Reducing State Changes with a Pipeline Buffer

Jens KrokowsKi Harald Racke Christian Sohléefr Matthias Westermar¥n

Abstract Therefore, in some applications, e.g., in com-
puter games, the primitives are organized in blocks

A limiting factor in the performance of a render- of equal material, texture, and shader program in
ing system is the number of state changes, i.eorder to minimize the number of state changes in
changes of the attributes material, texture, shadahe graphics hardware. However, frustum and oc-
program, etc., in the stream of rendered primitivesclusion culling usually require a spatial sorting of
We propose to include a small buffer between applithe primitives. This stands in partial conflict with
cation and graphics hardware in the rendering syshe requirement to sort the primitives by attribute
tem. This pipeline buffer is used to rearrange thejalue, which means that, in general, this approach
incoming sequence of primitives on-line and locallyleads to suboptimal visibility culling. Further prob-
in such a way that the number of state changes ikms occur in interactive applications, where a pre-
minimized. This method is generic; it can be easilyprocessing is not possible.
integrated into existing rendering systems.

In our experiments a pipeline buffer reduces the
number of state changes by an order of magnitud
and achieves almost the same rendering time as

optimal, i.e., presorted, sequence without pipelineI'o overcome these problems, we propose a differ-

buffer. Due to its simple structure and its low mem- ttechnique to reduce th ber of state ch)
ory requirements this method can easily be imple-en echnique to reduce the number of state changes.

mented in software or even hardware. A plpellne_buﬁer is included between application
and graphics hardware and reduces state changes

on-line instead of doing a preprocessing. Therefore,
1 Introduction the application can benefit from any (especially spa-

tial) sorting without increasing the running time due
In current rendering systems a number of differento too many state changes.

techniques are integrated to reduce the time to ren- Qur approach is based on a small buffer (storing
der a 3D scene. View frustum culling, approxima-jess than hundred references) and a well chosen se-
tion, and occlusion culling are used to reduce thgection strategy to rearrange the incoming sequence

number of primitives that have to be rendered. An-of primitives on-line in such a way that the number
other significant factor for the rendering time is theof state changes is minimized.

number of state changes performed by the graph-
ics hardware during the rendering process. Sucg
a state change occurs when two subsequently re
dered primitives differ in their attribute values, i.e.,
in their material, texture, or shader program. Thes
state changes slow down the rendering system.

1 Contributions

This method is generic, i.e., it can be used for
ifferent types of state changes, and it can be inte-
I&'rated into existing rendering systems. Due to its
simple structure and its low memory requirements
Shis method can easily be implemented in software
or even hardware.

*This work is partially supported by the DFG grant ME 872/8-2 In our experiments each scene is stored in an oc-

and WE 2842/1-1. _ _ tree and we consider the sequence of primitives that
THeinz Nixdorf Institute and Institute of Computer Sci- Its f . d | of th
ence, University of Paderborn, Germany, Email{kroko, €SUItS from an in-order traversal of that tree. For

csohle} @upb.de such a sequence we typically get that our method

*Computer Science Department, Carnegie Mellon University, e reduces the number of state changes by an or-
USA, Email: harry@andrew.cmu.edu d f itud
SComputer Science Department, Dortmund University, Ger- er of magnitude,

many, Email: mw@Is2.cs.uni-dortmund.de e reduces the rendering time by roughly 30%,

VMV 2004 Stanford, USA, November 16-18, 2004

e achieves almost the same rendering time asives residing in the delay stream may be culled by
an optimal, i.e., presorted, sequence withouprimitives that were submitted afterwards. The de-
pipeline buffer. lay stream stores 50K-150K triangles and therfore

Note that these results heavily depend on the typis several orders of magnitude larger compared to
of state changes, i.e., on the cost associated with thbe pipeline buffer.

state changes. Spatial sorting applications. Occlusion culling
methods compute the visible primitives either dur-
ing preprocessing and store them in state sorted Po-
2 Related Work g prep v

tential Visible Sets (PVS) or determine them on-

. . line. If the scene contains mobile primitives (es-
Conventional approaches to reducing state changes P (

) ST ecially mobile occluders), PVS methods normally
usually use some kind of preprocessing in order t

sort the sequence of primitives with respect to theiraII and, in addition, the memory requirements of

. PVS methods can turn out to be a problem [5].
attribute values. However, these methods cannot .) .
be easily combined with culling techniques used in On-line methods usually store the scene in a hi-
modern rendering systems since these techniqu&Sarchical data structure, e.g., octree [7], kd-tree
usually require a spatial sorting of the primitives ad®l: O bounding box hierarchy [14], to compute the
opposed to a sorting by attribute value. AlthoughPCint-based visibility. During a traversal of such a
this trade-off is known for a long time only very lit- hlerarghlcal data structure, the _\{lSlbIe primitives are
tle work is done on paying attention to both factorsCIaSS'f'ed and only these primitives are sent to the
simultaneously. graphics hardwarg. These approachgs may generate
The IRIS Performer toolkit [11] resorts the vis- & Seduence of primitives that contains many state
ible geometry by modes at the end of the cuLLCchanges. We will show how to improve the render-
traversal for each frame and sends geometry an§d time for these scenarios by reducing the number
graphics commands to the graphics subsystem ifif Staté changes with a pipeline buffer.
the subsequent DRAW traversal. However, the Theoretical analysis. The pipeline buffer sce-
computation of such a rearrangement is so experflario is an application of the on-line scheduling
sive that this can only amortize if it is used for sev-Problem for sorting buffers [10]. The following
eral frames. is a conversion of this theoretical model to the
The system of Lalonde and Schenk [8] optimizesPiPeline buffer application: An input sequence of
the geometric data of video games for the targete€Ms which are only characterized by a specific
hardware (e.g., PS2, XBox and GameCube) in aattr_ibu_te has to be rearranged b)_/ a sorting buffer
preprocessing step using shader programs intenseW.h'Ch is a random access buffer with storage capac-
In addition, the data is partitioned into smaller pack-t for kitems. The goal is to minimize the number
ets to fulfill hardware restrictions. These packets ar@f state changes, i.e., the number of maximal sub-
sorted to minimize expensive state changes. Thigequences of items containing only items with the
method is applicable for video games with fixedSame attribute value.
topology of the graphical elements but cannot be In this model on-line strategies are evaluated the-
used for modeling applications where the geometryretically in a competitive analysis. In such a worst-
is changed dynamically. case analysis the cost of an on-line strategy, which
Buck et al. [3] provide a state tracking system forhas no knowledge about the future input sequence,
the remote rendering system WireGL. It performsis compared with the cost of an optimal off-line
lazy state updates to transmit less state data over tisérategy, which knows the whole input sequence in
network but, in contrast to our approach, it does nogdvance. Note that an optimal off-line strategy has
alter the sequence of the rendered geometry. also to use the sorting buffer to rearrange the input
Aila et al. notice also the trade-off between stateS€quence, i.e., in general an optimal off-line strat-
and spatial sorting. For state sorted application€dy can not just sort the whole input sequence.
they propose to add a delay stream in the graphics It is proven that several standard strategies are
hardware between the vertex and pixel processingnsuitable for this theoretical problem [10], i.e.,
unit [1]. The primitives in the delay stream are usedthe competitive ratio of the First-In-First-Out and
to generate culling information. This way primi- Least-Recently-Used strategy $(vk) and the

666

competitive ratio of the Most-Common-First strat- Application ‘
egy isQ(k). Further, the Bounded-Waste strategy is

presented and it is proven that this strategy achieves pjpeline Buffer v

a competitive ratio oD(log?k) [10]. Note that the saH el 1o 4 Stafe Tracking
competitive ratio ofO(log?k) does not give good T,
performance guarantees for small buffer $iZ¢his 5{3% “’%

is the interesting case in our pipeline buffer sce-| -
nario) because in this case fdgis quite large in : "‘Q‘.“"‘q‘
comparison tck and the constant factors in tig A R

notation have a dominating impact. ’

=SIS

HOS:

B_yng-do

Selection Strategy

3 The Pipeline Buffer

Graphics Hardware

In the following, we call the states that occur dur'Figure 1: The pipeline buffer as application-

ing rendering theattributesof the geometry, e.g., independent add-on to the graphics API.
material, texture, vertex and fragment programs. A

primitive has the same attribute values all over the
described geometry. Hence, primitives can be, e.gMethod. For simplicity, we assume that there is
points, triangles, quads or indices to vertex arrays agnly one attribute shared by all primitives. In Sec-
long as the attribute value managed by our pipelingion 3.2 we discuss how to deal with more than one
buffer does not change during the rendering of thagttribute.
primitive. The diagram of Figure 1 shows oumipeline
When a sequence of primitives is rendered, theyuffer which consists of a state tracking system,
graphics hardware has to perform certain actiong selection strategy and a buffer with random ac-
each time the attribute values of two subsequengess that stores up toprimitives whose attribute
primitives differ. For example, when two subse-value differs from the one currently processed by
quent primitives have different textures or vertexthe graphics hardware.
programs the new texture or vertex program has The system catches the state setting commands
to be loaded before the primitive can be renderediom the application and records them as sfate
This process is calledstate changef the graphics of the input stream (SIS)f the currentstate of
hardware. Moreover, OpenGL performs a validathe graphics hardware (SGH} the same as the
tion step to update the internal caches [12]. SIS we pass all subsequent geometry immediately
The rendering time of a sequence of primitivesto the graphics hardware. Otherwise, the geome-
depends significantly on the number and the kind ofry is appended at the end of the buffer together
state changes in this sequence. Changing the col@ith the SIS information. In the case of textures
or the blend mode is usually cheap. However, cerer vertex/fragment programs this is easily possible
tain state changes, e.g., textures, cause page faubiecause a change involves sending a corresponding
in the internal caches and therefore lower the pertD. Material information is stored once in the buffer
formance of current graphics hardware. We conwith a generated ID and all primitives sharing this
centrate on expensive states that are widely used uttribute value refer to this.
practice and often changed during the rendering of |n case of a buffer overflow we must evict primi-
one frame, whereas the pipeline buffer method doegyes from the buffer. (A buffer overflow means that
not depend on nor is limited to these states. k primitives are stored in the buffer.) This forces a
The pipeline buffer is easy to integrate in an exist-state change in the graphics hardware and we have
ing high level rendering system on application level.to select the next state. This is done by satec-
The only requirement is that each object has a reftion strategy Several strategies are presented and
erence to its attribute values. The more general sadiscussed in Section 4. Finally, all primitives in the
lution we propose is to implement the buffer insidebuffer that provide the selected state are sent to the
a device driver. graphics hardware.

666

At the end of the input stream or if tHieshcom- 3.2 Multiple Attributes
mand is executed the selection strategy determintﬁ
the next state and all primitives providing it are ren-
dered. This is repeated until the buffer is empty.

many applications the primitives have multiple
attributes. In this case we can either consider only
the most expensive attribute or we can use a chain
of pipeline buffers, one for each attribute. In this
3.1 Order-Dependence Buffer case we propose to order the attributes increasingly

)) . according to their influence on the performance of
Most graphics APIs require that transparent objectg, rendering system.

must be blended in back-to-front order. For scenes rq example, let us consider the attributes texture
with transparent objects we propose an additiongleynensive) and color (less expensive). In this case
fixed size FIFO buffer callecorder-dependence e first process all primitives in a color buffer and
buffer (OD-bufferhat stores all transparent primi- i1y in 4 texture buffer. The reason for this order-

tives to avoid reordering. ing is that a block of primitives created by the first

If the OD-buffer is full, first the pipeline buffer is pipeline buffer may be destroyed by a later one.
flushed and then the OD-buffer is emptied. Finally,

when all opaque primitives have been rendered the . .

remaining transparent primitives of the OD-buffer4 ~ Selection Strategies

are rendered. This way we achieve that the rela- . .) .
tive order of transparent objects is not altered and this section, we present the different selection
the opaque objects are not delayed relatively to thétrategles that are implemented and evaluated in our

transparent ones. Order-independent transparen@P€line buffer scenario. In case of a buffer over-
methods like the A-buffer algorithm [4] or the R- flow, the selection strategy selects the next attribute
value processed by the graphic hardware from the

buffer [13] present an other possibility to handle this'*'™™ A ke
problem. primitives current_ly s_tored in the plpel!ne_ buffer.
Because our pipeline buffer scenario is related to

caching, we consider the standard caching strate-

In-Order Execution. ~ Several graphics APIs, €.9., gies First-In-First-Out (FIFO) and Least-Recently-

OpenGL [2] and DirectX [9], specify that primitives sed (LRU) in Section 4.1 and 4.2, resp. The Most-

mapping to the same pixel must be rendered in thgommon-First strategy, presented in Section 4.3, is

order they were submitted. Reordering the prim- fajrly natural strategy in the pipeline buffer sce-

itives violates this rendering semantic and couldhgrio. Finally, we introduce the Round-Robin (RR)

cause temporal flickering problems in some speciadtrategy in Section 4.4.

cases like edge high lighting, stencil operations or if

:;j:rr:é(.:al geometries with different textures are N 1 First-In-First-Out (FIFO)

Our experience is that for most scenes this affect$he FIFO strategy assigns time stamps to each at-
no or only a small subset of primitives. Addition- tribute value stored in the pipeline buffer. Initially,
ally, the order dependency can mostly be reducethe time stamps of all attribute values are undefined.
to a small number of blocks of primitives. Only the When a primitive is stored in the pipeline buffer the
order of these blocks is important but reordering theFIFO strategy checks whether the attribute value of
primitives of one block does not affect the final im- the primitive has an undefined time stamp. In this
age. For example, for edge high lighting the prim-case, the time stamp of this attribute value is set to
itives can be divided in two blocks: Triangles andthe current time. Otherwise, it remains unchanged.
lines. Therefore, the pipeline buffer can be used tt each buffer overflow the FIFO strategy selects
reduce the state changes within one block but mushe attribute value with the oldest time stamp and
be flushed between the blocks. resets its time stamp to undefined.

In our opinion the in-order dependency cannot The FIFO strategy is a very simple selection
be identified fully automated in all cases. Thus,strategy that does not analyze the stream of prim-
the pipeline buffer can be manuelly flushed or dis4tives. The pipeline buffer acts like a sliding win-
abled completely by the programmer at the expensdow over the stream of primitives in which primi-
of loosing the benefits from the buffer. tives with the same attribute value are combined.

666

4.2 Least-Recently-Used (LRU) The BW strategy provides a trade-off between
o] ~ the space wasted by primitives with the same at-
Similar to FIFO, the LRU strategy assigns timeyihyte value and the chance to benefit from fu-
stamps to each attribute value stored in the pipeling,re primitives with the same attribute value. A
buffer. Initially, the time stamps of all attribute val- \yaste counter is assigned to each attribute value
ues are undefined. When a primitive is stored in thggred in the pipeline buffer. Informally, the waste
pipeline buffer the time stamp of its attribute value .gnter for an attribute value is a measure for
is set to the current time. At each buffer overflowg space that has been wasted by all primitives
the LRU strategy selects the attribute value with th&yi attribute valuer currently stored in the pipeline
qldest time stamp and resets its time stamp to unde;er. Initially, the waste counters of all attribute
fined. values are set to zero. In case of a buffer over-
The LRU strategy tries to benefit from the past.fiow, the BW strategy increases the waste counter
However, the LRU strategy and also the FIFO stratpf each attribute valug by the number of primi-
egy tend to remove primitives too early from thetives with attribute values currently stored in the
pipeline buffer. Hence, both strategies cannot builghipeline buffer. Then the attribute value with maxi-

large blocks of primitives with the same attribute mal waste counter is selected and this waste counter
value, if additional primitives with the same at- js reset to zero.

tribute value arrive later in the stream.
Even if the BW strategy achieves the minimal

_ number of attribute changes in our experimental
4.3 Most-Common-First (MCF) evaluation, the computational overhead of the BW
strategy is relatively large. Hence, we designed

The MCF strategy is a fairly natural strategy in the ,qa efficient versions of the BW strategy.

pipeline buffer scenario. In case of a buffer over-
flow, the MCF strategy clears as many locations as A randomized version of the BW strategy is the
possible in the pipeline buffer, i.e., it selects an atRandom-Choice (RC) strategy. The RC strategy
tribute value that is most common among the primchooses a primitive uniformly at random from all
itives currently stored in the pipeline buffer. primitives currently stored in the pipeline buffer and
The MCF strategy also fails to achieve good perSelects the attribute value of this primitive. Note
formance guarantees since it keeps primitives wittihat the RC strategy can also be seen as a ran-
a rare attribute value in the pipeline buffer for a toodomized version of the MCF strategy, i.e., the ran-
long period of time. This behavior wastes valu-domized version of the BW and MCF strategy are
able storage capacity that could be used for efficieriflentical. However, in the deterministic case, the
buffering otherwise. BW strategy clearly outperforms the MCF strategy.
Even if the RC strategy is much simpler than the
BW strategy, the generation of random numbers re-
4.4 Round-Robin (RR) quires a lot of runtime.

The RR strategy is a very practical variant of the Finally, we choose the Round-Robin (RR) strat-
Bounded-Waste (BW) strategy which is introducedegy which is a very efficient variant of the RC strat-
and analysed in a theoretical model [10] (for detailsegy. The RR strategy uses a selection pointer to se-
see Section 2). Thus, we present first the BW stratlect an attribute value. Initially, the selection pointer
egy. In the previous sections we saw that a good sgoints to the first slot of the pipeline buffer. In case
lection strategy should have the following two prop-of a buffer overflow, the RR strategy selects the at-
erties: tribute value of the primitive the selection pointer
e On the one hand, no primitive should be keptpoints to. Then the selection pointer is shifted in
in the pipeline buffer for a too long, possible round robin fashion to the next slot in the pipeline
infinite, period of time. buffer. We believe that the RR strategy still has the
e Onthe other hand, there is a benefit from keepsame properties on typical input sequences as the
ing a primitive in the pipeline buffer, if addi- BW strategy. In our experimental evaluation, the
tional primitives with the same attribute value RR strategy achieves almost the same number of at-
arrive in the near future. tribute changes as the BW strategy.

666

Scene

Town

Aphrodite

Bear

Elephant

PowerPlant

Triangles in
view frustum

211589

178068

71384

65296

333585

Textures
(mean size)

430 (128)*

8 (512)

14 (1024)

11 (512)

17 (mat.)**

state changes
(octree generated

40341

27395

9215

11171

7529

remaining state changes
buffer size 10 30 10 30 10 30 10 30 10 30
RR 11744 7473 5753 2908 2025 1138 2593 3331
MCF 17009 12883 6536 3317 2371 1492 2997 3521
LRU 35862 29465 10539 7748 5613 2904 6103 4358
FIFO 37092 34048 12086 10244 4283 4779 6075 4543

remaining state changes in per cent
10.6% 22.0% 12.3%
12.1% 25.7% 16.2%
28.3% 60.9% 31.5%
37.4% 46.5% 51.9%

RR 29.1%
MCF 42.2%
LRU 88.9%
FIFO 91.9%

18.5%
31.9%
73.0%
84.4%

21.0%
23.9%
38.5%
44.1%

23.2%
26.8%
54.6%
54.4%

44.2%
46.8%
57.9%
60.3%

42.3% 44.3%

Table 1: Statistical overview for different test scenes. State change reductions for buffiee=siiAg 30.
*Material attributes are replaced by monochromatic textures. **PowerPlant uses only material attributes.
Aphrodite, Bear, Elephantourtesy of Polygon Technology, Darmstadt (www.polygon-technology.de).
PowerPlant courtesy of the Walkthrough Group at the University of North Carolina at Chapel Hill
(www.cs.unc.edu/"walk).

5 Implementation and Results Experimental Setting. Our experiments are
made on a Linux based system with a 2GHz Pen-
For our experiments we have implemented a prototium IV processor and an NVIDIA GeForce4 Ti
type rendering system in C++ using OpenGL rou-graphics card. Our test scenes and their characteris-
tines for the rendering. The pipeline buffer is im- tics are summarized in Table 1. In the Town scene
plemented as a linear array and contains referencege replaced material attributes by monochromatic
to primitives, e.g., GLPOINTS, GLTRIANGLES textures to generate a test scene with a few hundred
or indices to vertex arrays. All measurements ardlifferent textures. In all our scenes the primitives
done using compiled vertex arrays. Primitives areare given in world coordinates and stored in an oc-
inserted at the smallest free index. Before a primiree. To generate the input sequence we traversed
itive is deleted we swap it with the primitive with this octree by an in-order traversal.
the largest index. Since our buffer is rather small We implemented the four strategies discussed in
no other data structures are needed. When a buff@ection 4 and also the BW and RC strategy that
overflow occurs we first find one primitive that is have been discussed in Section 4.4. Our experi-
evicted according to our selection strategy. Themments confirmed that BW, RC, and RR are essen-
we check for every primitive stored in the buffer, tially equivalent in their performance with RR hav-
whether it has the same attribute value as the evictedg an edge on the rendering time because of its
one. If it has the same attribute value, we also evicsimplicity. Therefore, in our presentation we se-
it. Otherwise, it stays in the buffer. lected RR as representative strategy. We remark
To speed up the comparison of attribute valueghat BW achieves up to 3% higher reduction of state
we assign to each attribute value a unique intege¢hanges.
ID. In the case of textures we use the TexID from We made experiments for each combination of
OpenGL. This way, we can compare two attributestrategy, scene, and buffer size. Since there is some
values by a simple integer comparison. redundancy in the results we do not give figures for

666

45000 T

40000

35000

30000

g 100
£ 20000 -\

7 15000

rendering time [msec]

15000

10000 — FIFO
10000

5000 5000\ — RR

o 50 100

Figure 2: Reduction of state changes: (a) Comparison of the selection strategies (test scene: Town) (b) R
strategy for our test scenes. (c) Rendering time for the Town scene with varying buffer size. The dotted and
dashed line represent the rendering time with no and with optimal state change reduction, respectively.

all possible combinations. Instead we try to focusscene contains some textures that rarely occur in the
and explain the behavior on selected examples. scene. Hence, MCF does not evict primitives with
In Section 5.1 we compare our selection stratethese rarely occurring textures from the buffer for
gies w.r.t. their reduction of state changes. Then we long time. These primitives block valuable buffer
give more detailed results for RR. Finally, in Sec-space and this has a negative effect on the perfor-
tion 5.2 we discuss the rendering performance ofnance of MCF on the Town scene.
our strategies, again giving a more detailed discus- Even for small buffer sizes a significant re-
sion for RR. duction is achieved. Our investigation un-
folds that most spatial sorting creates long se-
. quences of one attribute value disconnected by
51 State Change Reduction single different values, likeAAA B AAAAAA
First we compare our selection strategies w.r.t. theifAAA C AAAAAAAAAAAA B AAAAAAAAA BB
reduction of state changes. We start with the TowAAAAAAAAAAEven with a buffer size ok = 3
scene. In Figure 2(a) we see the number of statthe resulting sequence, e. QAAAAAAAAAAAAAA
changes achieved by the different strategies and fARMAAAAAAAAAAAAAAAAAA BBBB C AAAAAAA
different buffer sizes. The sequence of primitivesAAAcoNtains less than half the state changes.
generated by the in-order octree traversal has 40341 Summarizing we can see that RR clearly outper-
state changes. The highest reduction is achievel@rms all other strategies w.r.t. to the reduction of
by the RR strategy which reduces the number oftate changes. Even though MCF achieves compa-
state changes to 7473 with buffer size 30. The sed-able results for some scenes it can be away by more
ond best strategy is MCF with 12883 changes wittthan a factor of 5 as the Town scene shows.
buffer size 30 followed by LRU and FIFO. Addi-
tionally, the performance_ of LRU_and FIFO_str(_)neg 52 Performance
depends on the buffer size: A slight variation in the
buffer size may increase or decrease the number dince all strategies are fairly simple, it is no sur-
state changes significantly. The other strategies afgrise that the reduction of state changes results into
more robust concerning this phenomenon. faster running times. As an example, Figure 2(c)
For the other scenes the characteristics of thdlustrates the rendering time for the four selection
curves are similar to Figure 2(a). However, the rel-strategies on the Town scene. We also give the ren-
ative performance of the strategies depends on theering time without pipeline buffer on the input se-
scenes. Therefore, we present the full set of curveguence (generated by octree traversal) and on a pre-
only for RR (see Figure 2(b)). For all other strate-sorted sequence, which is the optimum performance
gies we just give results for buffer sizes 10 and 3Qve can achieve. It can be seen that RR achieves
for the other test scenes in Table 1. the best performance among our strategies improv-
It turns out that for some scenes the performanceng between 28% and 35% on the rendering time
of MCF is closer to RR than for the Town scene.without sorting buffer for textured scenes (see Ta-
This can be explained by the fact that the Townble 2). We also observe that the performance of RR

666

is very close to the performance of a presorted s mf;’frfo”:i Town | Aphrodite | Bear | Elephant] PowerPlant

guence without pipeline buffer. Note that RR needs buffering | 145ms| 148ms | 59ms | 60ms 115ms

~ H _ H RR (k=30) | 101ms 101ms 42ms 39ms 107ms

3-6ms (for buffer size 2) tq 3.5 7m§ (fqr buffer size presorted | 03ms | 96ms | 3oms T 36ms o
200) for our test scenes if rendering is turned off ——c=gm

Hence, the CPU time of RR is less than 10% of the RF; 303% | 31.8% | 28.8% | 35.0% 7.0%
. . speed-up

total running time. presorted | 35.9% | 35.1% | 33.9% | 40.0% 12.2%

We also observe that below a certain threshold
the number of state changes seems to have no mofable 2: Rendering time of the RR strategy with
influence on the running time. We believe that frombuffer size 30.
this point the performance is limited by a differ-
.ent bottleneck. Therefore, ficcordmg to our Exper: [3] I. Buck, G. Humphreys, and P. Hanrahan. Track-
iments a buffer size of 30 is sufficient to achieve " jn4 graphics state for networked rendering Piroc.
almost optimal performance. of ACM SIGGRAPH / EUROGRAPHICS Workshop
Finally, we observe that the speed-up for the on Graphics Hardwargpages 87-95. ACM Press,
PowerPlant scene is smaller than the speed-up for ~ 2000.
other scenes. The reason is that the PowerPlanf4] L. Carpenter. The a-buffer, an antialiased hidden sur-
scene has no textures. In this scene a state change face method. IiProc. of ACM SIGGRAPH g4ages
corresponds to a change of material. Such a change 103-108. ACM Press, 1984.
is less expensive than a change of texture. We alsd®] %nﬁoge:dsg Yéf?/?sri}tlasiﬁatnt?oorlt\/aﬁktﬁirlc\)ﬁ' sgd Flicgu-
remar'k that in generf’:ll a change of the shader pro- tions.. IEEE Trgnsactionsyon \ﬁsualizatio% an%pCom—
gram is more expensive than the change of atexture. pyter Graphics9(3):412-431, 2003.
Thus we (?an expect a better gain of performance in[6] S. R. Coorg and S. J. Teller. Real-time occlusion
scenes with shader programs. culling for models with large occluders. Froc. of
We conclude that using a pipeline buffer of size ACM Symposium on Interactive 3D Graphipages
30 with the RR strategy a spatially sorted sequence 83-90, 189. ACM Press, 1997.
of primitives can be rendered in almost the same|[7] N. Greene, M. Kass, and G. Miller. Hierarchical z-
time as if it was sorted by attribute value. buffer visibility. In Proc. of ACM SIGGRAPH 93
pages 231-238, 1993.

. [8] P. Lalonde and E. Schenk. Shader-driven compi-
6 Conclusion lation of rendering assets. IRroc. of ACM SIG-
GRAPH 2002pages 713-720. ACM Press, 2002.

We _ShOW that our pipeline buffer with the Round- 9] Microsoft. The Microsoft DirectX 9 Programmable

Robin strategy can be used to reduce the number ~ Graphics Pipline Microsoft Press, 2003.

of state Changes in the rendgrlng process by an o 10] H. Racke, C. Sohler, and M. Westermann. Online

der of magnitude. In comparison to an unsorted se- ~ scheduling for sorting buffers. IRroc. of the 10th

quence our approach reduces the rendering time by ~ European Symposium on Algorithms (ESpages

up to 35%. Our approach almost achieves the op- ~ 820-832. Springer Verlag, Berlin, 2002.

timal performance of a presorted sequence. It i§11] J. Rohif and J. Helman. Iris performer: A high

easy to implement, fast and generic, i.e., it can be performance multiprocessing toolkit for real-time 3d
; graphics. InProc. of ACM SIGGRAPH 94pages

used tc_) rgduce any _type of_ st_ate chang_e and it can 381-394. ACM Press. 1094,

be easily integrated into existing rendering system.

; ; 12] D. Shreiner. Performance opengl: Platform indepen-
It would be interesting to evaluate the performancé dent techniques. loourse notes of the ACM SIG-

of our strategy, if it is realized in hardware. GRAPH 20012001,
[13] C.M. Wittenbrink. R-buffer: A pointerless a-buffer
References hardware architecture. Proc. of ACM SIGGRAPH
/ EUROGRAPHICS Workshop on Graphics Hard-
[1] T. Aila, V. Miettinen, and P. Nordlund. Delay ware, pages 73—-80. ACM Press, 2001.

streams f_or graphics hardwardCM Transactions 14] H.Zhang, D. Manocha, T. Hudson, and K. Hoff. Vis-

on Graphics, 22(3)pages 792-800, 2003. 14l ibility cuﬁing using hierarchical occlusion maps. In
[2] OpenGL Architecture Review BoardpenGL Ref- Proc. of ACM SIGGRAPH 97ages 77-88. ACM

erence Manual: The Official Reference Document to Press, 1997.

OpenGL, Version 1.2Addison-Wesley, 1999.

666

