Computer Performance:

Queueing and Scheduling

Mor Harchol-Balter
Computer Science Dept, CMU

Accepting new student
Work with me if you like ...

Proving Theorems

- Randomness/probability
- Stochastic processes
- Markov chains
- Calculus/Diff Eqns/Analysis
- Combinatorics
- Scheduling Algorithms
- Randomized Algorithms
Work with me if you want to do theory that computer systems folks care about …

Typical Systems Goals

- “Reducing tail latency”
- “Guaranteeing flow fairness”
- “Combatting transient overload”
- “Optimally assigning heterogeneous resources to heterogeneous jobs”
- “Minimizing energy usage while meeting QoS latency goals”
- “Dynamic capacity provisioning”
Work with me if you want to do theory that computer systems folks care about ...

Typical Systems Goals

- “Reducing tail latency”
- “Guaranteeing flow fairness”
- “Combatting transient overload”
- “Optimally assigning heterogeneous resources to heterogeneous jobs”
- “Minimizing energy usage while meeting QoS latency goals”
- “Dynamic capacity provisioning”

Scheduling Theory
Work with me if you want to end up in academia ...

U. Toronto
Caltech
IBM Research

StonyBrook
U. Chicago
U. Minnesota

Amherst
Penn State

Promotion
Skill Building
Good Problems

➢ Analysis
➢ Speaking
➢ Teaching
➢ Writing
➢ Health
Q: What scheduling policy minimizes $E[\text{RespTime}]$?
Scheduling 101

Non-Preemptive

- FCFS: First Come First Served
- LCFS: Last Come First Served
- Random: Pick Random Job
- SJF: Shortest Job First

Q: How do these compare wrt $E[\text{Resp Time}]$?

Preemptive

- PS: Processor Sharing
- SRPT: Shortest Remaining Processing Time

Q: Is SRPT optimal?
Optimality of SRPT

Defn: Arrival Sequence \(A = \{ (a_1, s_1), (a_2, s_2), (a_3, s_3), \ldots \} \)

Claim: \(\forall A, \ SRPT(A) \) is optimal for \(E[\text{RespTime}] \)

Proof Sketch: ??

Consider a given \(A \).

Define \(OPT(A) \) as yielding optimal response time for \(A \).

Assume that \(SRPT(A) \neq OPT(A) \).

Prove there's a contradiction.
Scheduling Optimality

Non-Preemptive
- **FCFS:** First Come First Served
- **LCFS:** Last Come First Served
- **Random:** Pick Random Job
- **SJF:** Shortest Job First

Preemptive
- **PS:** Processor Sharing
- **SRPT:** Shortest Remaining Processing Time

Q: Is SRPT optimal for $E[\text{Resp Time}]$?
Scheduling Optimality

Non-Preemptive

- **FCFS**: First Come First Served
- **LCFS**: Last Come First Served
- **Random**: Pick Random Job
- **SJF**: Shortest Job First

Preemptive

- **PS**: Processor Sharing
- **SRPT**: Shortest Remaining Processing Time

Q: Is SRPT optimal for 99th %-tile Resp Time?
Scheduling Optimality

Non-Preemptive

FCFS: First Come First Served
LCFS: Last Come First Served
Random: Pick Random Job
SJF: Shortest Job First

Preemptive

PS: Processor Sharing
SRPT: Shortest Remaining Processing Time

Q: What is optimal for Max response time?

λ \frac{\text{jobs}}{\text{sec}} \rightarrow \text{Response Time}
Slowdown Metric

Slowdown(job) = \frac{\text{RespTime}(job)}{\text{Size}(job)}

Q: Does SRPT minimize E[Slowdown]?

Yes?
Q: Prove it!

No?
Q: What scheduling policy is optimal for E[Slowdown]?
Minimizing Response Time for 2 Servers

Q: How should we schedule to minimize $E[\text{Response Time}]$ given 2 servers? (assume you can preempt jobs)

Q: Is your policy optimal?
What if Don’t Know Size?

Response Time

$\lambda \frac{\text{jobs}}{\text{sec}} \rightarrow$

Q: What’s the right scheduling policy?

Q: Is your policy optimal?
Real World Jobs are Multi-Dimensional

“job” = (# servers, duration)

(500srvs, 1hr)
(575srvs, 1min)
(32srvs, 12hrs)

1 “cell” at Google = 10,000 servers

Q: Stability condition?
Q: E[Response time]?
Everything is open!
Want to learn more ... take my class!

This Semester: 15-857 Analytical Performance Modeling MWF 1:25 p.m.

co-Instructor:

Awesome TAs:

www.cs.cmu.edu/~harchol/