
Reducing State Changes with a Pipeline Buffer∗

Jens Krokowski† Harald R̈acke‡ Christian Sohler† Matthias Westermann§

Abstract

A limiting factor in the performance of a render-
ing system is the number of state changes, i.e.,
changes of the attributes material, texture, shader
program, etc., in the stream of rendered primitives.
We propose to include a small buffer between appli-
cation and graphics hardware in the rendering sys-
tem. This pipeline buffer is used to rearrange the
incoming sequence of primitives on-line and locally
in such a way that the number of state changes is
minimized. This method is generic; it can be easily
integrated into existing rendering systems.

In our experiments a pipeline buffer reduces the
number of state changes by an order of magnitude
and achieves almost the same rendering time as an
optimal, i.e., presorted, sequence without pipeline
buffer. Due to its simple structure and its low mem-
ory requirements this method can easily be imple-
mented in software or even hardware.

1 Introduction

In current rendering systems a number of different
techniques are integrated to reduce the time to ren-
der a 3D scene. View frustum culling, approxima-
tion, and occlusion culling are used to reduce the
number of primitives that have to be rendered. An-
other significant factor for the rendering time is the
number of state changes performed by the graph-
ics hardware during the rendering process. Such
a state change occurs when two subsequently ren-
dered primitives differ in their attribute values, i.e.,
in their material, texture, or shader program. These
state changes slow down the rendering system.

∗This work is partially supported by the DFG grant ME 872/8-2
and WE 2842/1-1.

†Heinz Nixdorf Institute and Institute of Computer Sci-
ence, University of Paderborn, Germany, Email:{kroko,
csohler}@upb.de

‡Computer Science Department, Carnegie Mellon University,
USA, Email: harry@andrew.cmu.edu

§Computer Science Department, Dortmund University, Ger-
many, Email: mw@ls2.cs.uni-dortmund.de

Therefore, in some applications, e.g., in com-
puter games, the primitives are organized in blocks
of equal material, texture, and shader program in
order to minimize the number of state changes in
the graphics hardware. However, frustum and oc-
clusion culling usually require a spatial sorting of
the primitives. This stands in partial conflict with
the requirement to sort the primitives by attribute
value, which means that, in general, this approach
leads to suboptimal visibility culling. Further prob-
lems occur in interactive applications, where a pre-
processing is not possible.

1.1 Contributions

To overcome these problems, we propose a differ-
ent technique to reduce the number of state changes:
A pipeline buffer is included between application
and graphics hardware and reduces state changes
on-line instead of doing a preprocessing. Therefore,
the application can benefit from any (especially spa-
tial) sorting without increasing the running time due
to too many state changes.

Our approach is based on a small buffer (storing
less than hundred references) and a well chosen se-
lection strategy to rearrange the incoming sequence
of primitives on-line in such a way that the number
of state changes is minimized.

This method is generic, i.e., it can be used for
different types of state changes, and it can be inte-
grated into existing rendering systems. Due to its
simple structure and its low memory requirements
this method can easily be implemented in software
or even hardware.

In our experiments each scene is stored in an oc-
tree and we consider the sequence of primitives that
results from an in-order traversal of that tree. For
such a sequence we typically get that our method
• reduces the number of state changes by an or-

der of magnitude,
• reduces the rendering time by roughly 30%,

VMV 2004 Stanford, USA, November 16–18, 2004

• achieves almost the same rendering time as
an optimal, i.e., presorted, sequence without
pipeline buffer.

Note that these results heavily depend on the type
of state changes, i.e., on the cost associated with the
state changes.

2 Related Work

Conventional approaches to reducing state changes
usually use some kind of preprocessing in order to
sort the sequence of primitives with respect to their
attribute values. However, these methods cannot
be easily combined with culling techniques used in
modern rendering systems since these techniques
usually require a spatial sorting of the primitives as
opposed to a sorting by attribute value. Although
this trade-off is known for a long time only very lit-
tle work is done on paying attention to both factors
simultaneously.

The IRIS Performer toolkit [11] resorts the vis-
ible geometry by modes at the end of the CULL
traversal for each frame and sends geometry and
graphics commands to the graphics subsystem in
the subsequent DRAW traversal. However, the
computation of such a rearrangement is so expen-
sive that this can only amortize if it is used for sev-
eral frames.

The system of Lalonde and Schenk [8] optimizes
the geometric data of video games for the targeted
hardware (e.g., PS2, XBox and GameCube) in a
preprocessing step using shader programs intensely.
In addition, the data is partitioned into smaller pack-
ets to fulfill hardware restrictions. These packets are
sorted to minimize expensive state changes. This
method is applicable for video games with fixed
topology of the graphical elements but cannot be
used for modeling applications where the geometry
is changed dynamically.

Buck et al. [3] provide a state tracking system for
the remote rendering system WireGL. It performs
lazy state updates to transmit less state data over the
network but, in contrast to our approach, it does not
alter the sequence of the rendered geometry.

Aila et al. notice also the trade-off between state
and spatial sorting. For state sorted applications
they propose to add a delay stream in the graphics
hardware between the vertex and pixel processing
unit [1]. The primitives in the delay stream are used
to generate culling information. This way primi-

tives residing in the delay stream may be culled by
primitives that were submitted afterwards. The de-
lay stream stores 50K-150K triangles and therfore
is several orders of magnitude larger compared to
the pipeline buffer.

Spatial sorting applications. Occlusion culling
methods compute the visible primitives either dur-
ing preprocessing and store them in state sorted Po-
tential Visible Sets (PVS) or determine them on-
line. If the scene contains mobile primitives (es-
pecially mobile occluders), PVS methods normally
fail and, in addition, the memory requirements of
PVS methods can turn out to be a problem [5].

On-line methods usually store the scene in a hi-
erarchical data structure, e.g., octree [7], kd-tree
[6], or bounding box hierarchy [14], to compute the
point-based visibility. During a traversal of such a
hierarchical data structure, the visible primitives are
classified and only these primitives are sent to the
graphics hardware. These approaches may generate
a sequence of primitives that contains many state
changes. We will show how to improve the render-
ing time for these scenarios by reducing the number
of state changes with a pipeline buffer.

Theoretical analysis. The pipeline buffer sce-
nario is an application of the on-line scheduling
problem for sorting buffers [10]. The following
is a conversion of this theoretical model to the
pipeline buffer application: An input sequence of
items which are only characterized by a specific
attribute has to be rearranged by a sorting buffer
which is a random access buffer with storage capac-
ity for k items. The goal is to minimize the number
of state changes, i.e., the number of maximal sub-
sequences of items containing only items with the
same attribute value.

In this model on-line strategies are evaluated the-
oretically in a competitive analysis. In such a worst-
case analysis the cost of an on-line strategy, which
has no knowledge about the future input sequence,
is compared with the cost of an optimal off-line
strategy, which knows the whole input sequence in
advance. Note that an optimal off-line strategy has
also to use the sorting buffer to rearrange the input
sequence, i.e., in general an optimal off-line strat-
egy can not just sort the whole input sequence.

It is proven that several standard strategies are
unsuitable for this theoretical problem [10], i.e.,
the competitive ratio of the First-In-First-Out and
Least-Recently-Used strategy isΩ(

√
k) and the

666

competitive ratio of the Most-Common-First strat-
egy isΩ(k). Further, the Bounded-Waste strategy is
presented and it is proven that this strategy achieves
a competitive ratio ofO(log2k) [10]. Note that the
competitive ratio ofO(log2k) does not give good
performance guarantees for small buffer sizek (this
is the interesting case in our pipeline buffer sce-
nario) because in this case log2k is quite large in
comparison tok and the constant factors in theO-
notation have a dominating impact.

3 The Pipeline Buffer

In the following, we call the states that occur dur-
ing rendering theattributesof the geometry, e.g.,
material, texture, vertex and fragment programs. A
primitive has the same attribute values all over the
described geometry. Hence, primitives can be, e.g.,
points, triangles, quads or indices to vertex arrays as
long as the attribute value managed by our pipeline
buffer does not change during the rendering of that
primitive.

When a sequence of primitives is rendered, the
graphics hardware has to perform certain actions
each time the attribute values of two subsequent
primitives differ. For example, when two subse-
quent primitives have different textures or vertex
programs the new texture or vertex program has
to be loaded before the primitive can be rendered.
This process is called astate changeof the graphics
hardware. Moreover, OpenGL performs a valida-
tion step to update the internal caches [12].

The rendering time of a sequence of primitives
depends significantly on the number and the kind of
state changes in this sequence. Changing the color
or the blend mode is usually cheap. However, cer-
tain state changes, e.g., textures, cause page faults
in the internal caches and therefore lower the per-
formance of current graphics hardware. We con-
centrate on expensive states that are widely used in
practice and often changed during the rendering of
one frame, whereas the pipeline buffer method does
not depend on nor is limited to these states.

The pipeline buffer is easy to integrate in an exist-
ing high level rendering system on application level.
The only requirement is that each object has a ref-
erence to its attribute values. The more general so-
lution we propose is to implement the buffer inside
a device driver.

Selection Strategy

Application
O

D
-B

u
ffe

r

State Tracking
Pipeline Buffer

trans. O
bj.

S
IS

=
S
G

H

SI
S=

SG
H

SGH set to ...

Graphics Hardware

Figure 1: The pipeline buffer as application-
independent add-on to the graphics API.

Method. For simplicity, we assume that there is
only one attribute shared by all primitives. In Sec-
tion 3.2 we discuss how to deal with more than one
attribute.

The diagram of Figure 1 shows ourpipeline
buffer which consists of a state tracking system,
a selection strategy and a buffer with random ac-
cess that stores up tok primitives whose attribute
value differs from the one currently processed by
the graphics hardware.

The system catches the state setting commands
from the application and records them as thestate
of the input stream (SIS). If the currentstate of
the graphics hardware (SGH)is the same as the
SIS we pass all subsequent geometry immediately
to the graphics hardware. Otherwise, the geome-
try is appended at the end of the buffer together
with the SIS information. In the case of textures
or vertex/fragment programs this is easily possible
because a change involves sending a corresponding
ID. Material information is stored once in the buffer
with a generated ID and all primitives sharing this
attribute value refer to this.

In case of a buffer overflow we must evict primi-
tives from the buffer. (A buffer overflow means that
k primitives are stored in the buffer.) This forces a
state change in the graphics hardware and we have
to select the next state. This is done by theselec-
tion strategy. Several strategies are presented and
discussed in Section 4. Finally, all primitives in the
buffer that provide the selected state are sent to the
graphics hardware.

666

At the end of the input stream or if theflushcom-
mand is executed the selection strategy determines
the next state and all primitives providing it are ren-
dered. This is repeated until the buffer is empty.

3.1 Order-Dependence Buffer

Most graphics APIs require that transparent objects
must be blended in back-to-front order. For scenes
with transparent objects we propose an additional
fixed size FIFO buffer calledorder-dependence
buffer (OD-buffer)that stores all transparent primi-
tives to avoid reordering.

If the OD-buffer is full, first the pipeline buffer is
flushed and then the OD-buffer is emptied. Finally,
when all opaque primitives have been rendered the
remaining transparent primitives of the OD-buffer
are rendered. This way we achieve that the rela-
tive order of transparent objects is not altered and
the opaque objects are not delayed relatively to the
transparent ones. Order-independent transparency
methods like the A-buffer algorithm [4] or the R-
buffer [13] present an other possibility to handle this
problem.

In-Order Execution. Several graphics APIs, e.g.,
OpenGL [2] and DirectX [9], specify that primitives
mapping to the same pixel must be rendered in the
order they were submitted. Reordering the prim-
itives violates this rendering semantic and could
cause temporal flickering problems in some special
cases like edge high lighting, stencil operations or if
identical geometries with different textures are ren-
dered.

Our experience is that for most scenes this affects
no or only a small subset of primitives. Addition-
ally, the order dependency can mostly be reduced
to a small number of blocks of primitives. Only the
order of these blocks is important but reordering the
primitives of one block does not affect the final im-
age. For example, for edge high lighting the prim-
itives can be divided in two blocks: Triangles and
lines. Therefore, the pipeline buffer can be used to
reduce the state changes within one block but must
be flushed between the blocks.

In our opinion the in-order dependency cannot
be identified fully automated in all cases. Thus,
the pipeline buffer can be manuelly flushed or dis-
abled completely by the programmer at the expense
of loosing the benefits from the buffer.

3.2 Multiple Attributes

In many applications the primitives have multiple
attributes. In this case we can either consider only
the most expensive attribute or we can use a chain
of pipeline buffers, one for each attribute. In this
case we propose to order the attributes increasingly
according to their influence on the performance of
the rendering system.

For example, let us consider the attributes texture
(expensive) and color (less expensive). In this case
we first process all primitives in a color buffer and
finally in a texture buffer. The reason for this order-
ing is that a block of primitives created by the first
pipeline buffer may be destroyed by a later one.

4 Selection Strategies

In this section, we present the different selection
strategies that are implemented and evaluated in our
pipeline buffer scenario. In case of a buffer over-
flow, the selection strategy selects the next attribute
value processed by the graphic hardware from the
primitives currently stored in the pipeline buffer.

Because our pipeline buffer scenario is related to
caching, we consider the standard caching strate-
gies First-In-First-Out (FIFO) and Least-Recently-
Used (LRU) in Section 4.1 and 4.2, resp. The Most-
Common-First strategy, presented in Section 4.3, is
a fairly natural strategy in the pipeline buffer sce-
nario. Finally, we introduce the Round-Robin (RR)
strategy in Section 4.4.

4.1 First-In-First-Out (FIFO)

The FIFO strategy assigns time stamps to each at-
tribute value stored in the pipeline buffer. Initially,
the time stamps of all attribute values are undefined.
When a primitive is stored in the pipeline buffer the
FIFO strategy checks whether the attribute value of
the primitive has an undefined time stamp. In this
case, the time stamp of this attribute value is set to
the current time. Otherwise, it remains unchanged.
At each buffer overflow the FIFO strategy selects
the attribute value with the oldest time stamp and
resets its time stamp to undefined.

The FIFO strategy is a very simple selection
strategy that does not analyze the stream of prim-
itives. The pipeline buffer acts like a sliding win-
dow over the stream of primitives in which primi-
tives with the same attribute value are combined.

666

4.2 Least-Recently-Used (LRU)

Similar to FIFO, the LRU strategy assigns time
stamps to each attribute value stored in the pipeline
buffer. Initially, the time stamps of all attribute val-
ues are undefined. When a primitive is stored in the
pipeline buffer the time stamp of its attribute value
is set to the current time. At each buffer overflow
the LRU strategy selects the attribute value with the
oldest time stamp and resets its time stamp to unde-
fined.

The LRU strategy tries to benefit from the past.
However, the LRU strategy and also the FIFO strat-
egy tend to remove primitives too early from the
pipeline buffer. Hence, both strategies cannot build
large blocks of primitives with the same attribute
value, if additional primitives with the same at-
tribute value arrive later in the stream.

4.3 Most-Common-First (MCF)

The MCF strategy is a fairly natural strategy in the
pipeline buffer scenario. In case of a buffer over-
flow, the MCF strategy clears as many locations as
possible in the pipeline buffer, i.e., it selects an at-
tribute value that is most common among the prim-
itives currently stored in the pipeline buffer.

The MCF strategy also fails to achieve good per-
formance guarantees since it keeps primitives with
a rare attribute value in the pipeline buffer for a too
long period of time. This behavior wastes valu-
able storage capacity that could be used for efficient
buffering otherwise.

4.4 Round-Robin (RR)

The RR strategy is a very practical variant of the
Bounded-Waste (BW) strategy which is introduced
and analysed in a theoretical model [10] (for details
see Section 2). Thus, we present first the BW strat-
egy. In the previous sections we saw that a good se-
lection strategy should have the following two prop-
erties:
• On the one hand, no primitive should be kept

in the pipeline buffer for a too long, possible
infinite, period of time.

• On the other hand, there is a benefit from keep-
ing a primitive in the pipeline buffer, if addi-
tional primitives with the same attribute value
arrive in the near future.

The BW strategy provides a trade-off between
the space wasted by primitives with the same at-
tribute value and the chance to benefit from fu-
ture primitives with the same attribute value. A
waste counter is assigned to each attribute value
stored in the pipeline buffer. Informally, the waste
counter for an attribute valuev is a measure for
the space that has been wasted by all primitives
with attribute valuev currently stored in the pipeline
buffer. Initially, the waste counters of all attribute
values are set to zero. In case of a buffer over-
flow, the BW strategy increases the waste counter
of each attribute valuev by the number of primi-
tives with attribute valuev currently stored in the
pipeline buffer. Then the attribute value with maxi-
mal waste counter is selected and this waste counter
is reset to zero.

Even if the BW strategy achieves the minimal
number of attribute changes in our experimental
evaluation, the computational overhead of the BW
strategy is relatively large. Hence, we designed
more efficient versions of the BW strategy.

A randomized version of the BW strategy is the
Random-Choice (RC) strategy. The RC strategy
chooses a primitive uniformly at random from all
primitives currently stored in the pipeline buffer and
selects the attribute value of this primitive. Note
that the RC strategy can also be seen as a ran-
domized version of the MCF strategy, i.e., the ran-
domized version of the BW and MCF strategy are
identical. However, in the deterministic case, the
BW strategy clearly outperforms the MCF strategy.
Even if the RC strategy is much simpler than the
BW strategy, the generation of random numbers re-
quires a lot of runtime.

Finally, we choose the Round-Robin (RR) strat-
egy which is a very efficient variant of the RC strat-
egy. The RR strategy uses a selection pointer to se-
lect an attribute value. Initially, the selection pointer
points to the first slot of the pipeline buffer. In case
of a buffer overflow, the RR strategy selects the at-
tribute value of the primitive the selection pointer
points to. Then the selection pointer is shifted in
round robin fashion to the next slot in the pipeline
buffer. We believe that the RR strategy still has the
same properties on typical input sequences as the
BW strategy. In our experimental evaluation, the
RR strategy achieves almost the same number of at-
tribute changes as the BW strategy.

666

Scene Town Aphrodite Bear Elephant PowerPlant
Triangles in
view frustum 211589 178068 71384 65296 333585

Textures
(mean size) 430 (1282)* 8 (5122) 14 (10242) 11 (5122) 17 (mat.)**

state changes
(octree generated) 40341 27395 9215 11171 7529

remaining state changes
buffer size 10 30 10 30 10 30 10 30 10 30

RR 11744 7473 5753 2908 2025 1138 2593 1475 3331 2047
MCF 17009 12883 6536 3317 2371 1492 2997 1654 3521 2125
LRU 35862 29465 10539 7748 5613 2904 6103 3206 4358 3286
FIFO 37092 34048 12086 10244 4283 4779 6075 4728 4543 3332

remaining state changes in per cent
RR 29.1% 18.5% 21.0% 10.6% 22.0% 12.3% 23.2% 13.2% 44.2% 27.2%

MCF 42.2% 31.9% 23.9% 12.1% 25.7% 16.2% 26.8% 14.8% 46.8% 28.2%
LRU 88.9% 73.0% 38.5% 28.3% 60.9% 31.5% 54.6% 28.7% 57.9% 43.6%
FIFO 91.9% 84.4% 44.1% 37.4% 46.5% 51.9% 54.4% 42.3% 60.3% 44.3%

Table 1: Statistical overview for different test scenes. State change reductions for buffer sizek = 10,30.
*Material attributes are replaced by monochromatic textures. **PowerPlant uses only material attributes.
Aphrodite, Bear, Elephantcourtesy of Polygon Technology, Darmstadt (www.polygon-technology.de).
PowerPlant courtesy of the Walkthrough Group at the University of North Carolina at Chapel Hill
(www.cs.unc.edu/˜walk).

5 Implementation and Results

For our experiments we have implemented a proto-
type rendering system in C++ using OpenGL rou-
tines for the rendering. The pipeline buffer is im-
plemented as a linear array and contains references
to primitives, e.g., GLPOINTS, GLTRIANGLES
or indices to vertex arrays. All measurements are
done using compiled vertex arrays. Primitives are
inserted at the smallest free index. Before a prim-
itive is deleted we swap it with the primitive with
the largest index. Since our buffer is rather small
no other data structures are needed. When a buffer
overflow occurs we first find one primitive that is
evicted according to our selection strategy. Then
we check for every primitive stored in the buffer,
whether it has the same attribute value as the evicted
one. If it has the same attribute value, we also evict
it. Otherwise, it stays in the buffer.

To speed up the comparison of attribute values
we assign to each attribute value a unique integer
ID. In the case of textures we use the TexID from
OpenGL. This way, we can compare two attribute
values by a simple integer comparison.

Experimental Setting. Our experiments are
made on a Linux based system with a 2GHz Pen-
tium IV processor and an NVIDIA GeForce4 Ti
graphics card. Our test scenes and their characteris-
tics are summarized in Table 1. In the Town scene
we replaced material attributes by monochromatic
textures to generate a test scene with a few hundred
different textures. In all our scenes the primitives
are given in world coordinates and stored in an oc-
tree. To generate the input sequence we traversed
this octree by an in-order traversal.

We implemented the four strategies discussed in
Section 4 and also the BW and RC strategy that
have been discussed in Section 4.4. Our experi-
ments confirmed that BW, RC, and RR are essen-
tially equivalent in their performance with RR hav-
ing an edge on the rendering time because of its
simplicity. Therefore, in our presentation we se-
lected RR as representative strategy. We remark
that BW achieves up to 3% higher reduction of state
changes.

We made experiments for each combination of
strategy, scene, and buffer size. Since there is some
redundancy in the results we do not give figures for

666

0 50 100
buffer size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
st

at
e

ch
an

ge
s

FIFO
LRU
MCF
RR

0 10 20 30 40 50
buffer size

0

5000

10000

15000

20000

25000

30000

35000

40000

st
at

e
ch

an
ge

s

Town
Aphrodite
PowerPlant
Elephant
Bear

0 50 100
buffer size

50

100

150

re
nd

er
in

g
tim

e
[m

se
c]

without pipeline buffer
FIFO
LRU
MCF
RR
presorted sequence

Figure 2: Reduction of state changes: (a) Comparison of the selection strategies (test scene: Town) (b) RR
strategy for our test scenes. (c) Rendering time for the Town scene with varying buffer size. The dotted and
dashed line represent the rendering time with no and with optimal state change reduction, respectively.

all possible combinations. Instead we try to focus
and explain the behavior on selected examples.

In Section 5.1 we compare our selection strate-
gies w.r.t. their reduction of state changes. Then we
give more detailed results for RR. Finally, in Sec-
tion 5.2 we discuss the rendering performance of
our strategies, again giving a more detailed discus-
sion for RR.

5.1 State Change Reduction

First we compare our selection strategies w.r.t. their
reduction of state changes. We start with the Town
scene. In Figure 2(a) we see the number of state
changes achieved by the different strategies and for
different buffer sizes. The sequence of primitives
generated by the in-order octree traversal has 40341
state changes. The highest reduction is achieved
by the RR strategy which reduces the number of
state changes to 7473 with buffer size 30. The sec-
ond best strategy is MCF with 12883 changes with
buffer size 30 followed by LRU and FIFO. Addi-
tionally, the performance of LRU and FIFO strongly
depends on the buffer size: A slight variation in the
buffer size may increase or decrease the number of
state changes significantly. The other strategies are
more robust concerning this phenomenon.

For the other scenes the characteristics of the
curves are similar to Figure 2(a). However, the rel-
ative performance of the strategies depends on the
scenes. Therefore, we present the full set of curves
only for RR (see Figure 2(b)). For all other strate-
gies we just give results for buffer sizes 10 and 30
for the other test scenes in Table 1.

It turns out that for some scenes the performance
of MCF is closer to RR than for the Town scene.
This can be explained by the fact that the Town

scene contains some textures that rarely occur in the
scene. Hence, MCF does not evict primitives with
these rarely occurring textures from the buffer for
a long time. These primitives block valuable buffer
space and this has a negative effect on the perfor-
mance of MCF on the Town scene.

Even for small buffer sizes a significant re-
duction is achieved. Our investigation un-
folds that most spatial sorting creates long se-
quences of one attribute value disconnected by
single different values, likeAAA B AAAAAA
AAAA C AAAAAAAAAAAA B AAAAAAAAA BB
AAAAAAAAAA. Even with a buffer size ofk = 3
the resulting sequence, e.g.,AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA BBBB C AAAAAAA
AAAcontains less than half the state changes.

Summarizing we can see that RR clearly outper-
forms all other strategies w.r.t. to the reduction of
state changes. Even though MCF achieves compa-
rable results for some scenes it can be away by more
than a factor of 1.5 as the Town scene shows.

5.2 Performance

Since all strategies are fairly simple, it is no sur-
prise that the reduction of state changes results into
faster running times. As an example, Figure 2(c)
illustrates the rendering time for the four selection
strategies on the Town scene. We also give the ren-
dering time without pipeline buffer on the input se-
quence (generated by octree traversal) and on a pre-
sorted sequence, which is the optimum performance
we can achieve. It can be seen that RR achieves
the best performance among our strategies improv-
ing between 28.8% and 35% on the rendering time
without sorting buffer for textured scenes (see Ta-
ble 2). We also observe that the performance of RR

666

is very close to the performance of a presorted se-
quence without pipeline buffer. Note that RR needs
3-6ms (for buffer size 2) to 3.5-7ms (for buffer size
200) for our test scenes if rendering is turned off.
Hence, the CPU time of RR is less than 10% of the
total running time.

We also observe that below a certain threshold
the number of state changes seems to have no more
influence on the running time. We believe that from
this point the performance is limited by a differ-
ent bottleneck. Therefore, according to our exper-
iments a buffer size of 30 is sufficient to achieve
almost optimal performance.

Finally, we observe that the speed-up for the
PowerPlant scene is smaller than the speed-up for
other scenes. The reason is that the PowerPlant
scene has no textures. In this scene a state change
corresponds to a change of material. Such a change
is less expensive than a change of texture. We also
remark that in general a change of the shader pro-
gram is more expensive than the change of a texture.
Thus we can expect a better gain of performance in
scenes with shader programs.

We conclude that using a pipeline buffer of size
30 with the RR strategy a spatially sorted sequence
of primitives can be rendered in almost the same
time as if it was sorted by attribute value.

6 Conclusion

We show that our pipeline buffer with the Round-
Robin strategy can be used to reduce the number
of state changes in the rendering process by an or-
der of magnitude. In comparison to an unsorted se-
quence our approach reduces the rendering time by
up to 35%. Our approach almost achieves the op-
timal performance of a presorted sequence. It is
easy to implement, fast and generic, i.e., it can be
used to reduce any type of state change and it can
be easily integrated into existing rendering system.
It would be interesting to evaluate the performance
of our strategy, if it is realized in hardware.

References

[1] T. Aila, V. Miettinen, and P. Nordlund. Delay
streams for graphics hardware.ACM Transactions
on Graphics, 22(3), pages 792–800, 2003.

[2] OpenGL Architecture Review Board.OpenGL Ref-
erence Manual: The Official Reference Document to
OpenGL, Version 1.2. Addison-Wesley, 1999.

Scene Town Aphrodite Bear Elephant PowerPlant
without

buffering 145ms 148ms 59ms 60ms 115ms
RR (k=30) 101ms 101ms 42ms 39ms 107ms
presorted 93ms 96ms 39ms 36ms 101ms

speed-up
RR 30.3% 31.8% 28.8% 35.0% 7.0%

speed-up
presorted 35.9% 35.1% 33.9% 40.0% 12.2%

Table 2: Rendering time of the RR strategy with
buffer size 30.

[3] I. Buck, G. Humphreys, and P. Hanrahan. Track-
ing graphics state for networked rendering. InProc.
of ACM SIGGRAPH / EUROGRAPHICS Workshop
on Graphics Hardware, pages 87–95. ACM Press,
2000.

[4] L. Carpenter. The a-buffer, an antialiased hidden sur-
face method. InProc. of ACM SIGGRAPH 84, pages
103–108. ACM Press, 1984.

[5] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Du-
rand. A survey of visibility for walkthrough applica-
tions. IEEE Transactions on Visualization and Com-
puter Graphics, 9(3):412–431, 2003.

[6] S. R. Coorg and S. J. Teller. Real-time occlusion
culling for models with large occluders. InProc. of
ACM Symposium on Interactive 3D Graphics, pages
83–90, 189. ACM Press, 1997.

[7] N. Greene, M. Kass, and G. Miller. Hierarchical z-
buffer visibility. In Proc. of ACM SIGGRAPH 93,
pages 231–238, 1993.

[8] P. Lalonde and E. Schenk. Shader-driven compi-
lation of rendering assets. InProc. of ACM SIG-
GRAPH 2002, pages 713–720. ACM Press, 2002.

[9] Microsoft. The Microsoft DirectX 9 Programmable
Graphics Pipline. Microsoft Press, 2003.

[10] H. Räcke, C. Sohler, and M. Westermann. Online
scheduling for sorting buffers. InProc. of the 10th
European Symposium on Algorithms (ESA), pages
820–832. Springer Verlag, Berlin, 2002.

[11] J. Rohlf and J. Helman. Iris performer: A high
performance multiprocessing toolkit for real-time 3d
graphics. InProc. of ACM SIGGRAPH 94, pages
381–394. ACM Press, 1994.

[12] D. Shreiner. Performance opengl: Platform indepen-
dent techniques. Incourse notes of the ACM SIG-
GRAPH 2001, 2001.

[13] C.M. Wittenbrink. R-buffer: A pointerless a-buffer
hardware architecture. InProc. of ACM SIGGRAPH
/ EUROGRAPHICS Workshop on Graphics Hard-
ware, pages 73–80. ACM Press, 2001.

[14] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Vis-
ibility culling using hierarchical occlusion maps. In
Proc. of ACM SIGGRAPH 97, pages 77–88. ACM
Press, 1997.

666

