
1 Auction-Based Scheduling for the TeraGrid

The TeraGrid dream Supercomputing centers provide an invaluable national service: They en-
able large-scale data-intensive and compute-intensive research which could not take place if re-
searchers had to rely on their individual lab resources alone. Examples of such research include
the Cosmic Evolution Simulation Project at the Pittsburgh Supercomputing Center (PSC) which
uses 1024 processors to simulate billions of simulation years [2]; the Gordon Bell Prize-winning
(Earth)Quake project at the PSC, requiring 3000 simultaneous processors [3, 1]; the Protein Data-
Bank at the SDSC [5], which leverages that center’s superlative data warehousing infrastructure;
and the Telerobotics/Telepresence at the Argonne NationalLab (ANL), which would not be pos-
sible without the extensive animation/visualization capabilities in place at ANL. TheTeraGrid is
the NSF’s flagship project aimed at integrating the nation’ssupercomputing resources [4, 10] via a
40 Gbit/sec Extensible Backplane network.

The scheduling nightmare While the NSF has invested hundreds of millions in computinghard-
ware, they have invested very little in understanding how toschedule these powerful resources.
Currently, scheduling of jobs at supercomputing centers islargely done in anad hocfashion, with
surprisinglylittle automationand a surprisingly high number ofphone callsandhuman interven-
tion. Users are not given any guarantee ofqueueing delayat a supercomputing site, which can
range from a few hours to two weeks.

There are many difficulties inherent to scheduling in a grid environment which make this schedul-
ing problem extremely challenging. First, supercomputingcenters are highly encouraged to follow
various NSF mandates arising from different solicitations, such asgiving priority to large jobs
(jobs requiring a large number of processors), or maximizing throughput. To fit in these large jobs
requires regular “drains” to be scheduled to clear small jobs from the system, so that there is room
for the large jobs, which can result inunderutilizationof resources. A second problem is that it
is very hard to predictwhena job will get to run; even under prioritized placement of jobs in a
grid, there is a lot ofreorderingsince small jobs can be used to fill “holes.” Predictability of wait
times is made far worse however by the fact that frustrated users can call the center to get their job
“bumped up” in the queue, leading to a lot ofrandomnessin the ordering of jobs. There is also
no automated reservation mechanismin place, andco-schedulingof jobs across sites is currently
done by hand.

The unpredictability described above and lack of a clearly-stated uniform scheduling policy leads
to a perception of unfairness, resulting in a loss of potential supercomputing users. As the TeraGrid
grows to include new member sites, the inefficiencies present at the existing sites will only be
compounded. These issues are stated clearly in the Grid Interest Group’s 2005 RAT report [19], as
well as the charter for the 2006 TeraGrid Metascheduling RAT[17].

Our proposed 4-year solution The key idea behind our new scheduling concept for the TeraGrid
is the use of amarket-based auction mechanism, creating auniformly fair environment, whereby
all users have the same opportunity torevealwhich jobs are actually time-critical, thus eliminating
“squeaky wheel” effects. We propose to run an auction every 48 hours, where users bid using
virtual tokens for a scheduling slot. In contrast to standard auctions, our procedure will allow the
prioritization of users not only by the number of tokens bid,but also, for example, by the size (#
processors) of the job, or any other NSF mandated criteria. Within a priority level (size grouping),
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Figure 1:Proposed interface seen by users when scheduling their jobson the TeraGrid.

we prioritize jobs by “best” bid first.

There are many benefits to using an auction. First, the bidding process gives users a mechanism
for revealing the true importance of their job. Users canprioritize their jobs by time-criticality
by bidding more tokens for these jobs. Second, our auction procedure will greatly improveeffi-
ciency/utilizationof resources by dictating that adrain is run every 48 hours, in a planned way,
allowing the use of mathematically efficient bin-packing algorithms to maximize utilization of pro-
cessors in the hours just before the drain. Furthermore, ourauction mechanism allows for the most
efficient re-packing of jobs when jobs end early. Our auctionprocedure will also greatly increase
user satisfaction. Because our system will generate schedules every 48 hours, the start times of the
winning jobs will be entirelypredictable. Our scheme will also enablereservationsfor future slots
by establishing a limited market for future processing capacity. All users will know the auction
procedure and rules, so our system will provide users withtransparency. Both users and the super-
computing centers will also greatly benefit from a system that is automated. Finally, our auction
scheme will also be beneficial to the TeraGrid as a whole. Use of a single, automated, resource
allocation algorithm will achievestandardizationacross TeraGrid member sites. Similarly, users
will be able to bid for multiple bundled resources at the sametime, which will elegantly enable
co-schedulingof their jobs across sites, without human intervention. Lastly, our framework allows
us to extend the use of supercomputing facilities beyond batch jobs to allow for more interactive,
experimental users.

We have a very extensive plan for a 4-year implementation, involving live test users on a subset of
the PSC processors. Our project is novel in its incorporation of auction mechanism design, user
behavior studies, workload characterization, bin-packing/scheduling algorithms, and queueing the-
ory applied to a supercomputing grid environment. Our team includes:David O’Hallaron (CMU,
CS), a daily user of the PSC for his Gordon Bell Prize-winningearthquake experiments;Vincent
Conitzer(Duke, CS and ECON), a specialist in auction scheduling;Sergiu Sanielevici(PSC), head
of the TeraGrid Scheduling RAT 2005 report and member of the 2006 TeraGrid Metascheduling
group;Alan Scheller-Wolf(CMU, Tepper School), an expert in queueing theory and performance
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modeling; andAvrim Blum(CMU, CS), an expert on machine learning and bin-packing.

How we differ from prior work While previous research has proposed a number of market-based
approaches to grid scheduling[6, 7, 15, 24, 25, 20, 8, 13, 18,11, 14, 27, 23, 22, 21, 9, 16, 12, 26],
these are not appropriate for schedulingsupercomputingresources. First, in grid computing, the
supply of computing resources is generally not fixed, and sellers of resources must be compensated
for making them available. Thus, the appropriate model is that of anexchangein which both
buyers and sellers participate. By contrast, in the supercomputing setting, resources are fixed, and
their owners do not need to be compensated by users. Here, theappropriate model is that of a
(potentially combinatorial) auction. The supercomputingsetting is also unique because of NSF-
mandated prioritizations, for example prioritization in favor of large jobs. Finally, prior work does
not incorporate supercomputing job characteristics and workload distributions, does not address
the need for drains, and does not allow for advanced reservations and for co-scheduling across
sites.

Funding Our work was awarded seed money via a2007 Microsoft Breakthrough Researchgrant.
We are seeking larger grants from NSF and DARPA.
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