# 505: Sensoriamento Overlay Seguro em Redes de Sensores Sem Fio Hierárquicas

Leonardo B. Oliveira, A.A.F. Loureiro, Ricardo Dahab, Hao Chi Wong UNICAMP, UFMG, PARC

## Agenda

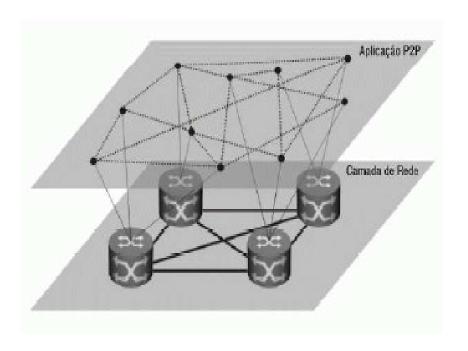
- Introdução
- Solução
- Simulação
- Resultados
- Conclusão

#### Roteamento

- Protocolos de roteamento projetados p/ eficiência e escalabilidade
  - Inviabilizou o uso de algoritmos sofisticados
  - Na prática, a maioria das técnicas
    - Emprego de métricas fixas e simples p/ seleção de rotas
    - Rotas alternativas ignoradas

#### Rede Overlay

- Rede lógica sobre uma rede física subjacente
- Função: migrar parte da complexidade de roteamento p/ a camada de aplicação
- Monitoram a rede a fornecem caminhos alternativos aos usuários

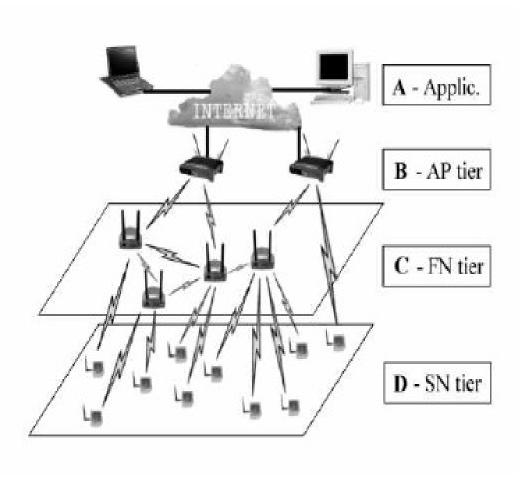

#### Rede Overlay

- · Rede lógica sobre uma rede física subjacente
- Função: migrar parte da complexidade de roteamento p/ a camada de aplicação
- Monitoram a rede a fornecem caminhos alternativos aos usuários - Como?

#### Rede Overlay

- · Rede lógica sobre a rede física subjacente
- Função: migrar parte da complexidade de roteamento p/ a camada de aplicação
- Monitoram a rede a fornecem caminhos alternativos aos usuários - Como?
  - Nós estabelecem enlaces alternativos para efetuar a comunicação
- Ex. redes P2P, CDNs e MBones

# Redes Overlay




RO: ilustração

#### Redes de Sensores Sem Fio

- Redes de Sensores Sem Fio (RSSFs)
  - São uma classe de redes ad hoc
  - Formadas por nós sensores de recursos extremamente limitados
    - Ex. Mica motes: 4 KB RAM, 7.8 MHz CPU
  - Empregadas em uma grande gama de aplicações:
    - Ex. operações de resgate em desastres e detecção de exploração ilegal de recursos

## RSSFs Hierárquicas



## Objetivos

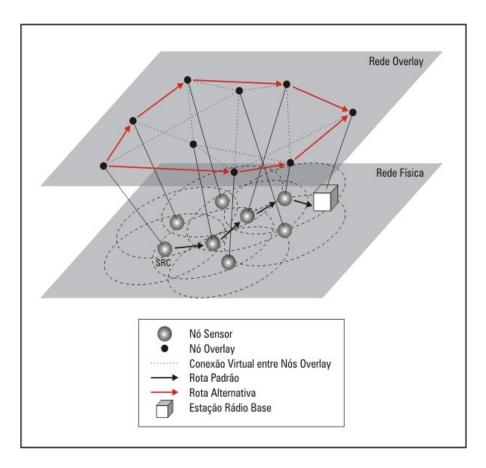
- Avaliar o uso de ROs p/ transmissão segura de dados em RSSFs Hierárquicas
  - Mitigar os efeitos de ataques DoS
    - buraco negro (blackhole)
    - repasse seletivo (selective forwarding)
  - Aumentar a taxa de entrega de mensagens que carregam informações sensíveis
- (até onde sabemos) 1<sup>a</sup> solução baseada em ROs p/ RSSFs

#### Trabalhos Correlatos

- D. Andersen, Resilient Overlay Networks (2001)
- Ganesan et alli, Highly-resilient, energyefficient multipath routing in wireless sensor networks (2001)
- Deng et alli, A performance evaluation of intrusion-tolerant routing in wireless sensor networks (2003)
- Oliveira et alli, LHA-SP: Secure Protocols for Hierarchical WSNs (2005)

## Agenda

- Introdução
- Solucão: SOS (nossa proposta)
- Simulação
- Resultados
- · Conclusão

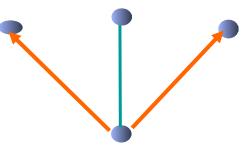

#### Modelo de Rede

- Redes hierárquicas e heterogêneas dirigidas a relógio
- Msgs de sensoriamento classificadas em prioritárias (MPs) e não prioritárias (MNs)
  - MPs contêm informação sensível
- Nós sensores comuns enviam dados p/ o CH via single-hop, que reencaminha à BS via um caminho multi-hop
- Estação Rádio Base (ERB) é confiável

#### Visão Geral

- SOS: Sensoriamento Overlay Seguro
  - Constrói uma RO sobre a RSSF subjacente
  - MNs possuem a dupla função de monitorar rotas e enviar dados
  - MPs trafegam por rotas (overlay) mais seguras
  - Taxa de entrega de MPs à ERB aumenta

#### 505




Nó SRC conta c/rotas overlay, além da rota padrão, p/envio de dados

#### Construção da RO

- Alguns nós são escolhidos p/ compor a RO
- P/ cada um é atribuída uma lista de vizinhos lógicos (ex. dois)
- Tais vizinhos são usados como intermediários em rotas alternativas à rota padrão

#### Funcionamento



- Inicialmente, CHs alternam (round robin) o envio de MNs entre as 3 rotas possíveis
  - Rota padrão (usa vizinho estab. pelo rot.)
  - Overlay #1 (usa vizinho overlay #1)
  - Overlay #2 (usa vizinho overlay #2)
- MPs são enviadas através da rota padrão
- Tipos de msgs/rotas identificadas c/ flags

- A ERB identifica então as melhores rotas, usando
  - Granularidade do envio nós->BS (epoch)
  - Registro da taxa de entrega de MNs

|           | taxa de entrega de rotas |            |            |  |  |  |  |
|-----------|--------------------------|------------|------------|--|--|--|--|
| nó sensor | padrão                   | overlay #1 | overlay #2 |  |  |  |  |
| 1         | 76%                      | 54%        | 65%        |  |  |  |  |
| 2         | 70%                      | 78%        | 73%        |  |  |  |  |
| 3         | 31%                      | 50%        | 39%        |  |  |  |  |
| 4         | 55%                      | 82%        | 97%        |  |  |  |  |
| 5         | 83%                      | 89%        | 42%        |  |  |  |  |

- BS divulga aos CHs suas respectivas melhores rotas
  - CHs utilizam a rota as melhores rotas sempre que forem enviar MPs

- BS divulga aos CHs suas respectivas melhores rotas
  - CHs utilizam a rota as melhores rotas sempre que forem enviar MPs
- SOS não replica msgs p/ efetuar a monitoração
  - Tira proveito de msgs que não carregam informação sensível

## 505: resumo de políticas

| classe da       | Inicialı      | mente  | Após divulgação de melhor rota |             |  |
|-----------------|---------------|--------|--------------------------------|-------------|--|
| mensagem        | envio repasse |        | envio                          | repasse     |  |
| prioritária     | padrão        | padrão | melhor rota                    | melhor rota |  |
| não prioritária | alternado     | padrão | alternado                      | padrão      |  |

#### Nota

- · Dois aspectos de segurança
  - Adversários podem
    - Usar a divulgação de melhores rotas p/ inferir por onde MPs trafegarão
    - Tirar proveito dos flags que identificam as msgs
- Solução
  - Empregar o SOS juntamente c/ solucões criptográficas que fornecem autenticação e sigilo a comunicação (ex. SecLEACH)

## Agenda

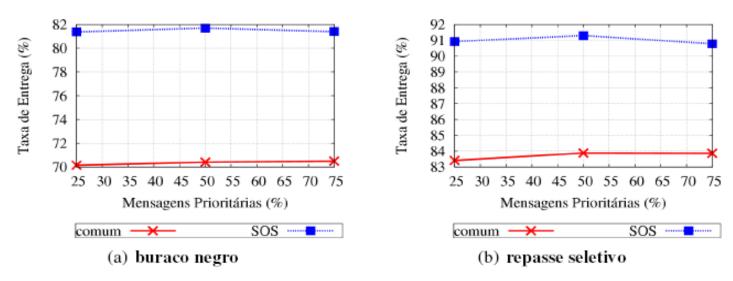
- Introdução
- Solução
- Simulação
- Resultados
- · Conclusão

#### Simulação

- Simulação
  - Comparação de uma rede c/ e sem o SOS
- Simulador
  - Network Simulator (ns-2)
- A arquitetura da rede
  - Rede hierárquica e heterogênea
  - One-hop downlink, multi-hop uplink
- Protocolo de roteamento
  - Similar ao TinyOS beaconing árvore contruída a partir da BS c/ busca em largura

#### Simulação

- Tamanhos de msgs
  - 30 e 36 bytes p/as redes c/e sem o SOS, resp.
  - Delta entre um MAC e CRC (MAC-CRC)
- Duração
  - Duração 1000s c/ epoch de 10s
- Escolha de vizinhos overlay
  - +ou- aleatoriamente dentre os CHs vizinhos
  - Mecanismo p/ evitar loops


#### Simulação

- Modelo de Ataque
  - Aleatório dentre os nós CHs
- Parâmetros variados
  - % de msgs prioritárias (padrão: 25%)
  - % de CHs atacados (padrão: 25%)
  - Tamanho da rede (padrão: 1100)
- Métricas
  - Taxa de entrega (ganho)
  - Energia consumida (custo)
  - Energia/msg entregue (eficiência):

## Agenda

- Introdução
- Solução
- Simulação
- Resultados
- Conclusão

## % de msgs prioritárias



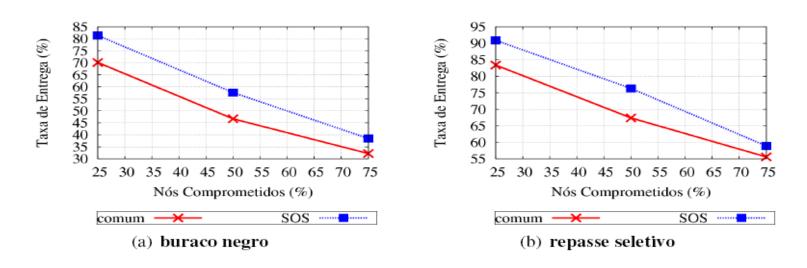
- Ganho mais ou menos estável
  - 11% p/ o ataque buraco negro
  - 7% p/ o ataque de repasse seletivo

## % de msgs prioritárias

| mensagens    | buraco negro          |     |    | repasse seletivo |              |     |
|--------------|-----------------------|-----|----|------------------|--------------|-----|
| prioritárias | CH geral por mensagem |     | СН | geral            | por mensagem |     |
| 25%          | 43%                   | 24% | 7% | 50%              | 26%          | 16% |
| 50%          | 44%                   | 25% | 7% | 54%              | 27%          | 16% |
| 75%          | 44%                   | 25% | 8% | 55%              | 27%          | 17% |

· Por CH: considerável

· Geral: aceitável


· Overhead dos CHs é amortizado entre todos os nós

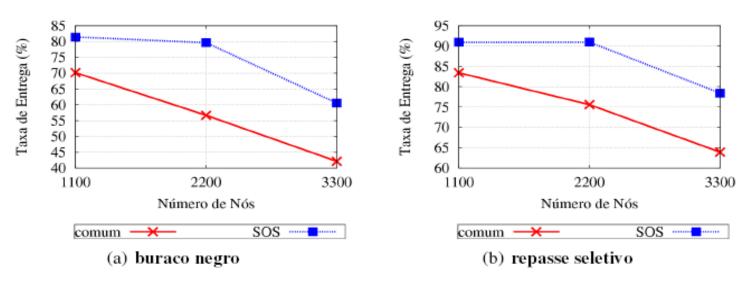
· Por msg: eficiente

7% buraco negro

• 16% repasse seletivo

## % de CHs comprometidos




- Ganho cai c/ aumento de nós comprometidos (dificuldade de se encontrar rotas não comprometidas)
  - 7% e 11% de ganho no buraco negro
  - 7,5 e 9% de ganho no repasse seletivo

## % de CHs comprometidos

| nós           | buraco negro      |     |              | repasse seletivo |       |              |
|---------------|-------------------|-----|--------------|------------------|-------|--------------|
| comprometidos | CH geral por mens |     | por mensagem | СН               | geral | por mensagem |
| 25%           | 43%               | 24% | 7%           | 50%              | 26%   | 16%          |
| 50%           | 32%               | 22% | -1%          | 45%              | 24%   | 9%           |
| 75%           | 26%               | 21% | 1%           | 31%              | 21%   | 15%          |

- Overhead diminui c/ o aumento de nós comprometidos
  - < ganho do SOS, < o delta no tráfego de msgs</li>
- Por CH: entre 26 e 50%
- Geral: entre 21 e 26%
- Por msg: chegou a ser negativo p/ o buraco negro

#### Tamanho da rede



- · Queda na taxa de entrega c/ aumento da rede
  - Prob. de uma mgs ser decartada aumenta
- Ganho
  - 11 a 23% p/ o buraco negro
  - 7,5 a 15,5% p/ o repasse seletivo

#### Tamanho da rede

| número | buraco negro |       |              |     | repasse seletivo |              |  |
|--------|--------------|-------|--------------|-----|------------------|--------------|--|
| de nós | СН           | geral | por mensagem | СН  | geral            | por mensagem |  |
| 1100   | 43%          | 24%   | 7%           | 50% | 26%              | 16%          |  |
| 2200   | 51%          | 27%   | -10%         | 53% | 28%              | 6%           |  |
| 3300   | 41%          | 25%   | -13%         | 56% | 29%              | 5%           |  |

• Por CH: entre 41 e 56%

• Geral: entre 24 e 29%

Por msg: novamente chegou a ser negativo p/

o buraco negro

## Agenda

- Introdução
- Solução
- Simulação
- Resultados
- · Conclusão

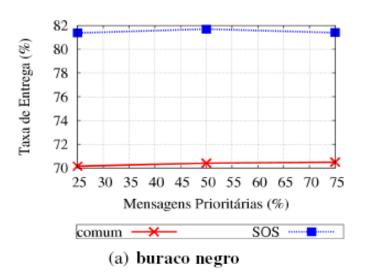
#### Conclusão

- Estudo pioneiro na aplicação de ROs p/ oferecer segurança em RSSFs
- A solução possibilita ganho no número de msgs prioritárias
- Custo-benefício em termos de energia bom p/ a maioria das aplicações

#### Trabalhos Futuros

- Identificar o intervalo de monitoração ideal p/ um dado cenário
  - Uma MN a cada qtos segundos?
- Investigar número ideal de rotas overlay (alternativas) atribuídas por nó
  - Dois, três ou quatro rotas por nó?
- Avaliar a eficácia da solução para melhorar métricas de QoS da rede:
  - atraso e jitter

#### Perguntas

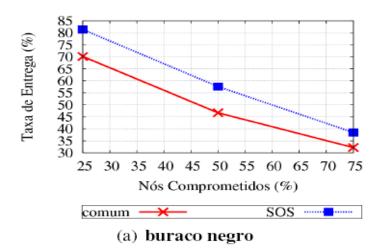

leob@ic.unicamp.br

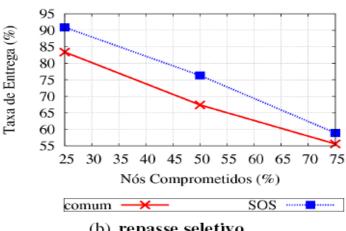
Obrigado!

#### Overhead

- Nós comuns
  - Se deve principalmente à adição de MACs
- CHs (nós overlay)
  - Se deve
    - Aumento do tráfego de msgs
    - Aumento do número médio por hops
    - MACs
- Não existem msgs redundantes
  - Monitoração efetuada por msgs já existentes

## % de msgs prioritárias

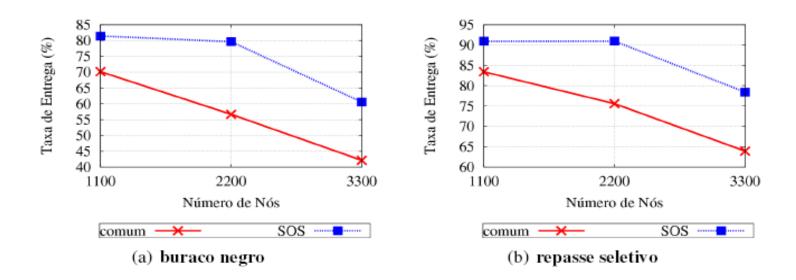



jljl

| mensagens    | buraco negro          |     |    | repasse seletivo |              |     |
|--------------|-----------------------|-----|----|------------------|--------------|-----|
| prioritárias | CH geral por mensagem |     | СН | geral            | por mensagem |     |
| 25%          | 43%                   | 24% | 7% | 50%              | 26%          | 16% |
| 50%          | 44%                   | 25% | 7% | 54%              | 27%          | 16% |
| 75%          | 44%                   | 25% | 8% | 55%              | 27%          | 17% |

## % de CHs comprometidos






(b) repasse seletivo

| nós           | buraco negro |     |              | buraco negro repasse seletivo |       |              |
|---------------|--------------|-----|--------------|-------------------------------|-------|--------------|
| comprometidos | CH geral po  |     | por mensagem | СН                            | geral | por mensagem |
| 25%           | 43%          | 24% | 7%           | 50%                           | 26%   | 16%          |
| 50%           | 32%          | 22% | -1%          | 45%                           | 24%   | 9%           |
| 75%           | 26%          | 21% | 1%           | 31%                           | 21%   | 15%          |

#### Tamanho da rede



| número | buraco negro          |     |      |       | repass       | e seletivo |
|--------|-----------------------|-----|------|-------|--------------|------------|
| de nós | CH geral por mensagem |     | СН   | geral | por mensagem |            |
| 1100   | 43%                   | 24% | 7%   | 50%   | 26%          | 16%        |
| 2200   | 51%                   | 27% | -10% | 53%   | 28%          | 6%         |
| 3300   | 41%                   | 25% | -13% | 56%   | 29%          | 5%         |

## Registro na ERB

|           | taxa de entrega de rotas |            |            |  |  |  |  |
|-----------|--------------------------|------------|------------|--|--|--|--|
| nó sensor | padrão                   | overlay #1 | overlay #2 |  |  |  |  |
| 1         | 76%                      | 54%        | 65%        |  |  |  |  |
| 2         | 70%                      | 78%        | 73%        |  |  |  |  |
| 3         | 31%                      | 50%        | 39%        |  |  |  |  |
| 4         | 55%                      | 82%        | 97%        |  |  |  |  |
| 5         | 83%                      | 89%        | 42%        |  |  |  |  |

Em destaque as "melhores rotas", calculadas por meio de MNs