
6 Cycle Stealing, Threshold-Based Sharing, and Other 2D-Infinite
Chains

In the last section we saw an example of Markov chain that grows unboundedly in more than one
dimension, and we introduced a technique,SQA, for solving it, Another place where such 2D-
infinite chains come up is inmulti-server systems with dependence. The most common example
in computer science iscycle stealing, one of the classical intractable problems in queueing. In this
section, we present a new technique, which we callDimensionality Reduction for Markov Chains,
and show how this technique can be applied to analyze cycle stealing and many variants thereof.

Cycle stealing problemsConsider two queues, each with its own server, as shown in Figure 1(left).
Cycle stealing is defined as follows: Name one of the queues the beneficiary(B) queue, and the
other thedonor(D) queue. When the donor queue is empty, the donor server canbe “donated” to
help serve the beneficiary queue. The beneficiary is said tosteal idle cyclesfrom the donor, hence
the namecycle stealing. The simplest question one might ask is:

How much does a beneficiary’s steady-state response time improve when it is allowed
to steal cycles?

The above question is already very difficult to answer, but becomesmore complexwhen there are
switching costsinvolved. LetTswitch be the time required for the donor server to switch to working
on the beneficiary jobs, andTback the time for the donor server to switch back to its own jobs. The
existence of switching costs implies that aless aggressiveform of cycle stealing may be preferable,
whereby the donor only helps the beneficiary if the donor isboth idle and the beneficiary has at
leastNB (threshold) number of beneficiary jobs. Likewise, the donoronly returns to working on
donor jobs when there are at leastND (threshold) number of donor jobs. Now we ask:

Given switching costs, how should one optimally set thresholds to limit the degree of
cycle stealing?

There are also situations where amore aggressiveform of cycle stealing is preferable. Consider
the situation where beneficiary jobs are shorter than donor jobs. Then it may be globally optimal
to allow the donor to help the beneficiary even when the donor server isnot idle. There are two
ways to do this. Underbeneficiary-side control, the beneficiary sets a (globally-optimal) threshold,
NB, whereby the donor must help the beneficiary whenever there areNB or more beneficiary jobs,
regardless of whether or not the donor is idle, see [19, 23]. Alternatively, underdonor-side control,
the donor sets a (globally-optimal) threshold,ND, where the donor helps the beneficiary whenever
there are fewer thanND donor jobs. Here the question becomes:

When more aggressive cycle stealing is globally optimal, should one use beneficiary-
side control, or donor-side control? Also, what is the benefit of using multiple thresh-
olds?
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Figure 1: (Left) 2-server network with cycle stealing. (Right) Associated 2D-infinite continuous-
time Markov chain.

Why cycle stealing is so intractableEven the simplest variant of cycle stealing (without switch-
ing costs and without thresholds) is very hard to analyze. The problem is that understanding the
beneficiary performance requires analyzing a Markov chain whose state space grows unboundedly
(infinitely) in 2 dimensions, see Figure 1, where one dimension tracks the number of beneficiary
jobs and the other tracks the number of donor jobs. (In the figure,λB andµB denote, respectively,
the arrival rate, and processing rate, of beneficiary jobs. Likewise forλD andµD.) While Markov
chains which grow infinitely inonedimension are usually tractable, 2D-infinite chains are not.
Approximations methods tried include: truncating the state space along one of the dimensions
[6, 20, 21] which can produce great inaccuracy under high load since portions of the state space
are removed; boundary-value methods [4, 11, 3] which are elegant but difficult to evaluate; and
heavy-traffic techniques [1, 5] which require assuming highload.

Our approach: Dimensionality Reduction Our approach is quite different from all of the above
approaches. The idea is to convert the 2D-infinite chain shown in Figure 1(b) into a 1D-infinite
chain, shown in Figure 2, which we can solve. This is achievedwithout truncation. To do this,
we need to introduce a new type of transition into the Markov chain, marked in bold and labeled
BD. HereBD represents the duration of adonor busy period, namely the time from when the
donor server has at least one job until it is free. By using busy period transitions, we are capturing
everything that the beneficiary needs to know about the donor: whether the donor has 0 jobs (and
can help), or whether the donor has at least one job (and can’thelp), and exactly how long it will
be until the donor can again help (the busy period).

The representation in Figure 2(left) is anexactrepresentation of the cycle stealing problem, from
the perspective of the beneficiary. However it is not yet analyzable because the transition labeled
BD does not have an exponential distribution, as needed for a continuous-time Markov chain. Our
approach is to approximate the donor busy period by a phase-type (PH) distribution, consisting of
exponential transitions which together allow us to match the moments of the donor busy period.
Figure 2(right) showsBD replaced by a particular PH distribution, which exactly matches the
first three momentsof the donor busy period (we devise optimal moment-matchingalgorithms in
[14, 13, 15]). While our analysis is inherently approximate, in that the busy period distributions
are approximated, our approach can be madeas exact as desiredby increasing the number of busy
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Figure 2: Illustration of dimensionality reduction, reducing the 2D-infinite chain in Figure 1 to a
1D-infinite chain.

period moments matched. In fact, we have applied our dimensionality reduction technique with
matching 3 moments of the busy period to a wide range of open problems, and have achieved
accuracy within a couple percent of simulation in every case[10, 9, 22, 2, 17, 18, 7, 16, 8].

Cycle stealing resultsOur analysis allows us to obtain the first accurate performance numbers
(mean and second moment of response time for each job type) for a wide variety of cycle steal-
ing problems. We highlight just a few results below. One interesting question is understanding
how thevariability of the donor workload (specifically, the donor job size distribution) affects the
beneficiary under cycle stealing. We find that the beneficiaryis only sensitive to the variability in
the donor workload when the beneficiary is overloaded or nearoverload [16]. Other interesting
questions have to do with setting beneficiary and donor-sidethresholds. We find that whenless-
aggressivecycle stealing is desired, due tohigh switching costs, increasing the donor-side threshold
is far more effective at reducing the effects of switching costs than is increasing the beneficiary-
side threshold [17]. By contrast, in cases whenmore-aggressivecycle stealing is optimal, using a
beneficiary-side threshold to control the donor’s help is far more effective with respect to reducing
overall mean response time than using a donor-side threshold [18]. However, if we change the met-
ric to robustness, rather than response time, then the donor-side threshold is superior [9]. In [18],
we propose a solution that achievesbothexcellent mean response time and robustness, by using
two beneficiary-side thresholds, plus a single donor-side threshold, where the donor-side threshold
is used to control which of the two beneficiary-side thresholds gets used. This solution, which
we call Adaptive Dual Threshold, achieves performance surprisingly close to having an infinite
spectrum of thresholds, an idea that has been explored in [12]. Finally, we have also proven cycle
stealing to be extremely effective in the context of task assignment for server farms, where short
jobs are allowed to steal cycles from long jobs in a non-preemptive fashion [7, 8].

Funding This work has been funded by an NSF Theory grant CCR-0311383 (2003-2006).
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