describe a demonstration
application, called Casca, that supports ad hoc peer-to-peer
collaboration by taking advantages of the mechanisms
provided by Speakeasy.

Keywords
Casca, Speakeasy, peer-to-peer, ad-hoc collaboration

INTRODUCTION

Imagine the following scenario: Julius is on his way to a
conference in New Orleans and has a layover in Atlanta.
While waiting in the airport, he runs into his old friend and
collaborator, Calpurnia, who is on her way to the same
conference. They start talking about things they’re working
on and decide that they’d like to try to write a paper for a
different conference with a deadline in a few weeks. They
both have laptops with various capabilities: Calpurnia’s can
connect to the Internet over GPRS; Julius is out of range of
his ISP, but is able to connect to the airport’s 8§02.11b
network to take advantage of certain local services. Both
laptops have Bluetooth capabilities, and so are able to
connect to one another.

To plan their writing, they exchange current contact
information, information about the conference, notes,
documents, pointers to related work, and so forth. This is
information that is, variously, located on one of their two
laptops, or on the network at one of their institutions, or on
the public Internet.

Even though only a subset of these resources would
normally be available to each participant—because of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CSCW’02, November 16-20, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-560-2/02/0011...$5.00.

connectivity to different networks, access privileges, and so
forth—they can still share the information they need in
order to collaborate. For example, even though Julius does
not have an Internet connection, Calpurnia does, and she is
able to display web pages about related work on Julius’
machine for him to see.

Both Julius and Calpurnia are also able to access and share
devices around them, in addition to information. Calpurnia
is able to print her related work pages using a nearby public
printer by using Julius’ connection to the airport network;
she is also able to make her laptop’s integrated webcam
available to Julius, so that he can see if she is in her office
during the coming weeks, as their collaboration continues.

This scenario illustrates a type of ad hoc collaboration that
we would like to be able to support. Peer-to-peer (P2P)
networking is a promising technology for supporting this
type of application, but current P2P systems are lacking in
several ways. The Speakeasy framework for recombinant
computing [7] addresses many of the limitations of current
P2P systems, and supports ad hoc collaboration.

In order to demonstrate this, we have built an application
called Casca that is designed to support ad hoc
collaboration across different networks and using a wide
variety of computing resources. Casca allows users to
easily create shared spaces (called converspaces), and use
those spaces to share files and other resources, such as
printers or webcams, with other users. Because of the

N ’

Figure 1: Using Casca in an impromptu collaboration

extensible nature of Speakeasy, Casca is able to provide
far-ranging functionality, such as display sharing, that the
application was not explicitly written to support.

THE POTENTIAL OF PEER-TO-PEER COLLABORATION
Peer-to-peer (P2P) technologies hold out many advantages
for supporting collaboration. Collaborative systems such as
Groove [11] and WorldStreet [26] that take a peer-to-peer
approach appear to be gaining adherents in the marketplace
[4, 19]. Furthermore, as ad hoc networks such as Bluetooth
begin to take hold, the P2P approach emerges as a good
solution for off-the-Internet collaborations [16]. Although
this aspect has been explored to a lesser extent, P2P
systems seem especially promising in their ability to
support “spontaneous” collaboration, where two people
decide to have an unplanned interaction with one another.

The advantage of P2P systems comes from their potential
ability to support anywhere collaboration. This benefit is
architectural—by not requiring that all parties have mutual
access to some common resource (such as a server, or a
corporate intranet), P2P systems can potentially allow users
to collaborate without regard to the particulars of the
networks on which they happen to be. Further, these
systems are easily supported by proximity-based
networking technologies (such as Bluetooth), which can
provide a certain natural ease of use with regard to
initiating collaborations between participants.

We say “potential” in the previous paragraph because
current P2P architectures have a number of limitations.
First, P2P systems tend to be able to share only a fixed set
of things, such as files. Systems like Napster [13] and
Gnutella [8] are well-known systems that have, at their
core, distributed protocols for file sharing. They cannot be
easily extended to share new types of resources, such as
nearby devices, or services that appear on the network.

Second, many of these P2P systems use a very limited form
of discovery. Napster, in particular, is not a true P2P
system: it requires the use of a centralized index server to
allow searches over content. Only the actual exchange of
data is done in a peer-to-peer way. Applications based on
Gnutella, while decentralized, restrict their discovery to
other instances of Gnutella-based applications only. These
applications have not integrated or exploited the wide range
of discovery protocols in use today, including [9, 21, 23],
that allow access to external devices and services. Put
another way, these applications are only about
interconnecting with other instances of the same
application, not about interconnecting with external
resources. Even Groove, which is perhaps the most
powerful example of a P2P collaborative system, is not a
general-purpose tool for interacting with whatever
resources happen to be at hand, and allowing them to be
used collaborative; rather, it is restricted to sharing small
applets that are hosted inside the Groove viewer.

Third, many of these systems assume that you will interact
with all available peers, rather than letting you choose your
collaborators.

Finally, these systems typically impose restrictions on the
sorts of network transports they use. For example,
applications written to use Bluetooth (e.g. Palm’s
BlueBoard [17]) cannot take advantage of other networks.

In the next section, we describe the Speakeasy
infrastructure, and how it addresses the problems with
current P2P systems outlined here. In particular, Speakeasy
provides an open-ended framework for the sharing of
arbitrary devices, services, and information. It is adaptive
in the way it uses the network: Speakeasy applications can
be dynamically extended to new data exchange protocols,
new discovery protocols, and even new data types and user
interfaces. This ability allows Speakeasy applications to
discover and use resources on different networks. Finally, it
allows application writers to create flexible models of
sharing, according to the demands of the application.

Following the overview of Speakeasy, we will introduce
the Casca application for peer-to-peer collaboration. We
will show how the mechanisms in Speakeasy enable
powerful collaborative tools to be easily constructed.

We will then conclude with a discussion of our experiences
with both the architecture and the application and a
comparison of both with existing systems.

THE SPEAKEASY INFRASTRUCTURE FOR PEER-TO-
PEER COMPUTING

We have created an infrastructure called Speakeasy [7] that
addresses many of the shortcomings of current peer-to-peer
architectures. It is designed to allow the construction of
applications that can use new devices, services, and
networks, without requiring that the application have
specialized knowledge of any of these.

Speakeasy provides a platform for extensible peer-to-peer
computing that can be applied to a number of domains
where flexibility is paramount, including ubiquitous
computing and, as discussed here, collaboration. While the
system is not, in itself, architected exclusively for
collaboration, we will show that its ability to overcome the
limitations of peer-to-peer architectures make it a good
framework for building collaborative applications.

In the Speakeasy model, any entity that can be accessed
over a network is cast as a component. Components are
discrete elements of functionality that may be
interconnected with other components or used by
applications. Components may represent devices such as
printers, or video cameras; services such as search engines
or file servers; and information such as files and images.

In the scenario at the start of this paper, each shared
resource—files, URLs, and printers—would be a
component. Some of these exist on the laptops of Calpurnia
and Julius themselves, while others exist on a public
network or the Internet at large. As new components appear
on the network, Julius and Calpurnia would be able to use
them without installation of drivers or software upgrades.

Applications engage in a discovery process to find
components “around” them on the network. These may be

components that are running locally (that is, on the same
machine as the application itself), or on nearby machines
(perhaps discovered using some proximity-based
networking technology such as Bluetooth), or on remote
intranets or the Internet itself.

In the scenario, both Julius and Calpurnia would run a
Speakeasy-aware application that allows them to discover
and use any components around them, and also allows them
to share these components with each other.

As will be described, Speakeasy applications use no fixed
set of discovery protocols; instead, applications
dynamically adopt new discovery protocols as their
underlying networks change. Likewise, Speakeasy
applications do not depend on fixed data exchange
protocols or data types; instead, they acquire new behavior
as they interact with the components around them.

In the scenario earlier, this mechanism allows Calpurnia to
discover and even use a printer accessed through the
Bluetooth card in Julius’ laptop.

The Speakeasy Architecture

Central to the Speakeasy design is the idea that all
components expose their functionality via a small number
of fixed interfaces that allow them to “snap together.”
Speakeasy applications use these interfaces to access
component functionality; because the set of interfaces is
fixed, any new component can be used by any existing
application that understands the interfaces.

Establishing an a priori set of interfaces that must be used
to describe all component functionality can obviously be
limiting. The approach Speakeasy takes is to use these
interfaces to allow components to deliver mobile code to
their clients. Mobile code is portable executable code that
can be downloaded over a network to a client, where it is
executed. This approach allows a component to extend the
behavior of applications that use it, to adapt them to new
functionality.

Of course, mobile code is not a panacea. Any application
that receives mobile code must still know what to do with
that code. Systems like Jini [24], while they use mobile
code, do not dictate a common set of interfaces that all
clients are expected to understand. Speakeasy uses a set of
four interfaces that dictate the ways in which applications
can use the mobile code that they receive:

(] Data transfer: how do components exchange
information with one another and with applications?

[J Aggregation: how are components ‘“grouped” for
purposes of discovery and containment?

(] Context: how do components reveal descriptive
information about themselves, and adapt themselves to
their users?

) Control: how do components allow users and
applications to effect change in them?

An application that uses a component will interact with it
using one or more of these interfaces, depending on what

the user wishes to do. Interactions between an application
and a component involve only those two entities; no third
party need be involved in the exchange, and so the
architecture inherently supports a peer-to-peer style of
interaction. Even the discovery process, which in many
systems requires access to some directory service, is done
through peer-to-peer interactions.

The data transfer interface is used by applications that
wish to send or receive data to or from a component, or
send or receive data between components. A source
component, rather than providing data directly, instead
returns an endpoint object to its caller. This is a bundle of
mobile code that executes entirely within the receiving
component, and extends it to speak whatever data transfer
protocols the source uses.

For example, suppose in the scenario that Julius discovers a
Speakeasy video camera. His application need not
understand a suite of video delivery protocols in order to
use this device. When he begins using it, the code
necessary to speak the device’s protocol is transparently
downloaded to his application by the camera component
itself, as shown in Figure 2. This code can be arbitrarily
complex, performing adaptive compression, retransmission,
and so on. In certain circumstances, components can even
extend applications that use them to be able to handle new
data types. For example, a camera can provide code to view
MPEG?2 video streams to its callers on demand. Users need
not worry about installing appropriate applications or plug-
ins for interacting with the components they encounter.

Just as the data transfer interface uses mobile code to
extend applications to new communications protocols and
data types, the aggregation interface is used to provide
dynamic discovery behavior. This interface returns a
mobile code-based object to callers that resembles a key-
value map, where the values in the map are themselves
components. Callers can also iterate through the

A

Video

Camera Projector

Streaming
MPEG2
Endpoint

Video
Camera

Projector

Figure 2: Data transfers in Speakeasy use source-
provided endpoint code. In A, a video camera
delivers a source-specific protocol endpoint to the
projector. In B, the endpoint is used to fetch data
using a camera-private protocol.

components in the map, search the map, and receive
asynchronous notifications when the map changes.

The implementation of this map, however, is specialized by
the aggregate component that returns it. As shown in Figure
3, a filesystem component can return a map implementation
that provides a client-side implementation of the Network
File System [22] protocol to access existing fileservers and
return components representing files; a discovery
component can return code that implements a network
discovery protocol to find new components. Other
aggregates may communicate to some back-end “bridge”
service to access components on wholly different networks.
This pattern of use allows an application to be written
against a single interface that can provide a great deal of
network flexibility, including locally executing discovery
protocols, bridges, and so forth.

In the scenario, Julius runs a Bluetooth component locally
that Calpurnia can access remotely. The code the
component downloads to her application allows her
application to communicate back to Julius’ Bluetooth
hardware, to access any Bluetooth device he can discover.

The context interface returns to a calling application an
object that provides access to the metadata of a component.
This may include information such as the component’s
location, its owner, and other descriptive information. One
key aspect of the Speakeasy architecture is that, in order for
any application to use a component’s interfaces, that
application must provide a context object describing itself
to the component. Thus, all operations in Speakeasy are
tagged with a set of descriptive information about who
requested the operation. This pattern supports not only
exploration and sensemaking of new network
environments, but also accountability of actions.

In the scenario, both users can use the contextual
information provided by the components around them to
better understand their surroundings—what’s on the airport
network (and, hence, nearby them), what’s on their work
networks, what’s actually on their laptops. When either of
them performs an operation, identifying information about
the circumstances are carried along with the operation.

Finally, the control interface can be used by applications
to return to them a complete user interface, specialized by
the component that provided it [14]. A component may
potentially be able to provide multiple Uls including
graphical Uls, voice Uls, and so forth. This mechanism
allows users to control arbitrary aspects of a component’s
functionality, without requiring that their application be
pre-built with control panels for every possible component.

In the scenario, Calpurnia may decide to walk through her
practice talk with Julius. When she drops her PowerPoint
slides on Julius’ display component, the slides are
displayed on his laptop and a set of controls for the slide
show appear on her laptop.

Together, these four interfaces represent the shared
agreement that we expect to be present in Speakeasy-aware

Remote
Discovery
Map

Adapter
Map

Network File Systems

Figure 3: The two examples here show how the
single aggregate interface can be applied to
multiple uses via the use of component-specific
objects. In each of these, a map object has been
returned by a Speakeasy component to an
application. In A, the map extends the application to
speak the NFS protocols. In B, the map talks to an
external discovery bridge.

applications and components. Components describe their
functionality using one or more of these interfaces, while
applications use these interfaces to extend their own
behaviors in response to the needs of components.

There is, of course, an obvious drawback to the approach of
dictating a small, fixed set of interfaces that programs use
to interact with components: programs will have only very
generic knowledge about the components with which they
interact. Put another way, all Speakeasy components—
whether filesystems or printers or video cameras—Ilook
largely the same to applications. In fact, it is this
programmatic similarity that enables interoperability and
extensibility to new components, and is necessitated by the
Speakeasy model. If we restrict programs to being able to
talk to those things they already know about, then those
programs would not be able to talk to new types of things.

In such a world, the role of the infrastructure is to ensure
that programs can talk to arbitrary components; users, on
the other hand, dictate when and whether to use any
particular component. The human has primacy in this
model; this, in turn, places a set of requirements on the
infrastructure, and on applications built using it.

Namely, the infrastructure must provide enough
information to allow users to make informed decisions
about the components in their environments—what they do,
where they are, and so on. The context and control
interfaces provide a simple form of this information:
contextual information can be used by applications to
organize the components around them, and the control
interface provides a way for a user to directly interact with
features of components not expressed using the other
interfaces. Different applications will embed different

semantic models for how discovered components are
grouped, shared, organized, and so on. The infrastructure
must support these various uses. The second half of this
paper, on the Casca application, discusses how an
application can exploit the Speakeasy architecture to
provide a user model compatible with the collaborative
scenario described at the first of this paper.

Security

An important, but usually neglected component of P2P
applications is security. In Speakeasy, the goal is not only
to make it simple for a user to make components available
to others, but also to provide means for that user to control
who or what has access to a component.

As part of Speakeasy, we envision providing a security
solution that 1) operates in a flexible and generic enough
fashion to seamlessly work in the dynamic Speakeasy
environment; 2) makes it easy for developers using
Speakeasy to embed application-layer security semantics
into their application; and 3) makes it intuitive for end-
users to communicate their access control decisions.

We have begun building into Speakeasy an underlying
security layer that achieves these goals. This security layer
operates according to a few basic principles. First, all
communication between components should be encrypted
and authenticated. Second, it should not rely on the
existence of any shared infrastructure. Third, it is the
device “offering” a service that must make the final
decision about who can access that service. Furthermore,
that decision must be made on the machine actually
running the service—it cannot be delegated to mobile code
running on the requestor’s machine. Fourth, while it is the
service provider that makes the final access control
decisions, the authentication must be mutual—the client
must have assurance that it is indeed talking to the service
it intended to talk to. Finally, while the nuts and bolts of
encrypting communication can be handled relatively
generically by the lower layers of the Speakeasy
architecture, the decisions of who should be able to access
what are determined by the semantics of the application.
Therefore the security layer will call up to an application-
provided access manager (or in its absence, a system-wide
default) to get answers to access control decisions.

As we alluded to before, giving application developers a
security infrastructure to use only solves half the problem;
end-users should be able to specify their access control
decisions in a simple and intuitive way. We achieve this
usability goal by extracting final access control decisions
from users’ (not necessarily security-minded) actions,
rather than in a separate, explicit (and usually skipped)
security step. The user takes an action that reflects their
intention, and the security plumbing adjusts to match. For
instance, we allow the user to indicate that they want their
PDA to communicate with a particular laptop by using IR
(thus avoiding having to type in names or addresses).
Under the covers, the system uses that brief exchange to
distribute authentication data (cryptographic keys)

sufficient to let those two devices encrypt and authenticate
all of their future communications with each other [1].
More concretely, when two users meet, they arrange for
their devices to talk directly to one another, while making
sure that no other device is eavesdropping on (or
manipulating) their communication. “Talking directly to
one another” may be achieved by beaming a short message
between them using IR (or by touching them, or by having
them play to each other a short audio sequence). Using a
two-stage protocol, the devices first exchange a small
amount of data across this preferentially trusted channel,
and then use that data to authenticate their further
connection across the network. If the users do not meet
face-to-face, they can carry out a version of this approach
via Email, or by having the user type in information about
their desired endpoint. These variants require higher
degrees of user interaction, with somewhat lower degrees
of assurance.

Platform Experiences

The Speakeasy framework has been implemented atop the
Java platform, and uses Java bytecodes as its mechanism
for mobile code, and Java Remote Method Invocation [25]
system for its code loading, distributed garbage collection,
and so forth.

To date, we have built over two dozen components, which
explore a range of different behaviors. All of these
components are interoperable using the basic facilities
afforded by Speakeasy, and can be used by virtually any
Speakeasy-aware application with no modifications to the
application. These components include a whiteboard
capture system; a digital camera; a filesystem that can
provide access to any Windows NT or Unix directory tree
to other Speakeasy components; an instant messaging
gateway compatible with AOL and Yahoo!; discovery
components for Jini, Bluetooth, and IRDA; a bridge that
allows interaction with Cooltown devices; printers;
projectors; microphones, speakers; video cameras; a
component that can render a Powerpoint presentation as a
slide show, and provide controls for that slide show; a
screen capture component that can redirect a computer’s
standard monitor display to another component (such as a
projector); and a number of others. We have also
implemented a number of applications, including a
browser, a description and evaluation of which are
described in [15].

Together, the architectural features of Speakeasy address
several shortcomings of current P2P systems. Speakeasy
applications are not limited in the set of things they can use.
As new components appear, existing applications should be
able to use them seamlessly. Furthermore, applications are
not restricted to discovering only files, or other instances of
the same application. Speakeasy’s discovery mechanisms
provide open-ended support for discovering new types of
things on new networks.

Speakeasy - XC
File View _Converspace
5':‘:::::“""“ o [offiee } Where | Am ; F cwde Frama
M Home My Machine
§ READMEIxt [L :
v T b
v [Shared Files |
B Ciyde.jpg .
B README 1xt Clycejpg -

5 Man of Canstant 5¢ Ve

5 READMEZ doc
% README hemd

README.txt

Clyde Hustofy
e Histo AL, Jana. Im working on he

Time s Folback ul Cyde jpg 5 e sl
137M.._ speakeasyarches (Chdel added [
1380, Viewss added by Calpumia B

v ywidesanaj - iM .

Figure 4: This Casca application. The current user is
participating in a converspace with Jana, and is sharing
two files and a viewer with her.

THE CASCA APPLICATION

Casca is an application, built on Speakeasy, designed to
support ad hoc collaboration across different networks and
using a wide variety of computing resources. It allows users
to easily create shared spaces (called converspaces), and
use those spaces to share files, devices, and services with
other users. The main application window, shown in Figure
4, is divided into three regions. The rightmost is a tabbed
pane of the user’s current converspaces. Each converspace
shows all components that have been shared by any
members. The converspace’s members are shown below.
The center region shows all discoverable components,
organized into categories including those on the local
machine, at the office, at home, and in my current location.
The leftmost region provides an always-visible list of all
components that the user is sharing in any converspace.

Leveraging Speakeasy

Casca takes advantage of Speakeasy’s mechanisms to use
multiple discovery protocols and adapt to changes in
available network connections and transports. Thus a user
on, say, a laptop can access components running locally on
the laptop, components running on an intranet to which the
laptop has access (a work network, for example), “public”
components that may exist in the environment, and so on.

Components, once discovered, can be used with other
components or resources present on the laptop, or be shared
with other users. Since components are the principal unit of
sharing, Casca can be regarded as a highly “generic”
application—it provides a framework and user interface for
component discovery and interaction. The rest of the
application’s functionality is largely determined by the set
of components that are available for use. As new
components are discovered (or installed locally), they can
extend the application to accommodate new protocols, data
types, and user interfaces, using the Speakeasy mechanisms

described earlier. Likewise, these components can also be
readily shared with other Casca users.

For example, if a user has a video camera installed on his
or her laptop, that user can share it with any other party,
without that party having to install drivers or update
software. It is by making the component the principal unit
of sharing that Casca supports richer opportunities for
collaboration than “simple” information sharing—the
particular set of components that are shared enable the
collaborative functionality. While Casca has no notion of
cameras, microphones, or displays, videoconferencing
capability can be added to the collaboration simply by
having those components available.

Sharing Resources through Converspaces

A converspace represents an ongoing collaboration among
a set of users. It contains the set of components accessible
to anyone who is a “member” of the converspace. Users
can be involved in multiple converspaces at the same time.
Casca allows a user to easily create a new converspace to
represent a new collaboration, and to add new members to
existing converspaces, all of whom can then add
components to it.

To revisit the scenario at the first of the paper, Calpurnia
and Julius both run Casca on their laptops; when they first
encounter each other, they create a new converspace to
share their ongoing work. They then add components
representing files and directories to the converspace. They
might also add components like the “viewer”, which allows
other converspace members to show information on one’s
local display.

The converspace imposes a unified mechanism for access
control and discovery on the “base” mechanisms provided
directly through Speakeasy. Users can add any discoverable
component to a converspace, including locally available
components as well as those available through a variety of
discovery mechanisms.

Local components—that is, components running on the
same machine as Casca—are only available through
explicit sharing. That is, they are never discoverable nor
usable by any user, except those who are members of a
converspace in which that component is shared.

Sharing a component via a converspace thus amounts to a
limited form of “publishing” that component—it becomes
visible and usable to the other members of the converspace,
and only to those users. In essence, converspace sharing
provides a separate discovery channel, independent of
whatever other discovery channels may be in use.

Through the converspace mechanism, users can even
provide access to components that might otherwise be
undiscoverable by others. A user who shares a component
need not worry about whether others can access it, since the
act of sharing makes the component accessible to others.

The advantage of this model is that it does not require
tedious access control lists, or a priori specification of
access rights, or understanding of the differences of

discovery versus use, or complete knowledge of what
resources might be discoverable by others. Not only is the
use of such tools at a user level confusing, but it is also
prone to error: users make mistakes, forget what resources
are shared, and so on. There is precisely one concept in the
Casca sharing model: if a component is in a converspace, it
can be used by the other members of that converspace, and
its access control automatically adapts as members come
and go. The changing of access rights is incidental to the
act of sharing [20].

Using the Speakeasy Security Model to Implement
Converspaces

Under the hood, as individuals create and use a
converspace, a number of security-related steps are taking
place.

First, the system relies on the approach of using
preferentially trusted channels to bootstrap secure
interactions among users who share no a priori trust
information with each other (perhaps using IR, as described
previously). Thus, when Julius and Calpurnia meet, Julius
simply “points out” Calpurnia so his application can find
her. In the process of indicating that he wants to talk to
Calpurnia (using IR, contact or another appropriate medium
to “point”), Julius’ and Calpurnia’s devices exchange
public key information and IP or Bluetooth addresses.

Now that they can securely identify each other’s public
keys, Julius and Calpurnia can now set up a secure
connection to create a new converspace. One of them (let’s
say Julius) creates the space on their machine, and a “root
credential” for it. The root credential is a self-signed
certificate tagged with its connection to the space. That
credential is stored with the space. Julius then creates a
certificate for Calpurnia, designating her membership in
this particular space through information contained in the
certificate. These two certificates (Julius’ self-signed
certificate and the certificate he signed for Calpurnia) form
the credentials Calpurnia needs to prove her membership in
the converspace. Calpurnia stores these certificates with her
representation of the space. Most importantly, as almost all
communications in Casca applications occur over Java
RMI (which is TCP-based), these certificates are sufficient
to secure further interactions using SSL/TLS.

Note that none of this certificate exchange is visible to the
users. Julius simply indicates (e.g. using IR) that Calpurnia
is the person he means to add to a converspace, and all the
rest happens implicitly and automatically. Also note that
the same sort of exchange would be used by either Julius or
Calpurnia to add yet another individual to the converspace.
Depending on the security requirements of a converspace,
either a subset of members (those that have some sort of
special privilege) or all members can add other individuals
to the space. In either case, Julius will be the only root
certification authority, even though those allowed to add
new members effectively work as lower-level certification
authorities. The important characteristic provided by this
architecture is independence: if Julius adds a third member

to the group, Pluribus, then Pluribus and Calpurnia will be
able to authenticate each other as group members without
any intervention from Julius. The same is true between two
other members invited into the group by Pluribus and
Calpurnia, and so on.

When each user chooses to publish a component to other
members of a group, they use their group credential for that
group to secure the server end of requests for that
component (thus group members, rather than components,
are certified and carry group credentials). Each component
that a user publishes uses standard Java mechanisms to
indicate that a client that wishes to use it must do so using
SSL/TLS. The client that connects to that component does
so using the group credential for the converspace in which
the object is located. It expects that the server, or service
publisher, that it talks to on the other end will also have a
credential indicating that it is a member of the same group.

Although this access control logic is application-specific—
it “knows” about converspaces and the components inside
them, the way that it is implemented is actually generic. We
constrain all Speakeasy components in general to require
the use of SSL/TLS connections. On both the client and the
server, the components at the endpoints of the connection
know that they must query an application level security
manager to find out whether they should accept the
connection (for the server) or should trust the server (for
the client). The Speakeasy framework supplies several
default security managers that could be used by a minimal
application: e.g. one that allows all connections (no
security), and one that only allows connections back to the
same machine. The developer of an application such as
Casca would install an application security manager
appropriate to their application semantics (in practical
terms, this is usually one fairly short class). In the case of
Casca, the security manager knows about the existence of
converspaces, and that members of a converspace can
access components that have been published to that space.

Flexibility and its Discontents

A major aspect of Speakeasy’s design philosophy was
carried forward into the design of the sharing model. The
emphasis on placing users in control of what is shared with
whom reflects Speakeasy’s core belief that users are the
ultimate arbiters of interoperability among devices and
services. There are, of course, a number of implications of
this approach, foremost among them is that we permit users
to make bad decisions. Users can, for example, allow
access to components that are perhaps better left unshared.
In particular, users can permit access to a component that
exists on a private network, and which the other members
of a converspace would otherwise not be able to even
discover, much less use.

Users can also add new parties to a converspace without the
approval of others. We believe this is a requirement for
settings in which network connectivity is not a given, or for
which we do not want to require all users to be constantly
connected to one another. This design choice, however,

allows a users to make ill-informed (or even malicious)
decisions about granting others access to a converspace.

Our belief is that these are acceptable—and even
necessary—trade offs. In general, we believe that the
benefits of permitting loosely-structured, informal
collaboration outweigh the potential costs of bad decisions
about sharing. There are a number of important
requirements that result from this stance however: limited
sharing, accountability, recoverability, intelligibility, and
awareness of others and their actions.

Limited Sharing

First, sharing must be limited in scope to exactly the set of
users defined by the user sharing the resource. As described
above, in Casca this is made possible by the simplified
sharing model that dictates that only components that have
been explicitly placed in a converspace are shared with
only the members of that converspace, and that there are no
hidden effects that would provide access to anyone else. In
fact, beyond components on my machine not being usable
by others outside of a converspace, they are not even
discoverable by others outside of a converspace.

Accountability and Recoverability

Second, social protocols work best when there is
accountability [3]. Users need to be aware of who has done
what in order for social protocols to be able to play out. To
this end, we have built in a number of features to support
accountability in the application, as well as recoverability
from undesired user actions. Casca provides accountability
by recording and making visible all actions that affect the
composition of a converspace (components added or
removed, users added or removed), as well as accesses to
components that are carried out through the converspace.
Figure 4 shows an the history window in the lower left
hand corner. This visualization provides not only a tool for
accountability, but also simple recall.

The history also provides a convenient user interface for
recovering from simple forms of sharing mistakes. The
history retains references to all the components that have
ever been in the converspace. From the history window,
they can easily be added back to the converspace, if they
have been inadvertently deleted. So, for example, if another
user accidentally removes a component that you were using
with a third member, you can add it back quickly.
Intelligibility

Finally, intelligibility of sharing is essential for
understanding. Even if no sharing happens except through
explicit actions, users can still forget about what they’ve
left shared, especially if they are engaged in a number of
long-term collaborations, or a large number of
collaborations These problems have been identified
previously in the literature [2, 5]. Constant intelligibility of
the state of sharing allows users to be aware of what’s
being shared, and to whom.

To prevent some of these problems with “invisible
sharing,” we strived to provide intelligibility about the state
of sharing. Casca provides an always-visible display of

what components the user has directly shared to others (see
the left-most panel in Figure 4). A user can quickly
ascertain whether any components are being shared, and
what groups of people they are shared with. This panel also
provides controls for globally changing the sharing settings
for particular components.

Awareness and Communication

The benefits of providing awareness of others in a
collaborative system have been well documented [6]. Casca
provides a number of features for awareness of the state of
others, and the state of the converspace itself.

Most importantly, each instance of Casca detects when the
other members of a converspace are online. The system
presents a graphical image of the membership of a
converspace, and graphically indicates which are current
online and which are offline. The system uses a simple
heartbeat protocol to determine status; there is a short
window during which transitions from online to offline and
vice versa may go undetected.

The history feature, described earlier, allows users to be
aware of any changes that have happened in a converspace
since they were last connected, or of any changes that
others made while they were offline. The history also
records data transfers among components in the
converspace. Since most operations in Speakeasy involve
such transfers, for example viewing or copying a file, many
operations can be recorded in this way.

Finally, Casca provides a number of tools to facilitate direct
user-to-user communication. By clicking on the graphical
representation of any converspace member, a user can
access a menu that allows him or her to email the member,
or send an instant message.

Implementing Distributed Converspaces

The state of a converspace is distributed among the
members of that converspace. When components or users
are added or removed, the changes are propagated
immediately to all online members. Otherwise, each
member tries periodically to connect to each offline
member, and upon reconnection, a simple pair-wise
synchronization protocol is used to update the state of each
instance of the converspace.

The synchronization protocol supports offline work without
the burden of more formalistic protocols, such as locking
the converspace, or transactions that cannot be committed
until the user is online, or the imposition of versioning (and
a Ul to resolve inconsistent versions), and without
requiring access to some centralized server. This approach
allows users to work individually or in small groups
separate from other converspace members, and still be able
to make changes to the converspace.

The intent with the sync protocol is simply to make the
propagation of state as simple as possible from the user
perspective; not to ensure rigorous global orderings of
updates. Synchronization conflicts—such as two users
adding the same component, or one offline member

removing a component while another adds it—are dealt
with in a very simplistic way. The update with the latest
timestamp “wins.” Casca provides only a user interface to
undo any undesired synchronization changes.

Histories are also synchronized. When one application
instance carries out an action that results in a history record
being generated, it creates the record and propagates it to
all currently connected instances. Changes are propagated
to offline members when they are reconnected. The history
is not used to merge changes from multiple converspace
instances. Instead, it is purely for human use to support
accountability. History records are synchronized, but there
is no attempt to resolve conflicts in the history.

DISCUSSION

The Casca application we have just described is intended to
support flexible peer-to-peer collaboration. It depends
critically on Speakeasy to provide many of its features.
Most importantly, Speakeasy makes possible a runtime
extension of functionality that would be difficult or
impossible to accomplish otherwise. Typically, dramatic
changes in functionality can only be provided by rewriting
an application, which forces users to upgrade. This is made
more problematic with a collaborative application, where
each party has to have a compatible version of the
application in order to work together. Speakeasy allows the
application—and by extension, its users—to bring any
resources in their environments to bear on their work.

Furthermore, we believe that Speakeasy made the task of
developing Casca substantially easier than it would have
been without it. We built a highly functional version of the
core application from scratch in a little over a month with
four developers. This task was made easier since Speakeasy
abstracts away many of the unpleasant aspects of dealing
with distributed components on the network—aspects such
as discovering and connecting these components. Also the
components we had already built were able to be integrated
into Casca with no extra work, so the ability to share things
like files, displays, printers, and video cameras was
obtained “for free” because these already existed as
Speakeasy components.

The Speakeasy framework provides these facilities to
application writers, but at a cost. Namely, applications have
only generic knowledge about a potentially open-ended set
of components, discovery protocols, and so forth, that may
appear in the environment. As we have said, we believe
that this cost imposes a number of requirements on
application writers, such as intelligibility, accountability,
recoverability, and awareness. While these would be
desirable features in any collaborative system, they are
made more pressing by the additional flexibility and
openness encouraged by Speakeasy.

Casca addresses these requirements in two ways. First, it
supports sensemaking in complex environments. Users can
organize the components around them by locale, owner,
and other intrinsic aspects of components. The system
preserves complete histories of the interactions in a

converspace, to support accountability of users and their
actions, and to allow a user to see how a space evolved to a
particular state. The tenet of “always visible” sharing also
supports this use.

Second, and more importantly, is the wuse of the
converspace notion to unify access control, discoverability,
and salience. From the user’s perspective, a component is
added to a converspace merely because it is salient to
collaboration. The system uses this act to establish access
control and component visibility accordingly—the model
“collapses” many security operations down to a single user-
visible concept. Most important to us was that the security
machinery provide “real” access control, based on strong
cryptographic techniques, but without “getting in the way”
of what users want to do. Users never see a key, for
example, or have to understand the security model in terms
of certificates or access rights. Further, the model supports
flexibility in sharing: if I add a user to a converspace, they
immediately have access to the resources in it. There is no
use of a central authority, or a requirement that all members
be online in order for access to be granted. In other words,
the security model is flexible from a user perspective, and
is also compatible with the peer-to-peer model espoused in
this paper.

The Speakeasy infrastructure supports the ability of
applications to layer such semantics atop the core
infrastructure. The contextual metadata interfaces, for
example, allow applications to impose their own structure
and organization on components that are discovered, based
on proximity, spatial location, virtual location, or any other
property that components use to describe themselves. The
use of context objects to “tag” operations allows actions to
be traceable and supports accountability through disclosure
of identity and action. The Speakeasy security model
allows applications to impose new access control and
sharing semantics that—while they are defined by the
application—are managed, enforced, and vetted by the
components that provide service.

Our future work on these systems falls largely into two
categories. First, we plan to continue refining the core
functionality in the Speakeasy platform. The security
infrastructure, in particular, is fairly new and we need more
experience with it to ensure that it is compatible with other,
divergent application security semantics. Second, we plan
to continue investigating the user experience issues of
genericity that are present (and, we believe, will necessarily
be present) in richly networked environments. The Casca
application is one such exploration into the domain of
collaborative systems. We plan to continue this work, and
also explore the issues of genericity in new domains.

RELATED WORK

We have described the Speakeasy framework and how it
dovetails nicely with the requirements of spontaneous,
peer-to-peer collaboration. Other frameworks and toolkits
have attempted to address various aspects of the peer-to-
peer collaboration space.

The Groove framework [11] provides mechanisms for
easily initiating collaborations that can persist indefinitely,
support for communicating and sharing across firewalls,
and some degree of extensibility. However, they require all
parties be able to contact a central server in order to initiate
collaboration (the other parties’ Groove ID’s need to be
looked up in a directory), so they cannot support off-the-
Internet setup. Also, Groove allows collaboration spaces to
be extended to incorporate any of a set of pre-established
“tools” provided by Groove (e.g. whiteboard, voice chat,
file space, co-browsing) or any third-party tools that are
developed to conform to the Groove interface. In contrast
to Speakeasy components, however, these tools are
intended to be much more high-level and structured, and so
do not offer extensibility at as fine a grain. Furthermore,
Groove is unable to take advantage of “off machine”
devices and resources—Groove is only able to talk to other
instances of itself.

Other toolkits have addressed either the peer-to-peer
aspects or the collaboration aspects, but not both. For
example, JXTA [10] is a toolkit for building peer-to-peer
applications of all stripes—not just collaborative
applications but also file sharing, instant messaging, and so
forth. It shares with Speakeasy an emphasis on network
independence and interoperability, but does not directly
support runtime extensibility. At the other end of the
spectrum, collaboration toolkits like GroupKit [18] have
focused on supporting tightly-coupled collaborative
applications, such as collaborative document editors and
real-time conferencing applications, but have not
concentrated as much on supporting spontaneous
collaboration or runtime extensibility.

DACIA [12], like Speakeasy, uses mobile code to create
collaborative systems that adapt changes in resources and
networks. Whereas Speakeasy is concerned with discovery
and use of new resources by applications, DACIA is
focused on dynamically relocating the functional units of a
groupware application to adapt to changes in the
environment. We believe that these systems target different
application needs.

CONCLUSION

We have shown how the Speakeasy system addresses the
shortcomings of current peer-to-peer systems, by providing
flexibility in terms of discovery protocols, network usage,
and data transports. This has been demonstrated through
our development of Casca, an application that supports ad
hoc peer-to-peer collaboration by taking advantages of the
mechanisms provided by Speakeasy.

REFERENCES

1. Balfanz, D., Smetters, D.K., Stewart, P. and Wong, H.C.,
Talking To Strangers: Authentication in Ad-Hoc Wireless
Networks. Proceedings of Network and Distributed System
Security Symposium (NDSS), (San Diego, CA, USA, 2002).

2. Bellotti, V. Design for Privacy in Multimedia Computing and
Communications Environments. in Rotenberg, M. ed.
Technology and Privacy: The New Landscape, MIT Press,
Cambridge, MA, 1997, 62-98.

11

13.
. Newman, M.W., Izadi, S., Edwards, W.K., Smith, T.F. and

14

15.

17

20.

21.

22.

23.

25.

26.

. Bellotti, V. and Edwards, W.K. Intelligibility and

Accountability: Human Considerations in Context Aware
Systems. Jour. of Human Computer Interaction, 16:2-4. 2001.
Breidenbach, S. Peer-to-peer potential Network World, 2001.
Cohen, J., Out to lunch: Further adventures monitoring
background activity. Proceedings of ICAD 94, International
Conference on Auditory Display, (Santa Fe, NM, USA, 1994),
Santa Fe Institute, 15-20.

Dourish, P. and Bellotti, V., Awareness and Coordination in
Shared Workspaces. Proceedings of ACM Conference on
Computer-Supported Cooperative Work (CSCW), (Toronto,
Canada., 1992), ACM Press, 107-114.

Edwards, W.K., Newman, M.W., Sedivy, J.Z., Smith, T.F. and
Izadi, S., Challenge: Recombinant Computing and the
Speakeasy Approach. Proceedings of The Eighth ACM
International Conference on Mobile Computing and
Networking (Mobicom 2002), (Atlanta, GA USA, 2002).
Gnutella. http://www.Gnutella.com, 2002.

Goland, Y.Y., Cai, T., Leach, P., Gu, Y. and Albright, S.
Simple Service Discovery Protocol/1.0: Operating Without an
Arbiter. Internet Engineering Task Force Internet Draft. 1999.

. Gong, L. Project JXTA: A Technology Overview. Sun

Microsystems, Inc. April 25, 2001.

. Groove Networks Inc. http://www.Groove.com, 2002.
12.

Litiu, R. and Prakash, A., Developing Adaptive Groupware
Applications Using a Mobile Component Framework.
Proceedings of Computer Supported Cooperative Work
(CSCW), (Phil., PA, USA, 2000), ACM Press, 107-116.
Napster. http://www.Napster.com, 2002.

Sedivy, J.Z., User Interfaces When and Where They are
Needed: An Infrastructure for Recombinant Computing.
Proceedings of Symposium on User Interface Software and
Technology (UIST), (Paris, France, 2002), ACM.

Newman, M.W., Sedivy, J.Z., Edwards, W.K., Smith, T.F.,
Marcelo, K., Neuwirth, C.M., Hong, J.I. and Izadji, S.,
Designing for Serendipity: Supporting End-User
Configuration of Ubiquitous Computing Environments.
Proceedings of Designing Interactive Systems (DIS), (London,
UK, 2002), 147-156.

. Palm, 1. Bluetooth: Connecting Palm Powered(r) Handhelds.

October 22, 2001.

. Palm Inc. Palm Bluetooth Card, 2002.
18.

Roseman, M. and Greenberg, S. Building Real Time
Groupware with GroupKit, A Groupware Toolkit. ACM
Transactions on Computer Human Interaction, 3 (1). 1996.
66-106.

. Scannell, E. Wall Street firms embrace WorldStreet's p-to-p

offerings InfoWorld, 2001.

Smetters, D.K. and Grinter, R.E., Moving from the Design of
Usable Security Technology to the Design of Useful Secure
Applications. Proceedings of New Security Paradigms
Workshop, (Norfolk, VA, 2002), ACM.

Sun Microsystems. Jini Discovery and Join Specification.
January, 1999.

Sun Microsystems. Network File System Protocol
Specification (RFC 1049). 1989.

Universal Description Discovery and Integration Consortium.
UDDI Technical Whitepaper. September 6, 2000.

. Waldo, J. The Jini Architecture for Network-centric

Computing Communications of the ACM, 42:7, 1999, 76-82.
Wollrath, A., Riggs, R. and Waldo, J. A Distributed Object
Model for the Java System. USENIX Computing Sys., 9. 1996.
WorldStreet. http://wwWorldStreet.com, 2002.

