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ABSTRACT 
Peer-to-peer systems appear promising in terms of their 
ability to support ad hoc, spontaneous collaboration. 
However, current peer-to-peer systems suffer from several 
deficiencies that diminish their ability to support this 
domain, such as inflexibility in terms of discovery 
protocols, network usage, and data transports. We have 
developed the Speakeasy framework, which addresses 
these issues, and supports these types of applications. We 
show how Speakeasy addresses the shortcomings of current 
peer-to-peer systems, and describe a demonstration 
application, called Casca, that supports ad hoc peer-to-peer 
collaboration by taking advantages of the mechanisms 
provided by Speakeasy.  
Keywords 
Casca, Speakeasy, peer-to-peer, ad-hoc collaboration 
INTRODUCTION 
Imagine the following scenario: Julius is on his way to a 
conference in New Orleans and has a layover in Atlanta. 
While waiting in the airport, he runs into his old friend and 
collaborator, Calpurnia, who is on her way to the same 
conference. They start talking about things they’re working 
on and decide that they’d like to try to write a paper for a 
different conference with a deadline in a few weeks. They 
both have laptops with various capabilities: Calpurnia’s can 
connect to the Internet over GPRS; Julius is out of range of 
his ISP, but is able to connect to the airport’s 802.11b 
network to take advantage of certain local services. Both 
laptops have Bluetooth capabilities, and so are able to 
connect to one another. 
To plan their writing, they exchange current contact 
information, information about the conference, notes, 
documents, pointers to related work, and so forth. This is 
information that is, variously, located on one of their two 
laptops, or on the network at one of their institutions, or on 
the public Internet.  
Even though only a subset of these resources would 
normally be available to each participant—because of 

connectivity to different networks, access privileges, and so 
forth—they can still share the information they need in 
order to collaborate. For example, even though Julius does 
not have an Internet connection, Calpurnia does, and she is 
able to display web pages about related work on Julius’ 
machine for him to see.  
Both Julius and Calpurnia are also able to access and share 
devices around them, in addition to information. Calpurnia 
is able to print her related work pages using a nearby public 
printer by using Julius’ connection to the airport network; 
she is also able to make her laptop’s integrated webcam 
available to Julius, so that he can see if she is in her office 
during the coming weeks, as their collaboration continues.  
This scenario illustrates a type of ad hoc collaboration that 
we would like to be able to support. Peer-to-peer (P2P) 
networking is a promising technology for supporting this 
type of application, but current P2P systems are lacking in 
several ways. The Speakeasy framework for recombinant 
computing [7] addresses many of the limitations of current 
P2P systems, and supports ad hoc collaboration. 
In order to demonstrate this, we have built an application 
called Casca that is designed to support ad hoc 
collaboration across different networks and using a wide 
variety of computing resources. Casca allows users to 
easily create shared spaces (called converspaces), and use 
those spaces to share files and other resources, such as 
printers or webcams, with other users. Because of the 
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Figure 1: Using Casca in an impromptu collaboration 



extensible nature of Speakeasy, Casca is able to provide 
far-ranging functionality, such as display sharing, that the 
application was not explicitly written to support.  
THE POTENTIAL OF PEER-TO-PEER COLLABORATION 
Peer-to-peer (P2P) technologies hold out many advantages 
for supporting collaboration. Collaborative systems such as 
Groove [11] and WorldStreet [26] that take a peer-to-peer 
approach appear to be gaining adherents in the marketplace 
[4, 19]. Furthermore, as ad hoc networks such as Bluetooth 
begin to take hold, the P2P approach emerges as a good 
solution for off-the-Internet collaborations [16]. Although 
this aspect has been explored to a lesser extent, P2P 
systems seem especially promising in their ability to 
support “spontaneous” collaboration, where two people 
decide to have an unplanned interaction with one another. 
The advantage of P2P systems comes from their potential 
ability to support anywhere collaboration. This benefit is 
architectural—by not requiring that all parties have mutual 
access to some common resource (such as a server, or a 
corporate intranet), P2P systems can potentially allow users 
to collaborate without regard to the particulars of the 
networks on which they happen to be. Further, these 
systems are easily supported by proximity-based 
networking technologies (such as Bluetooth), which can 
provide a certain natural ease of use with regard to 
initiating collaborations between participants. 
We say “potential” in the previous paragraph because 
current P2P architectures have a number of limitations. 
First, P2P systems tend to be able to share only a fixed set 
of things, such as files. Systems like Napster [13] and 
Gnutella [8] are well-known systems that have, at their 
core, distributed protocols for file sharing. They cannot be 
easily extended to share new types of resources, such as 
nearby devices, or services that appear on the network.  
Second, many of these P2P systems use a very limited form 
of discovery. Napster, in particular, is not a true P2P 
system: it requires the use of a centralized index server to 
allow searches over content. Only the actual exchange of 
data is done in a peer-to-peer way. Applications based on 
Gnutella, while decentralized, restrict their discovery to 
other instances of Gnutella-based applications only. These 
applications have not integrated or exploited the wide range 
of discovery protocols in use today, including [9, 21, 23], 
that allow access to external devices and services. Put 
another way, these applications are only about 
interconnecting with other instances of the same 
application, not about interconnecting with external 
resources. Even Groove, which is perhaps the most 
powerful example of a P2P collaborative system, is not a 
general-purpose tool for interacting with whatever 
resources happen to be at hand, and allowing them to be 
used collaborative; rather, it is restricted to sharing small 
applets that are hosted inside the Groove viewer. 
Third, many of these systems assume that you will interact 
with all available peers, rather than letting you choose your 
collaborators. 

Finally, these systems typically impose restrictions on the 
sorts of network transports they use. For example, 
applications written to use Bluetooth (e.g. Palm’s 
BlueBoard [17]) cannot take advantage of other networks. 
In the next section, we describe the Speakeasy 
infrastructure, and how it addresses the problems with 
current P2P systems outlined here. In particular, Speakeasy 
provides an open-ended framework for the sharing of 
arbitrary devices, services, and information. It is adaptive 
in the way it uses the network: Speakeasy applications can 
be dynamically extended to new data exchange protocols, 
new discovery protocols, and even new data types and user 
interfaces. This ability allows Speakeasy applications to 
discover and use resources on different networks. Finally, it 
allows application writers to create flexible models of 
sharing, according to the demands of the application. 
Following the overview of Speakeasy, we will introduce 
the Casca application for peer-to-peer collaboration. We 
will show how the mechanisms in Speakeasy enable 
powerful collaborative tools to be easily constructed. 
We will then conclude with a discussion of our experiences 
with both the architecture and the application and a 
comparison of both with existing systems. 
THE SPEAKEASY INFRASTRUCTURE FOR PEER-TO-
PEER COMPUTING 
We have created an infrastructure called Speakeasy [7] that 
addresses many of the shortcomings of current peer-to-peer 
architectures. It is designed to allow the construction of 
applications that can use new devices, services, and 
networks, without requiring that the application have 
specialized knowledge of any of these. 
Speakeasy provides a platform for extensible peer-to-peer 
computing that can be applied to a number of domains 
where flexibility is paramount, including ubiquitous 
computing and, as discussed here, collaboration. While the 
system is not, in itself, architected exclusively for 
collaboration, we will show that its ability to overcome the 
limitations of peer-to-peer architectures make it a good 
framework for building collaborative applications.  
In the Speakeasy model, any entity that can be accessed 
over a network is cast as a component. Components are 
discrete elements of functionality that may be 
interconnected with other components or used by 
applications. Components may represent devices such as 
printers, or video cameras; services such as search engines 
or file servers; and information such as files and images. 
In the scenario at the start of this paper, each shared 
resource—files, URLs, and printers—would be a 
component. Some of these exist on the laptops of Calpurnia 
and Julius themselves, while others exist on a public 
network or the Internet at large. As new components appear 
on the network, Julius and Calpurnia would be able to use 
them without installation of drivers or software upgrades. 
Applications engage in a discovery process to find 
components “around” them on the network. These may be 



components that are running locally (that is, on the same 
machine as the application itself), or on nearby machines 
(perhaps discovered using some proximity-based 
networking technology such as Bluetooth), or on remote 
intranets or the Internet itself.  
In the scenario, both Julius and Calpurnia would run a 
Speakeasy-aware application that allows them to discover 
and use any components around them, and also allows them 
to share these components with each other. 
As will be described, Speakeasy applications use no fixed 
set of discovery protocols; instead, applications 
dynamically adopt new discovery protocols as their 
underlying networks change. Likewise, Speakeasy 
applications do not depend on fixed data exchange 
protocols or data types; instead, they acquire new behavior 
as they interact with the components around them. 
In the scenario earlier, this mechanism allows Calpurnia to 
discover and even use a printer accessed through the 
Bluetooth card in Julius’ laptop. 
The Speakeasy Architecture 
Central to the Speakeasy design is the idea that all 
components expose their functionality via a small number 
of fixed interfaces that allow them to “snap together.” 
Speakeasy applications use these interfaces to access 
component functionality; because the set of interfaces is 
fixed, any new component can be used by any existing 
application that understands the interfaces. 
Establishing an a priori set of interfaces that must be used 
to describe all component functionality can obviously be 
limiting. The approach Speakeasy takes is to use these 
interfaces to allow components to deliver mobile code to 
their clients. Mobile code is portable executable code that 
can be downloaded over a network to a client, where it is 
executed. This approach allows a component to extend the 
behavior of applications that use it, to adapt them to new 
functionality. 
Of course, mobile code is not a panacea. Any application 
that receives mobile code must still know what to do with 
that code. Systems like Jini [24], while they use mobile 
code, do not dictate a common set of interfaces that all 
clients are expected to understand. Speakeasy uses a set of 
four interfaces that dictate the ways in which applications 
can use the mobile code that they receive: 
� Data transfer: how do components exchange 

information with one another and with applications? 
� Aggregation: how are components “grouped” for 

purposes of discovery and containment? 
� Context: how do components reveal descriptive 

information about themselves, and adapt themselves to 
their users? 

� Control: how do components allow users and 
applications to effect change in them? 

An application that uses a component will interact with it 
using one or more of these interfaces, depending on what 

the user wishes to do. Interactions between an application 
and a component involve only those two entities; no third 
party need be involved in the exchange, and so the 
architecture inherently supports a peer-to-peer style of 
interaction. Even the discovery process, which in many 
systems requires access to some directory service, is done 
through peer-to-peer interactions. 
The data transfer interface is used by applications that 
wish to send or receive data to or from a component, or 
send or receive data between components. A source 
component, rather than providing data directly, instead 
returns an endpoint object to its caller. This is a bundle of 
mobile code that executes entirely within the receiving 
component, and extends it to speak whatever data transfer 
protocols the source uses. 
For example, suppose in the scenario that Julius discovers a 
Speakeasy video camera. His application need not 
understand a suite of video delivery protocols in order to 
use this device. When he begins using it, the code 
necessary to speak the device’s protocol is transparently 
downloaded to his application by the camera component 
itself, as shown in Figure 2. This code can be arbitrarily 
complex, performing adaptive compression, retransmission, 
and so on. In certain circumstances, components can even 
extend applications that use them to be able to handle new 
data types. For example, a camera can provide code to view 
MPEG2 video streams to its callers on demand. Users need 
not worry about installing appropriate applications or plug-
ins for interacting with the components they encounter. 
Just as the data transfer interface uses mobile code to 
extend applications to new communications protocols and 
data types, the aggregation interface is used to provide 
dynamic discovery behavior. This interface returns a 
mobile code-based object to callers that resembles a key-
value map, where the values in the map are themselves 
components. Callers can also iterate through the 

Figure 2: Data transfers in Speakeasy use source-
provided endpoint code. In A, a video camera 

delivers a source-specific protocol endpoint to the 
projector. In B, the endpoint is used to fetch data 

using a camera-private protocol. 
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components in the map, search the map, and receive 
asynchronous notifications when the map changes. 
The implementation of this map, however, is specialized by 
the aggregate component that returns it. As shown in Figure 
3, a filesystem component can return a map implementation 
that provides a client-side implementation of the Network 
File System [22] protocol to access existing fileservers and 
return components representing files; a discovery 
component can return code that implements a network 
discovery protocol to find new components. Other 
aggregates may communicate to some back-end “bridge” 
service to access components on wholly different networks. 
This pattern of use allows an application to be written 
against a single interface that can provide a great deal of 
network flexibility, including locally executing discovery 
protocols, bridges, and so forth. 
In the scenario, Julius runs a Bluetooth component locally 
that Calpurnia can access remotely. The code the 
component downloads to her application allows her 
application to communicate back to Julius’ Bluetooth 
hardware, to access any Bluetooth device he can discover.  
The context interface returns to a calling application an 
object that provides access to the metadata of a component. 
This may include information such as the component’s 
location, its owner, and other descriptive information. One 
key aspect of the Speakeasy architecture is that, in order for 
any application to use a component’s interfaces, that 
application must provide a context object describing itself 
to the component. Thus, all operations in Speakeasy are 
tagged with a set of descriptive information about who 
requested the operation. This pattern supports not only 
exploration and sensemaking of new network 
environments, but also accountability of actions. 
In the scenario, both users can use the contextual 
information provided by the components around them to 
better understand their surroundings—what’s on the airport 
network (and, hence, nearby them), what’s on their work 
networks, what’s actually on their laptops. When either of 
them performs an operation, identifying information about 
the circumstances are carried along with the operation. 
Finally, the control interface can be used by applications 
to return to them a complete user interface, specialized by 
the component that provided it [14]. A component may 
potentially be able to provide multiple UIs including 
graphical UIs, voice UIs, and so forth. This mechanism 
allows users to control arbitrary aspects of a component’s 
functionality, without requiring that their application be 
pre-built with control panels for every possible component.  
In the scenario, Calpurnia may decide to walk through her 
practice talk with Julius. When she drops her PowerPoint 
slides on Julius’ display component, the slides are 
displayed on his laptop and a set of controls for the slide 
show appear on her laptop. 
Together, these four interfaces represent the shared 
agreement that we expect to be present in Speakeasy-aware 

applications and components. Components describe their 
functionality using one or more of these interfaces, while 
applications use these interfaces to extend their own 
behaviors in response to the needs of components. 
There is, of course, an obvious drawback to the approach of 
dictating a small, fixed set of interfaces that programs use 
to interact with components: programs will have only very 
generic knowledge about the components with which they 
interact. Put another way, all Speakeasy components—
whether filesystems or printers or video cameras—look 
largely the same to applications. In fact, it is this 
programmatic similarity that enables interoperability and 
extensibility to new components, and is necessitated by the 
Speakeasy model. If we restrict programs to being able to 
talk to those things they already know about, then those 
programs would not be able to talk to new types of things. 
In such a world, the role of the infrastructure is to ensure 
that programs can talk to arbitrary components; users, on 
the other hand, dictate when and whether to use any 
particular component. The human has primacy in this 
model; this, in turn, places a set of requirements on the 
infrastructure, and on applications built using it. 
Namely, the infrastructure must provide enough 
information to allow users to make informed decisions 
about the components in their environments—what they do, 
where they are, and so on. The context and control 
interfaces provide a simple form of this information: 
contextual information can be used by applications to 
organize the components around them, and the control 
interface provides a way for a user to directly interact with 
features of components not expressed using the other 
interfaces. Different applications will embed different 

Figure 3: The two examples here show how the 
single aggregate interface can be applied to 

multiple uses via the use of component-specific 
objects. In each of these, a map object has been 

returned by a Speakeasy component to an 
application. In A, the map extends the application to 
speak the NFS protocols. In B, the map talks to an 

external discovery bridge. 
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semantic models for how discovered components are 
grouped, shared, organized, and so on. The infrastructure 
must support these various uses. The second half of this 
paper, on the Casca application, discusses how an 
application can exploit the Speakeasy architecture to 
provide a user model compatible with the collaborative 
scenario described at the first of this paper. 
Security 
An important, but usually neglected component of P2P 
applications is security. In Speakeasy, the goal is not only 
to make it simple for a user to make components available 
to others, but also to provide means for that user to control 
who or what has access to a component.   
As part of Speakeasy, we envision providing a security 
solution that 1) operates in a flexible and generic enough 
fashion to seamlessly work in the dynamic Speakeasy 
environment; 2) makes it easy for developers using 
Speakeasy to embed application-layer security semantics 
into their application; and 3) makes it intuitive for end-
users to communicate their access control decisions.  
We have begun building into Speakeasy an underlying 
security layer that achieves these goals.  This security layer 
operates according to a few basic principles. First, all 
communication between components should be encrypted 
and authenticated.  Second, it should not rely on the 
existence of any shared infrastructure. Third, it is the 
device “offering” a service that must make the final 
decision about who can access that service. Furthermore, 
that decision must be made on the machine actually 
running the service—it cannot be delegated to mobile code 
running on the requestor’s machine. Fourth, while it is the 
service provider that makes the final access control 
decisions, the authentication must be mutual—the client 
must have assurance that it is indeed talking to the service 
it intended to talk to. Finally, while the nuts and bolts of 
encrypting communication can be handled relatively 
generically by the lower layers of the Speakeasy 
architecture, the decisions of who should be able to access 
what are determined by the semantics of the application. 
Therefore the security layer will call up to an application-
provided access manager (or in its absence, a system-wide 
default) to get answers to access control decisions. 
As we alluded to before, giving application developers a 
security infrastructure to use only solves half the problem; 
end-users should be able to specify their access control 
decisions in a simple and intuitive way. We achieve this 
usability goal by extracting final access control decisions 
from users’ (not necessarily security-minded) actions, 
rather than in a separate, explicit (and usually skipped) 
security step.  The user takes an action that reflects their 
intention, and the security plumbing adjusts to match. For 
instance, we allow the user to indicate that they want their 
PDA to communicate with a particular laptop by using IR 
(thus avoiding having to type in names or addresses). 
Under the covers, the system uses that brief exchange to 
distribute authentication data (cryptographic keys) 

sufficient to let those two devices encrypt and authenticate 
all of their future communications with each other [1]. 
More concretely, when two users meet, they arrange for 
their devices to talk directly to one another, while making 
sure that no other device is eavesdropping on (or 
manipulating) their communication. “Talking directly to 
one another” may be achieved by beaming a short message 
between them using IR (or by touching them, or by having 
them play to each other a short audio sequence). Using a 
two-stage protocol, the devices first exchange a small 
amount of data across this preferentially trusted channel, 
and then use that data to authenticate their further 
connection across the network. If the users do not meet 
face-to-face, they can carry out a version of this approach 
via Email, or by having the user type in information about 
their desired endpoint. These variants require higher 
degrees of user interaction, with somewhat lower degrees 
of assurance. 
Platform Experiences 
The Speakeasy framework has been implemented atop the 
Java platform, and uses Java bytecodes as its mechanism 
for mobile code, and Java Remote Method Invocation [25] 
system for its code loading, distributed garbage collection, 
and so forth. 
To date, we have built over two dozen components, which 
explore a range of different behaviors. All of these 
components are interoperable using the basic facilities 
afforded by Speakeasy, and can be used by virtually any 
Speakeasy-aware application with no modifications to the 
application. These components include a whiteboard 
capture system; a digital camera; a filesystem that can 
provide access to any Windows NT or Unix directory tree 
to other Speakeasy components; an instant messaging 
gateway compatible with AOL and Yahoo!; discovery 
components for Jini, Bluetooth, and IRDA; a bridge that 
allows interaction with Cooltown devices; printers; 
projectors; microphones, speakers; video cameras; a 
component that can render a Powerpoint presentation as a 
slide show, and provide controls for that slide show; a 
screen capture component that can redirect a computer’s 
standard monitor display to another component (such as a 
projector); and a number of others. We have also 
implemented a number of applications, including a 
browser, a description and evaluation of which are 
described in [15]. 
Together, the architectural features of Speakeasy address 
several shortcomings of current P2P systems. Speakeasy 
applications are not limited in the set of things they can use. 
As new components appear, existing applications should be 
able to use them seamlessly. Furthermore, applications are 
not restricted to discovering only files, or other instances of 
the same application. Speakeasy’s discovery mechanisms 
provide open-ended support for discovering new types of 
things on new networks. 



THE CASCA APPLICATION 
Casca is an application, built on Speakeasy, designed to 
support ad hoc collaboration across different networks and 
using a wide variety of computing resources. It allows users 
to easily create shared spaces (called converspaces), and 
use those spaces to share files, devices, and services with 
other users. The main application window, shown in Figure 
4, is divided into three regions. The rightmost is a tabbed 
pane of the user’s current converspaces. Each converspace 
shows all components that have been shared by any 
members.  The converspace’s members are shown below. 
The center region shows all discoverable components, 
organized into categories including those on the local 
machine, at the office, at home, and in my current location. 
The leftmost region provides an always-visible list of all 
components that the user is sharing in any converspace. 
Leveraging Speakeasy 
Casca takes advantage of Speakeasy’s mechanisms to use 
multiple discovery protocols and adapt to changes in 
available network connections and transports. Thus a user 
on, say, a laptop can access components running locally on 
the laptop, components running on an intranet to which the 
laptop has access (a work network, for example), “public” 
components that may exist in the environment, and so on.  
Components, once discovered, can be used with other 
components or resources present on the laptop, or be shared 
with other users. Since components are the principal unit of 
sharing, Casca can be regarded as a highly “generic” 
application—it provides a framework and user interface for 
component discovery and interaction. The rest of the 
application’s functionality is largely determined by the set 
of components that are available for use. As new 
components are discovered (or installed locally), they can 
extend the application to accommodate new protocols, data 
types, and user interfaces, using the Speakeasy mechanisms 

described earlier. Likewise, these components can also be 
readily shared with other Casca users. 
For example, if a user has a video camera installed on his 
or her laptop, that user can share it with any other party, 
without that party having to install drivers or update 
software. It is by making the component the principal unit 
of sharing that Casca supports richer opportunities for 
collaboration than “simple” information sharing—the 
particular set of components that are shared enable the 
collaborative functionality. While Casca has no notion of 
cameras, microphones, or displays, videoconferencing 
capability can be added to the collaboration simply by 
having those components available. 
Sharing Resources through Converspaces 
A converspace represents an ongoing collaboration among 
a set of users. It contains the set of components accessible 
to anyone who is a “member” of the converspace. Users 
can be involved in multiple converspaces at the same time. 
Casca allows a user to easily create a new converspace to 
represent a new collaboration, and to add new members to 
existing converspaces, all of whom can then add 
components to it. 
To revisit the scenario at the first of the paper, Calpurnia 
and Julius both run Casca on their laptops; when they first 
encounter each other, they create a new converspace to 
share their ongoing work. They then add components 
representing files and directories to the converspace. They 
might also add components like the “viewer”, which allows 
other converspace members to show information on one’s 
local display.  
The converspace imposes a unified mechanism for access 
control and discovery on the “base” mechanisms provided 
directly through Speakeasy. Users can add any discoverable 
component to a converspace, including locally available 
components as well as those available through a variety of 
discovery mechanisms. 
Local components—that is, components running on the 
same machine as Casca—are only available through 
explicit sharing. That is, they are never discoverable nor 
usable by any user, except those who are members of a 
converspace in which that component is shared. 
Sharing a component via a converspace thus amounts to a 
limited form of “publishing” that component—it becomes 
visible and usable to the other members of the converspace, 
and only to those users. In essence, converspace sharing 
provides a separate discovery channel, independent of 
whatever other discovery channels may be in use. 
Through the converspace mechanism, users can even 
provide access to components that might otherwise be 
undiscoverable by others. A user who shares a component 
need not worry about whether others can access it, since the 
act of sharing makes the component accessible to others.  
The advantage of this model is that it does not require 
tedious access control lists, or a priori specification of 
access rights, or understanding of the differences of 

Figure 4: This Casca application. The current user is 
participating in a converspace with Jana, and is sharing 

two files and a viewer with her. 

 



discovery versus use, or complete knowledge of what 
resources might be discoverable by others. Not only is the 
use of such tools at a user level confusing, but it is also 
prone to error: users make mistakes, forget what resources 
are shared, and so on. There is precisely one concept in the 
Casca sharing model: if a component is in a converspace, it 
can be used by the other members of that converspace, and 
its access control automatically adapts as members come 
and go. The changing of access rights is incidental to the 
act of sharing [20]. 
Using the Speakeasy Security Model to Implement 
Converspaces 
Under the hood, as individuals create and use a 
converspace, a number of security-related steps are taking 
place.  
First, the system relies on the approach of using 
preferentially trusted channels to bootstrap secure 
interactions among users who share no a priori trust 
information with each other (perhaps using IR, as described 
previously). Thus, when Julius and Calpurnia meet, Julius 
simply “points out” Calpurnia so his application can find 
her. In the process of indicating that he wants to talk to 
Calpurnia (using IR, contact or another appropriate medium 
to “point”), Julius’ and Calpurnia’s devices exchange 
public key information and IP or Bluetooth addresses. 
Now that they can securely identify each other’s public 
keys, Julius and Calpurnia can now set up a secure 
connection to create a new converspace. One of them (let’s 
say Julius) creates the space on their machine, and a “root 
credential” for it. The root credential is a self-signed 
certificate tagged with its connection to the space. That 
credential is stored with the space. Julius then creates a 
certificate for Calpurnia, designating her membership in 
this particular space through information contained in the 
certificate. These two certificates (Julius’ self-signed 
certificate and the certificate he signed for Calpurnia) form 
the credentials Calpurnia needs to prove her membership in 
the converspace. Calpurnia stores these certificates with her 
representation of the space. Most importantly, as almost all 
communications in Casca applications occur over Java 
RMI (which is TCP-based), these certificates are sufficient 
to secure further interactions using SSL/TLS.  
Note that none of this certificate exchange is visible to the 
users. Julius simply indicates (e.g. using IR) that Calpurnia 
is the person he means to add to a converspace, and all the 
rest happens implicitly and automatically. Also note that 
the same sort of exchange would be used by either Julius or 
Calpurnia to add yet another individual to the converspace. 
Depending on the security requirements of a converspace, 
either a subset of members (those that have some sort of 
special privilege) or all members can add other individuals 
to the space. In either case, Julius will be the only root 
certification authority, even though those allowed to add 
new members effectively work as lower-level certification 
authorities.  The important characteristic provided by this 
architecture is independence: if Julius adds a third member 

to the group, Pluribus, then Pluribus and Calpurnia will be 
able to authenticate each other as group members without 
any intervention from Julius. The same is true between two 
other members invited into the group by Pluribus and 
Calpurnia, and so on. 
When each user chooses to publish a component to other 
members of a group, they use their group credential for that 
group to secure the server end of requests for that 
component (thus group members, rather than components, 
are certified and carry group credentials). Each component 
that a user publishes uses standard Java mechanisms to 
indicate that a client that wishes to use it must do so using 
SSL/TLS. The client that connects to that component does 
so using the group credential for the converspace in which 
the object is located. It expects that the server, or service 
publisher, that it talks to on the other end will also have a 
credential indicating that it is a member of the same group. 
Although this access control logic is application-specific—
it “knows” about converspaces and the components inside 
them, the way that it is implemented is actually generic. We 
constrain all Speakeasy components in general to require 
the use of SSL/TLS connections. On both the client and the 
server, the components at the endpoints of the connection 
know that they must query an application level security 
manager to find out whether they should accept the 
connection (for the server) or should trust the server (for 
the client). The Speakeasy framework supplies several 
default security managers that could be used by a minimal 
application: e.g. one that allows all connections (no 
security), and one that only allows connections back to the 
same machine. The developer of an application such as 
Casca would install an application security manager 
appropriate to their application semantics (in practical 
terms, this is usually one fairly short class).  In the case of 
Casca, the security manager knows about the existence of 
converspaces, and that members of a converspace can 
access components that have been published to that space. 
Flexibility and its Discontents 
A major aspect of Speakeasy’s design philosophy was 
carried forward into the design of the sharing model. The 
emphasis on placing users in control of what is shared with 
whom reflects Speakeasy’s core belief that users are the 
ultimate arbiters of interoperability among devices and 
services. There are, of course, a number of implications of 
this approach, foremost among them is that we permit users 
to make bad decisions. Users can, for example, allow 
access to components that are perhaps better left unshared. 
In particular, users can permit access to a component that 
exists on a private network, and which the other members 
of a converspace would otherwise not be able to even 
discover, much less use. 
Users can also add new parties to a converspace without the 
approval of others. We believe this is a requirement for 
settings in which network connectivity is not a given, or for 
which we do not want to require all users to be constantly 
connected to one another. This design choice, however, 



allows a users to make ill-informed (or even malicious) 
decisions about granting others access to a converspace. 
Our belief is that these are acceptable—and even 
necessary—trade offs. In general, we believe that the 
benefits of permitting loosely-structured, informal 
collaboration outweigh the potential costs of bad decisions 
about sharing. There are a number of important 
requirements that result from this stance however: limited 
sharing, accountability, recoverability, intelligibility, and 
awareness of others and their actions. 
Limited Sharing 
First, sharing must be limited in scope to exactly the set of 
users defined by the user sharing the resource. As described 
above, in Casca this is made possible by the simplified 
sharing model that dictates that only components that have 
been explicitly placed in a converspace are shared with 
only the members of that converspace, and that there are no 
hidden effects that would provide access to anyone else. In 
fact, beyond components on my machine not being usable 
by others outside of a converspace, they are not even 
discoverable by others outside of a converspace. 
Accountability and Recoverability 
Second, social protocols work best when there is 
accountability [3]. Users need to be aware of who has done 
what in order for social protocols to be able to play out. To 
this end, we have built in a number of features to support 
accountability in the application, as well as recoverability 
from undesired user actions. Casca provides accountability 
by recording and making visible all actions that affect the 
composition of a converspace (components added or 
removed, users added or removed), as well as accesses to 
components that are carried out through the converspace. 
Figure 4 shows an the history window in the lower left 
hand corner. This visualization provides not only a tool for 
accountability, but also simple recall. 
The history also provides a convenient user interface for 
recovering from simple forms of sharing mistakes. The 
history retains references to all the components that have 
ever been in the converspace. From the history window, 
they can easily be added back to the converspace, if they 
have been inadvertently deleted. So, for example, if another 
user accidentally removes a component that you were using 
with a third member, you can add it back quickly. 
Intelligibility 
Finally, intelligibility of sharing is essential for 
understanding. Even if no sharing happens except through 
explicit actions, users can still forget about what they’ve 
left shared, especially if they are engaged in a number of 
long-term collaborations, or a large number of 
collaborations These problems have been identified 
previously in the literature [2, 5]. Constant intelligibility of 
the state of sharing allows users to be aware of what’s 
being shared, and to whom.  
To prevent some of these problems with “invisible 
sharing,” we strived to provide intelligibility about the state 
of sharing. Casca provides an always-visible display of 

what components the user has directly shared to others (see 
the left-most panel in Figure 4). A user can quickly 
ascertain whether any components are being shared, and 
what groups of people they are shared with. This panel also 
provides controls for globally changing the sharing settings 
for particular components.  
Awareness and Communication 
The benefits of providing awareness of others in a 
collaborative system have been well documented [6]. Casca 
provides a number of features for awareness of the state of 
others, and the state of the converspace itself. 
Most importantly, each instance of Casca detects when the 
other members of a converspace are online. The system 
presents a graphical image of the membership of a 
converspace, and graphically indicates which are current 
online and which are offline. The system uses a simple 
heartbeat protocol to determine status; there is a short 
window during which transitions from online to offline and 
vice versa may go undetected. 
The history feature, described earlier, allows users to be 
aware of any changes that have happened in a converspace 
since they were last connected, or of any changes that 
others made while they were offline. The history also 
records data transfers among components in the 
converspace. Since most operations in Speakeasy involve 
such transfers, for example viewing or copying a file, many 
operations can be recorded in this way. 
Finally, Casca provides a number of tools to facilitate direct 
user-to-user communication. By clicking on the graphical 
representation of any converspace member, a user can 
access a menu that allows him or her to email the member, 
or send an instant message.  
Implementing Distributed Converspaces 
The state of a converspace is distributed among the 
members of that converspace. When components or users 
are added or removed, the changes are propagated 
immediately to all online members. Otherwise, each 
member tries periodically to connect to each offline 
member, and upon reconnection, a simple pair-wise 
synchronization protocol is used to update the state of each 
instance of the converspace.  
The synchronization protocol supports offline work without 
the burden of more formalistic protocols, such as locking 
the converspace, or transactions that cannot be committed 
until the user is online, or the imposition of versioning (and 
a UI to resolve inconsistent versions), and without 
requiring access to some centralized server. This approach 
allows users to work individually or in small groups 
separate from other converspace members, and still be able 
to make changes to the converspace. 
The intent with the sync protocol is simply to make the 
propagation of state as simple as possible from the user 
perspective; not to ensure rigorous global orderings of 
updates. Synchronization conflicts—such as two users 
adding the same component, or one offline member 



removing a component while another adds it—are dealt 
with in a very simplistic way. The update with the latest 
timestamp “wins.” Casca provides only a user interface to 
undo any undesired synchronization changes. 
Histories are also synchronized. When one application 
instance carries out an action that results in a history record 
being generated, it creates the record and propagates it to 
all currently connected instances. Changes are propagated 
to offline members when they are reconnected. The history 
is not used to merge changes from multiple converspace 
instances. Instead, it is purely for human use to support 
accountability. History records are synchronized, but there 
is no attempt to resolve conflicts in the history. 
DISCUSSION 
The Casca application we have just described is intended to 
support flexible peer-to-peer collaboration. It depends 
critically on Speakeasy to provide many of its features. 
Most importantly, Speakeasy makes possible a runtime 
extension of functionality that would be difficult or 
impossible to accomplish otherwise. Typically, dramatic 
changes in functionality can only be provided by rewriting 
an application, which forces users to upgrade. This is made 
more problematic with a collaborative application, where 
each party has to have a compatible version of the 
application in order to work together. Speakeasy allows the 
application—and by extension, its users—to bring any 
resources in their environments to bear on their work. 
Furthermore, we believe that Speakeasy made the task of 
developing Casca substantially easier than it would have 
been without it. We built a highly functional version of the 
core application from scratch in a little over a month with 
four developers. This task was made easier since Speakeasy 
abstracts away many of the unpleasant aspects of dealing 
with distributed components on the network—aspects such 
as discovering and connecting these components. Also the 
components we had already built were able to be integrated 
into Casca with no extra work, so the ability to share things 
like files, displays, printers, and video cameras was 
obtained “for free” because these already existed as 
Speakeasy components.  
The Speakeasy framework provides these facilities to 
application writers, but at a cost. Namely, applications have 
only generic knowledge about a potentially open-ended set 
of components, discovery protocols, and so forth, that may 
appear in the environment. As we have said, we believe 
that this cost imposes a number of requirements on 
application writers, such as intelligibility, accountability, 
recoverability, and awareness. While these would be 
desirable features in any collaborative system, they are 
made more pressing by the additional flexibility and 
openness encouraged by Speakeasy. 
Casca addresses these requirements in two ways. First, it 
supports sensemaking in complex environments. Users can 
organize the components around them by locale, owner, 
and other intrinsic aspects of components. The system 
preserves complete histories of the interactions in a 

converspace, to support accountability of users and their 
actions, and to allow a user to see how a space evolved to a 
particular state. The tenet of “always visible” sharing also 
supports this use. 
Second, and more importantly, is the use of the 
converspace notion to unify access control, discoverability, 
and salience. From the user’s perspective, a component is 
added to a converspace merely because it is salient to 
collaboration. The system uses this act to establish access 
control and component visibility accordingly—the model 
“collapses” many security operations down to a single user-
visible concept. Most important to us was that the security 
machinery provide “real” access control, based on strong 
cryptographic techniques, but without “getting in the way” 
of what users want to do. Users never see a key, for 
example, or have to understand the security model in terms 
of certificates or access rights. Further, the model supports 
flexibility in sharing: if I add a user to a converspace, they 
immediately have access to the resources in it. There is no 
use of a central authority, or a requirement that all members 
be online in order for access to be granted. In other words, 
the security model is flexible from a user perspective, and 
is also compatible with the peer-to-peer model espoused in 
this paper. 
The Speakeasy infrastructure supports the ability of 
applications to layer such semantics atop the core 
infrastructure. The contextual metadata interfaces, for 
example, allow applications to impose their own structure 
and organization on components that are discovered, based 
on proximity, spatial location, virtual location, or any other 
property that components use to describe themselves. The 
use of context objects to “tag” operations allows actions to 
be traceable and supports accountability through disclosure 
of identity and action. The Speakeasy security model 
allows applications to impose new access control and 
sharing semantics that—while they are defined by the 
application—are managed, enforced, and vetted by the 
components that provide service. 
Our future work on these systems falls largely into two 
categories. First, we plan to continue refining the core 
functionality in the Speakeasy platform. The security 
infrastructure, in particular, is fairly new and we need more 
experience with it to ensure that it is compatible with other, 
divergent application security semantics. Second, we plan 
to continue investigating the user experience issues of 
genericity that are present (and, we believe, will necessarily 
be present) in richly networked environments. The Casca 
application is one such exploration into the domain of 
collaborative systems. We plan to continue this work, and 
also explore the issues of genericity in new domains. 
RELATED WORK 
We have described the Speakeasy framework and how it 
dovetails nicely with the requirements of spontaneous, 
peer-to-peer collaboration. Other frameworks and toolkits 
have attempted to address various aspects of the peer-to-
peer collaboration space. 



The Groove framework [11] provides mechanisms for 
easily initiating collaborations that can persist indefinitely, 
support for communicating and sharing across firewalls, 
and some degree of extensibility. However, they require all 
parties be able to contact a central server in order to initiate 
collaboration (the other parties’ Groove ID’s need to be 
looked up in a directory), so they cannot support off-the-
Internet setup. Also, Groove allows collaboration spaces to 
be extended to incorporate any of a set of pre-established 
“tools” provided by Groove (e.g. whiteboard, voice chat, 
file space, co-browsing) or any third-party tools that are 
developed to conform to the Groove interface. In contrast 
to Speakeasy components, however, these tools are 
intended to be much more high-level and structured, and so 
do not offer extensibility at as fine a grain. Furthermore, 
Groove is unable to take advantage of “off machine” 
devices and resources—Groove is only able to talk to other 
instances of itself. 
Other toolkits have addressed either the peer-to-peer 
aspects or the collaboration aspects, but not both. For 
example, JXTA [10] is a toolkit for building peer-to-peer 
applications of all stripes—not just collaborative 
applications but also file sharing, instant messaging, and so 
forth. It shares with Speakeasy an emphasis on network 
independence and interoperability, but does not directly 
support runtime extensibility. At the other end of the 
spectrum, collaboration toolkits like GroupKit [18] have 
focused on supporting tightly-coupled collaborative 
applications, such as collaborative document editors and 
real-time conferencing applications, but have not 
concentrated as much on supporting spontaneous 
collaboration or runtime extensibility. 
DACIA [12], like Speakeasy, uses mobile code to create 
collaborative systems that adapt changes in resources and 
networks. Whereas Speakeasy is concerned with discovery 
and use of new resources by applications, DACIA is 
focused on dynamically relocating the functional units of a 
groupware application to adapt to changes in the 
environment. We believe that these systems target different 
application needs. 
CONCLUSION 
We have shown how the Speakeasy system addresses the 
shortcomings of current peer-to-peer systems, by providing 
flexibility in terms of discovery protocols, network usage, 
and data transports. This has been demonstrated through 
our development of Casca, an application that supports ad 
hoc peer-to-peer collaboration by taking advantages of the 
mechanisms provided by Speakeasy. 
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