
A Principled Approach to Parallel Job
Scheduling

Benjamin Berg

CMU-CS-22-138

August, 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mor Harchol-Balter, CMU (Chair)

Gregory R. Ganger, CMU
Christos Kozyrakis, Stanford

Benjamin Moseley, CMU
Weina Wang, CMU

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2022 Benjamin Berg

This material is based upon work supported by the National Science Foundation, awards numbers: NSF-CMMI-
1538204, NSF-XPS-1629444, NSF-CSR-1763701, NSF-CMMI-1938909; and by a Facebook Graduate Fellowship.
The views and conclusions contained in this document are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

Keywords: performance modeling, scheduling, parallelizable jobs, speedup functions

For Angela, whose immeasurable support made this work possible.

iv

Abstract
A wide range of modern computer systems process workloads composed of par-

allelizable jobs. Data centers, supercomputers, machine learning clusters, distributed
computing frameworks, and databases all process jobs which are designed to be par-
allelized across multiple servers or cores. A job will receive some speedup from be-
ing parallelized across additional servers or cores, allowing the job to complete more
quickly. However, jobs generally cannot be perfectly parallelized, and receive dimin-
ishing returns from being allocated additional cores. Hence, given a fixed number of
cores, it is not obvious how to allocate cores across a set of jobs in order to reduce the
response times of the jobs — the times from when each job arrives to the system until
it is completed. While this question has been considered by the worst-case schedul-
ing community, existing theoretical results are hampered by strong lower bounds on
worst-case performance and tend to suggest policies which do not work well in prac-
tice. Meanwhile, state-of-the-art systems employ simple heuristic-based policies that
leave significant room for improvement. The goal of this thesis is to develop and ana-
lyze policies for scheduling parallelizable jobs which perform well both in theory and
in practice.

Our approach in developing new scheduling policies for parallelizable jobs is
threefold. First, we develop new stochastic models of parallelizable jobs running in a
multicore system. Second, we analyze these new models using the tools of stochastic
performance modeling, showing that a stochastic style of analysis emits scheduling
policies which provably outperform the policies suggested by the worst-case litera-
ture. Finally, we validate our theoretical models through simulation to show that the
scheduling policies we derive work well in practice. We consider the case where job
sizes are completely unknown to the system, the case where job sizes are perfectly
known to the system, and the case where some jobs are known to be larger than others
on average. Similarly, we consider the case where all jobs are assumed to have the
same level of parallelizability, the case where some jobs are more parallelizable than
others, and the case where a job’s parallelizability can change over time.

vi

Acknowledgments
Before we go any further, I need to tell you about all the people who helped me, in

one way or another, with the writing of this thesis.
First and foremost, my advisor Mor Harchol-Balter has been instrumental in nearly

every aspect of my graduate school career at CMU. In addition to being an expert in
her field, Mor is an outstanding advisor, teacher, editor, and provider of life advice.
During my time at CMU, Mor played each of these roles with a level of enthusiasm
that I will continue to aspire to for the rest of my academic career. Mor’s commitment
to the success of her students is truly special, and I am forever grateful for her support.

I additionally want to thank all of my collaborators. This of course includes all
of my co-authors, but also the people with whom I constantly discussed research,
exchanged practice talks, and traded paper drafts. In particular, I want to thank the
numerous collaborators who also provided invaluable mentorship on matters beyond
research: Daniel Berger, Nathan Beckmann, Ben Moseley, and Weina Wang. I also
want to thank the entire CSD and PDL staff who supported me, and in particular
Deb Cavlovich, Pat Loring, and Karen Lindenfelser. Of all of the great things about
working at CMU, the opportunity to work with such a great group of people is certainly
what I value the most.

Finally, I want to thank my friends and family for their love and support. I want
to specifically thank my parents, whose dedication to education and scholarship are
unquestionably responsible for my chosen career in academia. Thank you also to my
sister1, my Pittsburgh family the Zimmermans, and all of the Bergs and Samiljans for
their support. And, because it can’t be said enough, thank you to my partner Angela
for her love and support over the last five years. Angela probably listened to enough
of my practice talks and lectures that she could have written this thesis. Angela was
always patient when I would get sucked into working a little longer on a proof or a
piece of code, and I truly cannot imagine trying to simultaneously navigate grad school
and the pandemic without her.

So, to recap, thank you to all who helped and supported me both academically and
emotionally over the course of my PhD. “To do that for another is a mitzvah. And for
that, I owe.”

1Despite Sara’s insistence that I would make a better chef than a computer scientist.

viii

Contents

1 Introduction 1
1.1 The Importance of Scheduling Parallelizable Jobs 2
1.2 The State-of-the-Art In Scheduling Parallelizable Jobs 2
1.3 Thesis Statement . 3
1.4 Tradeoffs in Scheduling Parallelizable Jobs . 3
1.5 Contributions . 5
1.6 Outline . 7

2 Our Model 9

3 Prior Work 13
3.1 The Systems Community . 13
3.2 The Worst-Case Theoretical Community . 14
3.3 The Performance Modeling Community . 16

4 Scheduling Without Job Sizes 17
4.1 Introduction . 17

4.1.1 Scheduling Tradeoffs . 17
4.1.2 Contributions . 19

4.2 Our Model . 20
4.3 EQUI: An Optimal Policy . 22

4.3.1 Insensitivity of EQUI . 23
4.3.2 Proving that EQUI is Optimal . 23
4.3.3 EQUI with General Size Distributions . 25

4.4 Fixed-Width Policies . 25
4.4.1 Random-Chunk . 25
4.4.2 JSQ-Chunk . 28

4.5 JSQ-Chunk Converges to EQUI . 29
4.5.1 The Performance of JSQ-Chunk . 29
4.5.2 Why JSQ-Chunk is Close to EQUI . 30

4.6 Conclusion . 34

ix

5 Scheduling With Job Sizes 37
5.1 Introduction . 37

5.1.1 Scheduling Tradeoffs . 37
5.1.2 Why Core Allocation is Counter-intuitive 38
5.1.3 Why Finding the Optimal Policy is Hard 39
5.1.4 Contributions . 41

5.2 Our Model . 42
5.3 Overview of Our Results . 43
5.4 Minimizing Weighted Response Time . 46

5.4.1 The Optimal Completion Order . 46
5.4.2 The Scale-Free Property . 51
5.4.3 Finding the Optimal Allocation Function 54

5.5 Discussion and Evaluation . 58
5.5.1 Applying heSRPT . 58
5.5.2 Numerical Evaluation: Offline Setting . 59
5.5.3 Numerical Evaluation: Online Setting . 61

5.6 Conclusion . 62

6 Scheduling With Multiple Speedup Functions 65
6.1 Introduction . 65

6.1.1 Scheduling Tradeoffs . 65
6.1.2 Contributions . 67

6.2 Our Model . 68
6.2.1 General Speedup Functions . 68
6.2.2 Elastic and Inelastic Jobs . 68

6.3 General Speedup Functions . 70
6.3.1 EQUI is No Longer Optimal . 70
6.3.2 A GREEDY Class of Policies . 71
6.3.3 The Best GREEDY Policy: GREEDY∗ 72
6.3.4 Computing the Optimal Policy . 75
6.3.5 GREEDY∗ is Near-Optimal . 77
6.3.6 Does Fixed-Width Scheduling Work? . 77

6.4 The Case of Elastic and Inelastic Jobs . 79
6.4.1 Elastic and Inelastic Jobs in the Real World 79
6.4.2 Optimal Scheduling of Elastic and Inelastic Jobs 80
6.4.3 Optimality when µI = µE . 80
6.4.4 Optimality when µI ≥ µE . 81
6.4.5 Failure when µI < µE . 86

6.5 Response Time Analysis with Elastic and Inelastic Jobs 87
6.5.1 Markov Chains for IF and EF . 90
6.5.2 Converting From 2D-Infinite to 1D-Infinite 90
6.5.3 Matrix Analytic Method . 91

6.6 Conclusion . 91

x

7 Scheduling Jobs with Phases 93
7.1 Introduction . 93

7.1.1 Scheduling Tradeoffs . 94
7.1.2 Contributions . 95

7.2 Our Model . 96
7.3 Overview of Theorems . 100

7.3.1 Main Result . 100
7.3.2 How We Prove Theorem 7.1 . 101

7.4 Two-Phase Jobs . 102
7.4.1 Two-Phase Jobs with Equal Rates . 102
7.4.2 Two-Phase Jobs with Unequal Rates . 105

7.5 Optimality in the General Case . 108
7.5.1 System coupling . 109
7.5.2 Proof of Lemma 7.6 . 109

7.6 Evaluation . 111
7.6.1 Competitor Scheduling Policies . 111
7.6.2 Evaluation of Policies Under Our Job Model 112
7.6.3 Jobs with Alternate Phase Size Distributions 112
7.6.4 Jobs with Alternate Structures . 115

7.7 Case Study: Scheduling in Databases . 116
7.7.1 Size-Aware Scheduling . 117
7.7.2 Why PA-SRPT is worse than PA-FCFS 118
7.7.3 Implementing an Improved Database Scheduler 119

7.8 Conclusion . 121

8 Conclusion and Future Work 123
8.1 Conclusion . 123
8.2 Scheduling Tradeoffs . 123
8.3 Impact . 125
8.4 Future Work . 125

A Scheduling Without Job Sizes 127
A.1 Mixed-Random-Chunk . 127
A.2 The Nelson-Philips Approximation . 129

B Scheduling With Job Sizes 131
B.1 Proof of Lemma B.1 . 131

C Scheduling With Multiple Speedup Functions 133
C.1 Idling Policies . 133
C.2 Lyapunov Stability of Work Conserving Policies 134
C.3 Markov Chains for IF . 135

xi

Bibliography 139

xii

List of Figures

1.1 A map of the goals and tradeoffs that arise when scheduling parallelizable jobs.
A scheduling policy should limit allocations to individual jobs in order to maxi-
mize system efficiency (Chapter 4). Scheduling policies must balance a tradeoff
between maximizing system efficiency and favoring short jobs (Chapter 5). When
some jobs are more parallelizable than others, a scheduling policy must balance the
present system efficiency with the future system efficiency (Chapter 6). In some
cases (Chapter 7), a scheduling policy may have to simultaneously consider a job’s
size and its level of parallelizability. 4

4.1 When jobs look identical with respect to their sizes and speedup functions, a
scheduling policy should maximize instantaneous system efficiency. 18

4.2 Mean response times under JSQ-Chunk (thin line) and EQUI (thick line) when
n = 64. We assume a speedup curve of Amdahl’s law with parameter p = 0.5 and
a shifted Pareto job size distribution with α = 2 and mean E[X] = 1. 20

4.3 Various speedup curves under (a) Amdahl’s law and (b) the PARSEC-3 Bench-
mark. We see that the PARSEC-3 speedup curves are accurately approximated by
Amdahl’s law; these approximations are shown in (b) in light blue. 21

4.4 A machine with n = 16 cores under various chunk sizes, k. Each job is dispatched
to a single chunk. 22

4.5 Markov chain representing the total number of jobs under EQUI. 23
4.6 Results from analysis. Mean response times under Random-Chunk dispatching, a

system with n = 16 cores, various choices of the level of parallelization k, and a
hyperexponential job size distribution with E[X] = 1 and C2 = 10. The speedup
curve used is Amdahl’s law with parameter p = 0.8. 27

4.7 Response times under (a) JSQ-Chunk dispatching and (b) Random-Chunk dis-
patching. In (a), results are show from both analysis and simulation (the jagged
lines), which largely overlap. Both graphs also show the results of analysis of
EQUI. We assume a speedup curve of Amdahl’s law with a parameter of p = 0.5
and exponentially distributed job sizes with mean E[X] = 1. 29

xiii

4.8 Analysis of mean response time under JSQ-Chunk dispatching and EQUI with a
large number of cores (n = 512). We assume a speedup curve of Amdahl’s law
with a parameter of p = 0.5 mean job size E[X] = 1. Increasing the number of
cores narrows the gap between JSQ-Chunk and EQUI, especially at the labeled
critical load points. 30

4.9 A threshold chain with threshold state t and arrival rate Λ. For all states i ≤ t, the
service rate is µlow and for all states i > t, the service rate is µhigh. 32

5.1 When job sizes are known to the system, a scheduling policy must balance a trade-
off between maximizing instantaneous system efficiency and favoring short jobs. . 38

5.2 Various speedup functions of the form s(k) = kp (dotted lines) which have been fit
to real speedup curves (solid lines) measured from jobs in the PARSEC-3 parallel
benchmarks[109]. The three jobs, blackscholes, bodytrack, and canneal, are best
fit by the functions where p = .89, p = .82, and p = .69 respectively. 42

5.3 Allocations made by the optimal allocation policy with respect to mean slowdown,
heSRPT, completing a set of M = 3 jobs where the speedup function is s(k) = k.5

and n = 100. Job 3 completes at time t = .23, job 2 completes at time t = .44
and job 1 completes at time t = .82. Jobs are finished in Shortest Job First order.
Rather than allocating the whole system to the shortest job, heSRPT optimally
shares the system between all active jobs. 45

5.4 An illustration of (5.3). Because the speedup function, s, is concave, its sec-
ond derivative is negative. Hence, s increases less on the interval [(θ∗β(t1) −
δ)n, θ∗β(t1)n] than on the interval [θ∗α(t1)n, (θ∗α(t1) + δ)n]. 49

5.5 Mean slowdown of heSRPT and allocation policies from the literature in the offline
setting with all jobs present at time 0. Evaluation assumes n = 1, 000, 000 cores
and M = 500 jobs whose sizes are Pareto(α = .8) distributed. Each graph shows
mean slowdown for one value of the speedup parameter, p, where s(k) = kp.
heSRPT often dominates by over 30%. 59

5.6 A comparison of the optimal mean response time under heSRPT to other allo-
cation policies found in the literature. Each policy is evaluated on a system of
n = 1, 000, 000 cores and a set of M = 500 jobs whose sizes are drawn from a
Pareto distribution with shape parameter .8. Each graph shows the mean response
time under each policy with various values of the speedup parameter, p, where the
speedup function is given by s(k) = kp. heSRPT outperforms every competitor by
at least 30% in at least one case. 60

5.7 Mean slowdown of A-heSRPT and policies from the literature in the online setting.
Simulations assume n = 10, 000 cores and a Poisson arrival process. Job sizes are
Pareto(α = 1.5) distributed. Each graph shows mean slowdown for one value of
the speedup parameter, p, where s(k) = kp. A-heSRPT often dominates by an
order of magnitude. 61

xiv

6.1 When job sizes are known to the system, a scheduling policy must balance a trade-
off between maximizing instantaneous system efficiency maximizing future sys-
tem efficiency. 66

6.2 Heat maps showing the percentage difference in the mean response time in the sys-
tem, E[T], between (a) EQUI and OPT and between (b) GREEDY∗ and OPT, in
the case of two speedup functions where s1 and s2 are Amdahl’s law with param-
eters p1 and p2 respectively. Here E[X] = 1

2
and λ1 = λ2 = 5. The axes represent

different values of p for each class. GREEDY∗, EQUI, and OPT were evaluated
numerically using the MDP formulation given in Section 6.3.4. These heat maps
look similar under various values of λ1 and λ2. 71

6.3 Heat map showing the percentage difference in the mean response time, E[T],
between JSQ-Chunk with the optimal k∗ and OPT , in the case of two speedup
functions where s1 and s2 are Amdahl’s law with parameters p1 and p2 respectively.
Here E[X1] = E[X2] = 1 and λ1 = λ2 = 2. The axes represent the value of pi for
each class. OPT was evaluated numerically using the MDP formulation given in
Section 6.3.4 and the results for JSQ-Chunk come from analysis. 77

6.4 The Markov chain (Nπ
I (t), Nπ

E(t)) for a stationary, deterministic, work-conserving
allocation policy, π. 82

6.5 The transformation of the 2D-infinite EF chain to a 1D-infinite chain via the busy
period transformation. Special states representing an M/M/1 busy period are
shown in (b). These busy periods are approximated by a Coxian distribution in
(c). 88

6.6 Heat maps showing the relative performance of IF and EF as a function of µI and
µE when n = 4. We fix load ρ and vary µI and µE . To offset the changes to
µI and µE , we change λI and λE to keep ρ constant. In every graph, λI = λE .
The red circles represent settings where IF dominates EF. The blue +’s represent
cases where EF dominates IF. As ρ increases, the region where EF dominates IF
grows. However, as expected, when µI ≥ µE IF dominates EF for all loads. . . . 89

6.7 Graphs showing the absolute mean response times under IF and EF as a function
of µI when n = 4. In each graph, we fix system load, ρ, and set µE = 1. We then
vary µI . To offset the changes in µI , we change λI and λE to keep ρ constant. In
every graph, λI = λE . The dotted lines at µI = 1 denote the case where µI = µE .
Thus IF is optimal to the right of this line, while EF may dominate IF to the left
of this line. We see that the allocation policy has a major impact on mean response
time. 89

6.8 Graphs showing the mean response time under IF and EF as a function of the
number of servers, n under high load (ρ = 0.9). The values of µI and µE are
chosen to represent the extreme ends of Figure 6.7c (where the performance gap
between the policies is the largest). Even when n = 16, the difference between IF
and EF remains large. 90

xv

7.1 Speedup functions for each phase of four queries from the Star Schema Bench-
mark. Queries were executed using the NoisePage database [75]. Phases are either
elastic (highly parallelizable) or inelastic (highly sequential). The percentages de-
note the fraction of time spent in each phase when the query was run on a single
core. Despite the queries spending most of their time in elastic phases, the overall
speedup function of each query is highly sublinear due to Amdahl’s law. 94

7.2 Designing good phase-aware scheduling policies involves balancing multiple trade-
offs simultaneously. 94

7.3 The Markov chain governing the evolution of a multi-phase job when running on
a single core. E refers to the elastic phase, I refers to the inelastic phase, and C is
the completion state. 96

7.4 The central queue and cores for our system. Jobs 1-7 are all modeled by the
Markov chain presented in Figure 7.3. We use solid orange to illustrate the elas-
tic phases of jobs, and crosshatched blue to illustrate the inelastic phases. While
we assume the number of remaining phases is unknown to the scheduler, we have
drawn out the remaining phases to illustrate job structure. Here, there are n = 4
cores. Two cores are allocated to jobs in an inelastic phase (Jobs 1 and 2), and two
cores are allocated to a single job in an elastic phase (Job 3). 98

7.5 The three job structures we consider. E refers to the elastic state, I refers to the
inelastic state, and C refers to the completion state. In Figure 7.5(a), jobs just have
two phases, both with inherent size distributed as Exp(µ). In Figure 7.5(b), jobs
still have two phases. Phase I has size distributed as Exp(µI), and phase E has
size distributed as Exp(µE). In Figure 7.5(c), we add in potential transitions from
phase I to phase E. 101

7.6 Examples of busy and idle periods used in the proof of Lemma 7.4. The figures
both show the relative positions of the times t0, τ , and s. The value n refers to
the number of cores, and the heights of the boxes indicate how many cores SIF

allocates to jobs. 106
7.7 Two cases of uniformizing two-phase jobs with unequal rates. In Figure 7.7(a),

µE > µI , so we take our dominating rate as µ := µE . We then take pI := µI
µ

and set the total transition rate out of the inelastic state to be µ. With probability
1 − pI , after completing an inelastic phase, we immediately start another one.
With probability pI , the job completes and exits the system. Figure 7.7(b) shows
the analogous case where µE < µI . 107

7.8 Two cases of uniformizing multi-phase jobs. In Figure 7.8(a), µE > µI , so we
take our dominating rate as µ := µE . We then take pI := µI

µ
, and set the the total

transition rate out of the inelastic state to be µ. With probability 1− pI , after com-
pleting an inelastic phase, we immediately start another one. With complementary
probability pI , the job does one of two things. With probability q, it completes.
Otherwise, with probability 1 − q, it begins an elastic phase. Figure 7.8(b) shows
the analogous case where µE < µI . 108

xvi

7.9 The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and
IF when compared with the optimal mean response time. Phases have exponen-
tially distributed inherent sizes. IF is optimal (see Section 7.5) and thus has an
approximation ratio of 1. In each case, n = 100, µE = 1, q = 0.2, and jobs arrive
according to a Poisson process. All jobs begin with an elastic phase. Results are
shown as µI varies from µI = 0.1 (the rare case where inelastic phases are long
compared to elastic phases) to µI = 100 (the more common case where inelastic
phases are short compared to elastic phases). 112

7.10 The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and
IF, all compared with IF, when phases follow a Weibull distribution. In each case,
n = 100, µE = 1, q = 0.2, and jobs arrive according to a Poisson process. IF
typically still outperforms the competitor policies. When jobs are highly variable
(C2 = 50), EQUI outperforms IF due to its insensitivity to job size variance. . . . 114

7.11 The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and
IF, all compared with IF, when jobs consist of a deterministic number of phases.
In each case, n = 100, µE = 1, and jobs arrive according to a Poisson process.
Each job consists of 5 phases whose sizes are Weibull distributed with C2 = 5.
Each phase, including the last phase, is chosen to be either elastic or inelastic with
probability .5. Although these changes to the job structure violate our theoretical
assumptions, IF is still generally the best of the policies we consider. 115

7.12 The mean response time of EQUI, EF, PA-FCFS, and IF processing a workload
consisting of a mixture of 5 queries from the Star Schema Benchmark. We assume
Poisson arrivals. Although this workload violates our modeling assumptions, IF
is still the best policy by a wide margin. IF improves upon the next best policy,
the PA-FCFS policy used in the NoisePage database, by up to 30%. 116

7.13 Comparison with size-aware policies. The mean response time of EQUI, EF,
PA-SRPT, PA-FCFS, IF and IF-SRPT processing a workload consisting of
a mixture of 5 queries from the Star Schema Benchmark. We assume Poisson
arrivals. IF-SRPT can improve upon IF by 33% by leveraging query size infor-
mation. Notably, PA-SRPT performs worse than PA-FCFS despite attempting to
leverage size information. 117

7.14 The percentage of deferred parallelizable work under EQUI, EF, PA-SRPT, PA-FCFS,
IF and IF-SRPT given a workload consisting of a mixture of 5 queries from
the Star Schema Benchmark. IF-SRPT defers 100% of parallelizable work, but
PA-SRPT defers even less parallelizable work than PA-FCFS. 119

8.1 The tradeoffs balanced by the scheduling policies described in this thesis. 124

A.1 A system with n = 16 under a Mixed-Random-Chunk policy. Here, a1 = 8 of the
cores are grouped into chunks of size k1 = 4, and a2 = 8 of the cores are grouped
into chunks of size k2 = 2. 127

xvii

C.1 The transformation of the 2D-infinite IF chain to a 1D-infinite chain via the busy
period transformation. Special states representing an M/M/1 busy period are
shown in (b). (continued on next page) . 136

C.1 (continued) The busy periods from (b) are approximated by a Coxian distribution
in (c) . 137

xviii

Chapter 1

Introduction

Many problems in the design of modern computer systems are, fundamentally, scheduling prob-
lems where a system must decide how to effectively share a set of hardware resources between
many simultaneous users. Since the early days of computing [86], system designers have been
concerned with mechanisms to enable users to take turn accessing scarce computational resources
such as CPU time, memory, and network bandwidth. The goal of enabling this resource sharing
spawned entire subfields of systems research from operating systems to networking to computer
architecture.

Along with the development of new systems came a host of interesting theoretical questions
about what scheduling policies should be used to decide how resources were divided among
users. However, for many years, the need to implement improved scheduling policies in com-
puter systems was masked by a rapid improvement in the underlying hardware. As has been well-
documented, we are reaching the physical limits of the hardware improvements that have driven
progress over the last 50 years [97]. As a result, the development of algorithms derived from new
theoretical models is poised to become a major source of performance improvement in the coming
years [59]. As users continue to demand access to faster and cheaper computer systems, the need
to develop and deploy performant scheduling policies is becoming more acute.

Developing new scheduling policies for computer systems is complicated by the fact that, in
order to continue to offer performance improvements, modern systems have become quite com-
plex. In particular, as the ability to make a single CPU core faster has diminished, system design-
ers have increasingly turned to multicore and multi-server architectures which are built to exploit
parallelism in order to reduce job processing times. While systems which run multiple jobs si-
multaneously in parallel have been well-studied, jobs in classical models such as the M/G/k have
assumed that each job runs on a single core. In modern computer systems, however, an individual
job can often be completed more quickly if it is parallelized across multiple cores. As we will
see, designing policies for scheduling these parallelizable jobs is non-trivial, but can dramatically
improve the performance of modern computer systems.

1

1.1 The Importance of Scheduling Parallelizable Jobs
Parallelizable workloads are ubiquitous and appear across a diverse array of modern computer sys-
tems. Data centers, supercomputers, machine learning clusters, distributed computing frameworks,
and databases all process jobs designed to be parallelized across many servers or cores. Systems
which process parallelizable jobs must employ some type of scheduling policy which decides how
servers or cores are allocated among the jobs in the system at every moment in time. As it turns
out, the choice of which scheduling policy to use has the potential to impact system performance
dramatically. In particular, if we measure the response time of each job to be the time from when
a job arrives to the system until the job is completed, the choice of scheduling policy can change
the mean response time across jobs by orders of magnitude. In fact, choosing the wrong policy
for scheduling parallelizable jobs can even push the system to become overloaded and unstable,
causing the mean response time across jobs to be infinite.

The reason that choosing a good policy for scheduling parallelizable jobs is both particularly
important and particularly difficult is because jobs are not typically perfectly parallelizable. Ide-
ally, allocating additional cores to a parallelizable job would proportionally reduce the time re-
quired to complete the job. That is, ideally a job would run twice as fast on two cores as it does
on one core. However, parallelism is rarely available for free. Parallelizing a computation can in-
cur overheads in hardware, such as the overhead of maintaining a cache-coherent shared memory
system [65]. Parallelism can also incur overheads in software, such as the overhead of creating
and multiplexing between threads of execution. Aside from these overheads, there are algorithmic
limits to how some computations can be parallelized, even under ideal circumstances [19].

As a result of these limitations, jobs typically receive a diminishing marginal benefit from being
allocated additional cores. While a job may run faster on two cores than it does on one core, it
generally will not run twice as fast. Furthermore, many jobs reach a point where they no longer
benefit appreciably from being allocated additional cores, and allocating cores to a job past this
point is equivalent to leaving those cores idle. Hence, the wrong choice of scheduling policy can
potentially result in a gross misuse of system resources, and can cause a dramatic increase in job
response times.

The goal of this thesis is to develop and analyze scheduling policies which explicitly account
for the limited parallelizability of the jobs they schedule. In particular, given a set of n cores, we
aim to design scheduling policies that allocate cores to jobs in order to reduce job response times.

1.2 The State-of-the-Art In Scheduling Parallelizable Jobs
Many real-world systems have faced the challenge of scheduling parallelizable jobs (see Section
3.1). These systems have historically relied on a variety of greedy heuristic policies to try and
reduce job response times[23, 67, 82, 102]. While these heuristic-based approaches are often
simple to implement, the policies used provide no provable performance guarantees, often require
significant parameter tuning, and can be far from optimal. As we will show in this thesis, these
policies can be significantly improved by more formally understanding the problem of scheduling
parallelizable jobs.

2

On the theoretical side, the worst-case theoretical computer science (TCS) community has been
working on the problem of scheduling parallelizable jobs for the past 20 years (see Section 3.2).
In the online setting where jobs arrive over time, strong lower bounds have been obtained on the
achievable worst-case mean response time. In particular, the TCS community has shown that it is
impossible to design a scheduling policy which performs within a constant factor of the optimal
policy in the worst case [60]. Because it is so difficult to perform anywhere close to optimally in
the worst case, simple policies such as dividing cores equally across jobs can be shown to meet
the lower bounds on achievable worst-case performance. However, these simple policies often
perform poorly in practice.

This thesis aims to address this disconnect between state-of-the-art systems and the theoretical
community when it comes to the problem of scheduling parallelizable jobs.

1.3 Thesis Statement
Modern systems which process parallelizable jobs employ heuristic-based scheduling poli-
cies that are far from optimal and stand to be significantly improved by a deeper theoretical
understanding of scheduling and resource allocation problems. However, the prior theoreti-
cal research all uses worst-case analysis, resulting in scheduling policies that perform poorly
in practice compared to state-of-the-art systems. Using a stochastic performance modeling
approach, we develop new policies for scheduling parallelizable jobs which perform well in
practice and have provable performance guarantees.

1.4 Tradeoffs in Scheduling Parallelizable Jobs
By employing a stochastic performance modeling approach, this thesis will show that the problem
of scheduling parallelizable jobs comes down to a set of tradeoffs that must be balanced differ-
ently depending on the exact setting being considered. Understanding these tradeoffs at a high
level is helpful in understanding the contributions of this thesis, and we will refer back to these
tradeoffs throughout the subsequent chapters in sections marked Scheduling Tradeoffs. Figure
1.1 illustrates the tradeoffs that our scheduling policies will have to balance.

The tradeoffs in Figure 1.1 arise from the fact that jobs generally are not perfectly paralleliz-
able. As described above, when jobs receive a diminishing marginal benefit from being allocated
additional cores, allocating too many cores to an individual job can severely impact system per-
formance. To avoid these damaging scenarios, we can monitor the system efficiency of a particular
allocation, a measurement of how much benefit the jobs in the system are receiving from their cur-
rent allocations. Intuitively, it seems that we should aim for scheduling policies which maximize
system efficiency. These policies are getting the most “bang for their buck”, and are successfully
avoiding the potential sources of overhead associated with parallelism. We will see that policies
generally maximize system efficiency by sharing the available system resources amongst all the
jobs in the system, and ensuring that no individual job receives too many cores. While maximizing
system efficiency is one intuitive goal, it turns out than an optimal scheduling policy must balance

3

Maximize	System	Efficiency

Complete	short	jobs	before	long	jobs

Preserve	Future	Efficiency

Limit	individual	allocations Defer	parallelizable	work

Chapter	5

Chapter	6

Chapter	7

Shorter	jobs	get	larger	allocations

Figure 1.1: A map of the goals and tradeoffs that arise when scheduling parallelizable jobs. A
scheduling policy should limit allocations to individual jobs in order to maximize system effi-
ciency (Chapter 4). Scheduling policies must balance a tradeoff between maximizing system effi-
ciency and favoring short jobs (Chapter 5). When some jobs are more parallelizable than others,
a scheduling policy must balance the present system efficiency with the future system efficiency
(Chapter 6). In some cases (Chapter 7), a scheduling policy may have to simultaneously consider
a job’s size and its level of parallelizability.

multiple competing goals.
For instance, some jobs may only need to run for short periods of time, while other jobs may

need to run for long periods of time in order to complete. A classic result in scheduling theory
which is noted by both the worst-case community and the performance modeling community is
that overall mean response time can be reduced by completing short jobs before long jobs. One
might therefore think to employ a scheduling policy which gives larger allocations to short jobs
than to long jobs. Note, however, that this plan stands in stark opposition to the goal of limiting the
number of cores allocated to an individual job in order maximize system efficiency. As a result, a
good scheduling policy must balance a tradeoff between the benefits of favoring short jobs and the
cost of the decreasing system efficiency by giving larger allocations to shorter jobs.

We must also account for cases where different jobs have different levels of parallelizability.
For example, some jobs might be highly parallelizable, making nearly perfect use of additional
cores, while other jobs may receive little or no benefit from being parallelized. It seems natural
that a scheduling policy should favor the more parallelizable jobs, since these jobs will benefit
more from their larger allocations. However, this type of policy has a hidden cost. A policy which
favors the more parallelizable jobs will quickly complete the more parallelizable jobs. The system
will then be left only with jobs which do not benefit from being parallelized. In these future states,
even if we choose an allocation that maximizes system efficiency, we would have preferred to
have more parallelizable jobs in the system in order to more efficiently use the available cores.
Hence, it can be beneficial for a scheduling policy to defer parallelizable work in order to avoid
running out of the more parallelizable jobs in the future. A good scheduling policy must balance a
tradeoff between the maximizing the present system efficiency and maximizing the future system
efficiency.

Finally, we are sometimes forced to consider cases where all of these goals compete simulta-
neously. For example, should a policy favor short jobs, even if they are less parallelizable? And

4

how does the benefit of deferring parallelizable work compare with benefit of favoring a short job?
These are the types of questions addressed by the contributions of this thesis.

1.5 Contributions
This thesis address the problem of scheduling parallelizable jobs via a three-pronged approach:

1. The theoretical models and style of analysis employed by the worst-case scheduling com-
munity has advocated the use of scheduling policies which do not perform well in real-world
systems. We therefore begin by developing new models of parallelizable jobs in multicore
systems using the tools of stochastic performance modeling.

2. Using our newly developed models, we derive and analyze new scheduling policies which
provably result in reduced job response times.

3. Finally, we validate our theoretical models through simulation and, when necessary, we
design new heuristic policies based on our theoretical results. Our goal here is to demonstrate
that we can create policies inspired by our theoretical models that represent an improvement
over the heuristic policies currently used in the systems community.

The contributions of this thesis are as follows:

We develop the first stochastic model of parallelizable jobs running in a multicore machine (Chap-
ter 2).
• To describe the running time of each parallelizable job, we define a job’s inherent size, the

time it takes the job to run on a single core.
• We also define a job’s speedup function, s(k), to be a sublinear, increasing, concave function

which tells us how many times faster a job would complete if run on k cores as opposed to a
single core.

Using our new model, we begin by considering the case where the scheduler has very little infor-
mation about the jobs it is running (Chapter 4). Specifically, we assume that job sizes are unknown
to the system and exponentially distributed, and that all jobs follow the same speedup function.
Hence, the scheduler cannot differentiate between jobs on the basis of their remaining sizes or how
parallelizable they are.
• In this case we show that EQUI, a policy which dynamically allocates an equal number of

cores to each job in the system at every moment in time, is optimal with respect to mean
response time.

• We analyze fixed-width policies, a class of policies that allocate the same number of cores to
every job and do not require dynamically reallocating cores. We show how to determine the
best fixed-width policy as a function of the system load and number of cores in the system.

• We prove that the best fixed-width policy performs almost as well as EQUI as the number of
cores in the system increases. Hence, we say that the best fixed-width policy is near-optimal
in the large-system limit.

5

In many real-world scenarios, the system will have accurate estimates of the sizes of each job.
Hence, we next consider the case where job sizes are known to the system (Chapter 5). Here, we
find that an optimal policy should prioritize short jobs ahead of long jobs.
• When job sizes are known exactly to the system, and all jobs are present at time 0, we

derive a policy called high-efficiency SRPT (heSRPT) which minimizes mean response time.
The heSRPT policy balances a tradeoff between biasing towards short jobs and maintaining
overall system efficiency.

• We prove that heSRPT can be generalized to minimize a whole class of weighted response
time metrics, including mean slowdown (see Section 5.2)

• We show how heSRPT can be used to create a new policy for the online case where jobs
arrive to the system over time. The online policy we create outperforms existing policies by
an order of magnitude.

It is often the case that the system processes jobs with vastly different levels of parallelizability.
We therefore consider the case where there are multiple classes of jobs, and each class of jobs
follows a different speedup function (Chapter 6).
• We analyze a proportionally fair class of policies called GREEDY, and derive the best pro-

portionally fair policy, GREEDY∗.
• We show how to numerically compute an optimal policy. This allows us to see that GREEDY∗

performs well in a wide range of scenarios.
• In the special case where jobs are either fully parallelizable (elastic) or non-parallelizable

(inelastic), we prove that a special case of the GREEDY∗ policy called Inelastic-First is
optimal.

• We provide the first analysis of the response time under the Inelastic-First policy.
While parallelizable jobs exhibit the kind of concave speedup functions we describe in our model,
these speedup functions are measuring the job’s average level of parallelizability over time. Many
systems, such as databases, process jobs consisting of multiple distinct phases where each phase
has a different speedup function. Hence, we derive policies for scheduling jobs consisting of
multiple phases (Chapter 7).
• We develop a new model of parallelizable jobs consisting of phases, where each job stochas-

tically moves between highly-parallelizable elastic phases and non-parallelizable inelastic
phases.

• Under this new model, we prove that a generalization of the Inelastic-First policy from Chap-
ter 6 is optimal with respect to mean response time.

• Using queries from the Star Schema Database Benchmark [76], we perform simulations
to show that we can dramatically improve mean query latency when processing real-world
database workloads. Using our theoretical results, we construct a new policy called IF-SRPT
which performs even better in practice, outperforming current database schedulers by a fac-
tor of 2.

6

1.6 Outline
The rest of this thesis is organized as follows:
• Model We begin by describing the basic model used in this thesis in Chapter 2.
• Prior Work We then provide an in-depth discussion of prior work in Chapter 3.
• Scheduling Without Job Sizes. In Chapter 4 we consider the case where a job’s size is

unknown to the system, and cannot be learned by the scheduler. We prove that EQUI is the
optimal policy in this case, and show that the optimal fixed-width policy is near optimal in
the large-system limit. These results first appeared in [8].

• Scheduling With Job Sizes. In Chapter 5 we consider the case where job sizes are known
exactly to the system. We prove the optimality of heSRPT in this case for a range of weighted
response time metrics including mean response time and mean slowdown. These results first
appeared in [10]

• Scheduling With Multiple Speedup Functions. In Chapter 6 we discuss the case where
jobs are allowed to follow different speedup functions. We analyze a proportionally fair
class of policies called GREEDY, and consider a special case where jobs are either fully
parallelizable (elastic) or non-parallelizable (inelastic). These results first appeared in [8]
and [9].

• Scheduling Jobs with Phases. In Chapter 7 we develop a model for jobs composed of
multiple phases, and provide optimality results in this model. These results first appeared in
[11].

7

8

Chapter 2

Our Model

We now provide a description of the basic underlying model that will be used in our theoretical
results. Throughout this thesis, we will continually tweak the specific assumptions or parameters
of the model we are considering to derive results in different scenarios. However, this chapter will
outline the basic assumptions of our model and the accompanying notation we will use throughout
the thesis.

System Model

We assume that our system consists of n homogeneous cores. While we will use the terminology
of parallelizing jobs across multiple cores in our theoretical results, the policies we derive could
apply equally to scheduling jobs across multiple servers in a datacenter or distributed computing
framework.

Arrivals

We are interested in the case where a stream of parallelizable jobs arrive to the system over time.
We will therefore assume that jobs arrive to the system according to a stationary stochastic pro-
cess with some fixed average arrival rate. We will assume this arrival process is Poisson unless
otherwise noted.

Inherent Job Size

Each arriving job has an associated inherent job size, X , which is defined as the job’s running time
when run on a single core. A job’s size represents the amount of work associated with a job. For
instance, a database query may have some number of table rows it must examine, or an ML training
job may be required to complete some number of iterations of gradient descent. To standardize the
definition of job size across these applications, we use the job’s single-core running time, which
we assume is directly proportional to the amount of work the job must perform.

We will generally consider each job size, X , to be a random variable whose value and distribu-
tion may be known or unknown to the system. Chapter 4 considers the case where each job size is
unknown and exponentially distributed, meaning the system has no ability to tell which jobs have

9

shorter or longer remaining sizes. Chapter 5 considers the case where job sizes are drawn from an
arbitrary distribution and are exactly known to the system, so the system can precisely differentiate
shorter jobs from longer jobs. Chapter 6 and Chapter 7 both consider cases where the system has
partial size information in that some jobs are known to have smaller remaining sizes on average
than other jobs, but the precise job sizes are not known to the system.

Speedup Functions

We are often interested in how long a job will run if allocated k > 1 cores. We assume that any
job can be run on any subset of cores. We therefore define a speedup function, s(k) : R+ → R+

which tells us how many times faster a job will complete if run on k cores instead of a single core.
We assume that s(k) is a sublinear, non-decreasing, concave function, a phenomenon that has been
observed across a wide array of systems and applications [62, 79, 109]. Given a job’s size, X , and
speedup function, s(k), the running time of a job on k cores, Xk is defined to be

Xk =
X

s(k)
∀k > 0. (2.1)

One popular speedup function described in the literature is Amdahl’s law[45], which considers
every job as being composed of some fraction, f , of work which is perfectly parallelizable while
the remaining (1−f) fraction of the job receives no speedup from parallelization. Hence, Amdahl’s
law defines s(k) to be

s(k) =
1

f
k

+ (1− f)
.

Other theoretical work has used a simple power law speedup function to approximate a variety of
empirically derived speedup curves[49]. A power law speedup function is defined to be of the form

s(k) = kp 0 < p ≤ 1.

Because a job’s core allocation may change over time, we must define the running time of a job
whose core allocation is not fixed for its entire lifetime. We define a job’s remaining size at time t,
X(t), to be the remaining time required to complete the job using a single server. If a job receives
an allocation of k servers from time t until time t′, the job’s remaining size at time t′ is defined to
be

X(t)− (t′ − t)s(k).

Here, s(k) is effectively denoting how many times faster a job’s work is completed on k servers
than on a single server. This notion is completely compatible with our prior definition.

In general, it could be the case that every job represents the execution of a totally unique com-
putation, and therefore any particular job, job i, will have its own unique corresponding speedup
function, si(k). However, it is frequently the case that a workload consists a small set of programs
which are executed repeatedly, perhaps with different inputs. In Chapter 4 and Chapter 5, we con-
sider the case where all jobs are instances of a single program and thus all follow the same, single
speedup function, s(k).

10

Next, in Chapter 6, we consider the case where jobs may belong to one of multiple classes,
where jobs within a class represent instances of the same program, and therefore receive the same
speedup. Specifically, class c jobs all follow the same speedup function sc(k). Chapter 6 also
considers an important special case where jobs belong to one of two particular classes. We call
the first class of jobs elastic because they are perfectly parallelizable across any number of cores.
We call the second class of jobs inelastic because they are not parallelizable and receive no benefit
from running on more than one core. More formally, elastic jobs follow a speedup function sE(k)
and inelastic jobs follow a speedup function sI(k) where

sE(k) = k ∀k ≥ 0 sI(k) =

{
k 0 ≤ k ≤ 1

1 k > 1
.

Finally, in Chapter 7, we consider the case where a job’s speedup function may change over
time. It is common for parallelizable jobs to consist of multiple phases of computation, where
each phase is either highly parallelizable or highly non-parallelizable. Hence, we model each job
as being composed of a sequence of elastic and inelastic phases. Each phase has a corresponding
inherent size, and a job is considered complete once all of its phases have been completed in order.
Elastic phases follow the speedup function sE(k) and inelastic phases follow the speedup function
sI(k). Because each job may follow a different sequence of phases, the speedup a job receives
from being allocated k servers for its entire lifetime may be different for each job. For a detail
description of how we model the sequence of phases for each job, see Section 7.2.

Scheduling Policies

We are generally interested in maintaining low response times across the stream of incoming jobs.
A job’s response time, which we denote with the random variable T , is defined to be the time
between when a job arrives to the system and when it is completed. We will be interested in
scenarios where the limiting distribution of T exists, in which case we will often seek to minimize
the mean response time, E[T], across jobs. It will also often be useful to consider a related quantity,
the random variable N , which denotes the number of jobs in the system.

In order for the limiting distribution of response time to exist, it suffices to show that the system
is stable. We define the system load, ρ, of a system to be

ρ =
λE[X]

n
.

Following standard queueing-theoretic techniques, one can usually show that a system is stable if

ρ < 1 and E[X2] <∞.

We will explicitly note when these conditions do not suffice for stability.
Our goal is to derive and analyze scheduling policies which define the number of servers al-

located to each job in the system at every moment in time. We will assume that jobs can receive

11

fractional server allocations. Hence, for a scheduling policy P , we will define an allocation func-
tion, θP (t), which defines the fraction of the n servers allocated to each job in the system at time
t. Specifically, at time t, when there are N(t) jobs in the system,

θP (t) = {θP1 (t), θP2 (t), . . . , θPN(t)}

where

0 ≤ θPi (t) ≤ 1 ∀1 ≤ i ≤ N(t) and
N(t)∑
i=1

θPi = 1.

We define the instantaneous system efficiency of the system under a policy P at time t to be the
sum of the speedups received by the jobs currently in the system. That is,

System efficiency at time t =

N(t)∑
i=1

s(θPi (t) · n).

As long as speedups are not super-linear, the maximum instantaneous system efficiency is n. Sys-
tem efficiency can be thought of as a measure of how much overhead due to parallelism is being
incurred by the current server allocation.

12

Chapter 3

Prior Work

Despite the prevalence of parallelizable data center workloads, it is not known, in general, how
to optimally allocate cores to a set of parallelizable jobs. The work on scheduling parallelizable
jobs has generally been conducted across three different research communities — the systems
community, the worst-case theoretical community, and the performance modeling community. In
this section, we review the contributions from each community and explain how the work of this
thesis, which takes a performance modeling approach, aims to address gaps in the literature from
the other two communities.

3.1 The Systems Community
The need to schedule parallelizable jobs with has been identified across a wide range of systems.
Specifically, this problem has been discussed in the context of cluster scheduling [22, 23, 98, 101],
high-performance computing (HPC) [87, 95], distributed machine learning [62], and databases
[43, 58, 102].

The state-of-the-art in cluster scheduling and HPC systems is to let the user decide their job’s
resource allocations by reserving the resources they desire [63, 98, 100], and then to allow the
system to pack jobs onto the underlying hardware [69, 84, 99]. Users reserve resources greedily,
leading to low system efficiency. While there has been work which shows the benefits of allow-
ing the system to determine resource allocations in data centers [23, 95], the allocation policies
described here are based on heuristics and make no provable performance guarantees.

Machine learning frameworks are also faced with the challenge of allocating resources to model
training and serving jobs which are notoriously parallelizable. These jobs are known to follow the
same kind of sublinear speedup functions we describe in this thesis [62]. However, state-of-the-
art frameworks for scheduling machine learning jobs are still based on heuristics such as trying
to balance load [67] or optimize for goodput [82] (which we refer to as instantaneous system
efficiency in this thesis).

The database community has tackled the problem of how to effectively parallelize queries [58].
However, [58] also claims that, in the absence of exogenously defined query priorities, there is not
benefit to prioritizing one query over another. We will see in this thesis that the priorities given to

13

different parallelizable jobs can have massive impacts on job response times. More recently, [102]
has noted that prioritizing short queries over long queries can reduce mean query latency, however
they do so through the use of a heuristic policy. We will see in Section 7.7.1 that solely prioritizing
short queries can have unintended effects on mean query latency.

In summary, while many systems have described practical approaches to resource allocation
for parallelizable jobs, these solutions are generally based on heuristics. As a results, these so-
lutions often require significant parameter tuning, and do not provide formal guarantees about
performance.

Instead of focusing on developing better scheduling policies, major advances from the sys-
tems community in the area of scheduling parallelizable jobs have focused on building scalable
schedulers which are capable of checkpointing, preempting, and resuming jobs while maintaining
low overhead and mitigating straggler effects. The Hopper system [85] demonstrates techniques
for greatly reducing straggler effects by which the completion of a parallelizable computation is
delayed by a small number of tasks which take longer to complete. We therefore assume that the
scalability of a job can be measured by a speedup curve rather than modeling a parallelizable job
at the task level. Meanwhile, advances in the Operating Systems community have demonstrated
the ability to implement centralized scheduling policies which can preempt running jobs with mere
microseconds of overhead in a multicore machine [52] or even a full rack of servers [111]. Similar
results have been observed in the ability to share and dynamically re-allocate hardware accelerators
such as GPUs for use in the training of machine learning models [105]. We will therefore consider
scheduling policies which have the ability to preempt jobs and change their resource allocations
with no overhead.

Our goal is to improve upon the heuristic policies used in these state-of-the-art systems by
providing practical policies with provably optimal or near-optimal performance.

3.2 The Worst-Case Theoretical Community
A significant portion of the prior theoretical work on scheduling parallelizable comes from the
worst-case theoretical community. This work uses worst-case analysis, in that that job sizes, arrival
times, and speedup functions are all assumed to be adversarially chosen. Given these pessimistic
assumptions, there is a fundamental result [60] showing that any policy for scheduling jobs onto a
set of n identical servers can be arbitrarily far from the optimal policy. Specifically, no policy can
achieve a competitive ratio better than Θ(log min (p, M

n
)) where M is the number of jobs and p is

the ratio of the maximum job size to the minimum job size. Hence, the worst-case community is
either looks for policies that achieve a competitive ratio close to this fundamental lower bound, or
uses resource augmentation arguments 1.

It is easiest to understand the prior worst-case theoretical work on scheduling parallelizable
jobs in terms of the model of parallelism considered. We will therefore discuss several theoretical
models of parallelism before considering prior work from the systems community on scheduling
parallelizable jobs.

1Resource augmentation analysis is a relaxation of competitive analysis that, for some s > 1, compares an algo-
rithm using speed s processors against the optimal policy using speed 1 processors.

14

Jobs with Speedup Curves
The basic model used in this thesis considers a speedup function, s(k), that describes the speedup
a job receives from running on k servers. Here, s(k) is some positive concave non-decreasing
function. Work using this model from the worst-case scheduling literature finds that, when job
sizes are known, a generalization of EQUI is Ω(log p)-competitive with the optimal policy [49].
Moreover, EQUI is again shown to be constant competitive with constant resource augmentation
[25, 27].

Overall, the general consensus from both the worst-case scheduling community is that EQUI
should be used to achieve good or possibly optimal mean response time. This thesis will begin
by showing conditions for the optimality of EQUI using our stochastic model using average-case
analysis. However, we will see that these conditions are fairly restrictive (see Chapter 4), and that
the performance of EQUI is often far from optimal both in theory and in practice. This discrepancy
is largely due to the overly pessimistic nature of the adversarial assumptions made by the worst-
case theoretical community.

Jobs with Parallelizable Phases
Another body of work from the worst-case scheduling community [24, 25, 26, 27] considers jobs
whose speedup functions change over time. This work considers the problem of scheduling par-
allelizable jobs composed of phases of differing parallelizability. However, due to the worst-case
nature of the analysis, this work is forced to either consider an offline problem where all jobs arrive
at time 0 [26], or to rely on resource augmentation [24, 25, 27] to provide an algorithm which is
within a (potentially large) constant factor of the optimal policy. This work concludes that the
EQUI policy, as well as a generalization of it, is constant competitive given a small constant re-
source augmentation. We will see that the gap between EQUI and the optimal policy grows even
wider using our stochastic models of jobs which consist of multiple phases. This difference has
been corroborated by real-world systems experiments (see Chapter 7).

DAG Jobs
A separate branch of theoretical work on scheduling parallel jobs that developed concurrently
with the above models considers every parallel job as consisting of a set of tasks with precedence
constraints specified by a Directed-Acyclic-Graph (DAG). In this model, introduced in [14], a task
can only run on a single server, but any two tasks that do not share a precedence relationship can
be run in parallel. Much of the work in this area is concerned with how to efficiently schedule a
single DAG job onto a set of servers [13, 14, 15].

Recently, [4] considered the online problem of scheduling a stream of DAG jobs to minimize
the worst case mean response time. Using a resource augmentation argument, they show that EQUI
and its generalization are constant competitive with constant resource augmentation.

15

3.3 The Performance Modeling Community
The results of the worst-case theory suggest that, without resource augmentation, there is little
room to improve the worst-case performance of scheduling policies for parallelizable jobs because
simple policies like EQUI are capable of meeting known lower bounds on achievable performance.
However, we have also seen that the problem of scheduling parallelizable jobs remains open from
the point of view of system designers. In particular, while the worst-case theory suggests policies
which may perform reasonably in the worst-case, system designers are often interested in optimiz-
ing for the common case. This suggests that we should be using the kind of average-case analysis
favored by the stochastic performance modeling community. Here, job sizes and arrival times are
assumed to be governed by underlying stochastic processes, and the goal is generally to measure
and optimize the average, steady-state performance of the system with respect to metrics like mean
response time.

Much of the prior work from the performance modeling community has been limited to schedul-
ing jobs on a single server [20]. While there has been work on scheduling in stochastic multiserver
systems (e.g [3, 5, 28, 32, 36, 42]), this work assumes that jobs run on at most one server at a time
(that is, all jobs are not parallelizable).

The closest the performance modeling community has come to considering parallelizable jobs
is the related problem of fork-join parallel queueing. The fork-join model considers a special
case of DAG scheduling where a system of n servers processes a stream of jobs consisting of n
tasks with no precedence constraints. When a job arrives to the system, one task is immediately
dispatched to each of the n servers. Results in this model have been hard to come by – the exact
mean response time for this system is known only when task sizes are exponentially distributed
and n = 2 [71]. Recent work has considered the idea of limited fork-join queueing, where each job
consists of k < n tasks [103], but this work provides only upper bounds on response time. In all
of the work on fork-join queueing, all jobs have the same, fixed level of parallelism which cannot
be changed by the system to improve response times.

More recently, the performance modeling community has considered the scheduling of multi-
server jobs[38]. Here, each job requires a particular number of servers in order to run. If a job’s
demand cannot be satisfied, the job either remains in the queue until it can be run, or in some
circumstances the job is dropped. Unlike the fork-join model, the job will complete at the same
time on each server it occupies. In this model, there is once again no flexibility to choose the level
of parallelism for a particular job. Work in this model has thus far focused on stability results [29]
and response time bounds [47].

The problem of scheduling parallelizable jobs also shares some similarities with co-flow schedul-
ing [18, 51, 53, 83, 91] where one allocates a continuously divisible resource, link bandwidth, to
a set of flows to minimize mean response time. However, here there is usually no explicit notion
of a flow’s speedup function. The most applicable work here is [1], which explores the tradeoff
between efficiency and opportunistic scheduling in wireless networks. Section 5.5.1 generalizes
the results of [1] to metrics beyond mean response time, including mean slowdown.

Hence, although the tools of the performance modeling community are well-suited to address
the problem of scheduling parallelizable jobs, the work of this thesis represents a novel research
contribution.

16

Chapter 4

Scheduling Without Job Sizes

4.1 Introduction
Perhaps the most difficult demand that today’s parallel systems must meet is that users often expect
their jobs to be served quickly, but without having to provide the system with any information
about what the job is doing, how long they expect the job to run, or how well the job can be
parallelized. These expectations likely come from the way users have been trained to interact with
modern operating systems (OSs). Most modern OSs do not introspect into the programs they run,
and by default do not make predictions about how long a program will run or how effectively it
will make use of additional cores. The user, however, expects the OS to provide prompt execution
on the underlying hardware, even if the system is also being asked to run several other programs
simultaneously. This execution model has also permeated to the cloud computing context, where
users ask the system to execute their virtual machines and containers on demand, and for indefinite
periods of time. Hence, it is crucial to have the ability to make good scheduling decisions, even
when the system has no information about the sizes or speedup functions of the jobs it is running.

The problem of scheduling parallelizable jobs without size information also stands to improve
reservation-based systems [63, 98, 100], where users reserve the number of cores or servers on
which they want to run their jobs. In these systems, users are known to dramatically overstate their
resource needs, and then underutilize the resources they reserve. That is, not even the users know
how to describe the sizes and speedup functions of their own jobs in these systems. The policies
described in this chapter could improve these systems by eschewing user reservations and instead
allowing a scheduling policy to decide how resources are allocated to each job.

4.1.1 Scheduling Tradeoffs
To model the scenarios where the system has little information about the jobs it runs, we will
assume that all jobs look identical to the scheduler in terms of job size and speedup function.
Specifically, the scheduler has no ability to tell if one job has a smaller remaining size than another,
and the scheduler has no ability to tell whether one job is more parallelizable than another.

We can now consider how the particular scenarios modeled in this chapter affect the tradeoffs

17

Maximize	System	Efficiency

Complete	short	jobs	before	long	jobs

Preserve	Future	Efficiency

Limit	individual	allocations Defer	parallelizable	work

Chapter	5

Chapter	6

Chapter	7

Shorter	jobs	get	larger	allocations

Figure 4.1: When jobs look identical with respect to their sizes and speedup functions, a scheduling
policy should maximize instantaneous system efficiency.

outlined in Section 1.4. Figure 4.1 shows an illustration of our tradeoffs, updated to match the
scenario where jobs look identical with respect to their remaining sizes and speedup functions.
Clearly, the setting considered in this chapter simplifies the tradeoffs that a scheduling policy must
balance. Without the ability to differentiate short jobs from long jobs, or less parallelizable jobs
from more parallelizable jobs, a scheduling policy’s sole concern is maximizing the instantaneous
efficiency of the system. While we have intuitively argued that this involves limiting the number
of cores allocated to any one individual jobs, this chapter will formalize that intuition.

Key Insight

When scheduling parallelizable jobs, increasing the number of cores allocated to an individual job
will generally reduce the response time of that particular job. However, jobs receive a diminishing
marginal benefit from being allocated additional cores. Hence, increasing the number of cores
allocated to a job which already has a large allocation may barely decrease the job’s response time,
while increasing the number of cores allocated to a job with a small allocation may greatly decrease
the job’s response time. Similarly, jobs with large allocations will suffer mildly from having their
allocations decreased as compared to jobs with small allocations. It therefore seems natural to
increase the allocations of cores to jobs with smaller allocations which will benefit greatly from
the additional cores, while incurring a mild cost from reducing the allocations of cores to jobs with
larger allocations. The result is that policy called EQUI, which splits cores equally across jobs, is
optimal with respect to mean response time.

We formalize this argument by reasoning about the instantaneous system efficiency of an al-
location, a metric which tells us how much total benefit the jobs in the system are receiving from
their current allocations. We show that, by equalizing the marginal benefit each job would receive
from being allocated an additional core, EQUI maximizes instantaneous system efficiency. As Fig-
ure 4.1 suggests, when jobs cannot be differentiated on the basis of their size or speedup function,
maximizing system efficiency is sufficient to minimize mean response time.

18

4.1.2 Contributions
This chapter considers the case where the size (inherent work) associated with each job is unknown
to the system, and that the system is not able to develop a better estimate of a job’s size by running
the job. Furthermore, we assume that all jobs follow the same, single speedup function. The result
is that the system cannot differentiate between jobs on the basis of their sizes or speedup functions.
Our goal is to allocate the n identical cores in the system across a stream of arriving jobs in order
to minimize the mean response time across jobs.

While the problem of optimally scheduling parallelizable jobs has known lower bounds in the
worst case, this problem had never been studied in the average case. In this chapter, we provide
the first average-case analysis of policies for scheduling parallelizable jobs. By making stochastic
assumptions about the arrival times of the jobs, and the about the distribution of job sizes, we
provide the first average-case optimality results for this problem. The contributions of this chapter
are as follows:
• We begin in Section 4.3 by analyzing the performance of the EQUI policy. We provide a

proof that EQUI is optimal with respect to mean response time when job sizes are exponen-
tially distributed and all jobs follow the same speedup function. EQUI is a policy which first
appeared in [24]. Under EQUI, at all times, the n cores are equally divided among the jobs
in the system. Specifically, whenever there are ` jobs in the system, then each job is paral-
lelized across n/` cores. EQUI is an idealized policy in that (i) EQUI assumes that when a
job runs on n/` cores its run time will be distributed as X

s(n/`)
, even if n/` is not an integer,

and (ii) EQUI requires jobs to be malleable – every job can change its level of parallelization
while it runs.

• Next, Section 4.4 introduces the concept of fixed-width scheduling policies. In practice, jobs
are not malleable but are often moldable – a job can run on any number of cores, k, but it
must run on the same k cores for the duration of its lifetime. In theory, a scheduling policy
could choose a different number of cores on which to run each incoming job. We define an
extremely simple class of scheduling policies, called fixed-width policies, whereby every job
is run on the same fixed number of cores.
We take this a step further and impose the constraint that the n cores of the machine are
partitioned into statically-sized “chunks”, each with k cores, where k divides n. For example,
Figure 4.4 shows some potential chunkings of a 16-core machine. Every arriving job is
dispatched to a single chunk and runs across all the cores in that chunk.
We introduce a policy called JSQ-Chunk which uses a fixed width, k, and assigns jobs to
chunks according to the Join-Shortest-Queue dispatching policy. We provide an approximate
response time analysis for JSQ-Chunk, and, more significantly, we show how to choose the
optimal fixed-width, k∗, for JSQ-Chunk as a function of the system load, ρ.

• Finally, Section 4.5 shows that a fixed-width scheduling policy can perform near-optimally
in the large-system limit. Fixed-width scheduling policies seem heavily restricted in their
ability to effectively exploit parallelism. We prove, however, that certain fixed-width poli-
cies, like JSQ-Chunk, can achieve mean response time converging to that of EQUI as the
number of cores, n, becomes large.

19

Figure 4.2: Mean response times under JSQ-Chunk (thin line) and EQUI (thick line) when n = 64.
We assume a speedup curve of Amdahl’s law with parameter p = 0.5 and a shifted Pareto job size
distribution with α = 2 and mean E[X] = 1.

We provide a preview of contributions 2 and 3 in Figure 4.2. Here we see the mean response
times under JSQ-Chunk, as a function of system load ρ, for various choices of k. For a given ρ, this
figure shows how to choose the optimal k∗. The figure shows a separate curve for mean response
time under each possible choice of k when using JSQ-Chunk. As expected, increasing k can reduce
mean response time, but also reduces the system’s stability region. The shaded regions under these
curves denote the values of ρ for which a particular choice of k is optimal. For example, when
x8 ≤ ρ ≤ x4, k∗ = 4. Surprisingly, the performance of JSQ-Chunk, when using the optimal chunk
size k∗, is not far from that of EQUI– we will prove that this difference vanishes in systems with
many cores.

4.2 Our Model
We assume that jobs arrive into a n-core machine according to a Poisson Process with rate Λ
jobs/second where

Λ := λn

for some λ.
In this chapter, we assume that job sizes are unknown to the system. Furthermore, we assume

that the system does not learn more about a job’s size as the job runs. That is, we assume each
job size X is exponentially distributed with rate µ, meaning every job in the system has the same
distribution of remaining size, regardless of how long it has been running. The optimality proofs in
this chapter will require this exponential assumption, but all of the performance analysis presented
admits general job size distributions.

We assume that the each job’s speedup function, s(k), is non-decreasing and concave, in agree-
ment with functions described in [46]. Additionally, we will focus on instances where jobs receive

20

an imperfect speedup and thus s(k) is assumed to be sublinear: s(k) < k for all k > 1 and there
exists some constant c > 0 such that s(k) < c for all k ≥ 0.

An example of a well-known speedup function is Amdahl’s law [66], which models every job
as having a fraction of work, p, which is parallelizable. The speedup factor s(k) is then a function
of the parameter p as follows:

s(k) =
1

p
k

+ 1− p.

Figure 4.3a shows Amdahl’s law under various values of p. Although Amdahl’s law ignores aspects
of job behavior, we see in 4.3b that several workloads from the PARSEC-3 benchmark [109] follow
speedup curves which can be accurately modeled by Amdahl’s law. Hence, although our analysis
will not rely on the specifics of the speedup function, we will use Amdahl’s law in numerical
examples.

(a) (b)

Figure 4.3: Various speedup curves under (a) Amdahl’s law and (b) the PARSEC-3 Benchmark.
We see that the PARSEC-3 speedup curves are accurately approximated by Amdahl’s law; these
approximations are shown in (b) in light blue.

We assume that both the system load, ρ, and s are constant over time.
In this chapter, we assume that jobs are homogeneous with respect to s – all jobs receive the

same speedup due to parallelization.
At any moment in time, there may be several jobs (job pieces) running on a particular core.

We assume each core time-shares between its jobs (i.e. Processor Sharing), which is typical for
processors in multicore machines. For example, suppose there are only 2 jobs in the system, each
of size x, and each runs on the same 5 cores. Each job receives a speedup of s(5) since it runs on
5 cores, but its run time is 2 · x

s(5)
because each job only gets half of each core.

The Problem

Our goal is to find and analyze scheduling policies that aim to minimize the mean response time,
E[T], across all jobs. Clearly, E[T] depends on the scheduling policy, the speedup function, s, the
arrival rate of jobs into the system, Λ, the mean job size, E[X], and the number of cores, n.

21

(a) k = 8 (b) k = 2 (c) k = 1

Figure 4.4: A machine with n = 16 cores under various chunk sizes, k. Each job is dispatched to
a single chunk.

4.3 EQUI: An Optimal Policy
In order to effectively parallelize jobs, one imagines that using a dynamic level of parallelization
might greatly improve mean response time. Specifically, it makes sense to consider policies where
the level of parallelization of an incoming job is determined based on the state of the system at the
time when the job arrives. In addition, if jobs are malleable, active jobs could change their levels
of parallelization during their lifetimes as the state of the system changes.

EQUI [24] is a generalization of Processor Sharing to systems with multiple cores. Under
EQUI, whenever there are ` jobs in the system, each job runs on n/` of the cores. We have defined
µ = 1/E[X] to be the rate at which jobs complete when run on a single core. EQUI is an idealized
policy in that it assumes that when a job runs on n/` cores its run time will be distributed as X

s(n/`)
,

even if n/` is not an integer. This corresponds to a service rate of s(n/`)µ for each job when jobs
are exponentially distributed. Additionally, we assume that s(k) = k when k ≤ 1 to account for
the effects of Processor Sharing. Hence, when there are ` jobs in the system, the total rate at which
jobs complete is `µs(n/`) which is equal to nµ when ` ≥ n. Importantly, EQUI always processes
every job in the system at the same rate, even when there are more than n jobs in the system.

Figure 4.5 shows a Markov chain representing the total number of jobs in the system under
EQUI. The Markov chain for EQUI allows us to formalize the intuition that EQUI is optimal be-
cause it maximizes instantaneous system efficiency. Our argument consists of three steps. First, we
note that the departure rates we calculated for the Markov chain are proportional to the instanta-
neous system efficiency under EQUI in each state. Second, Theorem 4.3 will begin by showing that
EQUI maximizes the total rate of departures in every state. Finally, Theorem 4.3 will also show
that no policy can do better than EQUI by using a lower total rate of departures in any state. That
is, we will show that EQUI is optimal because it maximizes the instantaneous system efficiency in
every state.

The Markov chain for EQUI assumes that job sizes are exponentially distributed. However,
Lemma 4.1 proves that EQUI’s performance is actually insensitive to the job size distribution. We
begin by proving Lemma 4.1 before proceeding with the proof of Theorem 4.3.

22

Figure 4.5: Markov chain representing the total number of jobs under EQUI.

4.3.1 Insensitivity of EQUI
Lemma 4.1. Mean response time under EQUI is insensitive to the job size distribution.

Proof. A system is considered to practice processor sharing if, regardless of how many jobs are in
the system, each job receives the same service rate. Note that under EQUI, when m jobs are in the
system, each job receives the same service rate by running on n/m of the cores. Hence, EQUI fits
the definition of a processor sharing system, albeit one with state dependent service rates because
the total rate of departures depends on the number of jobs in the system. It is known from [7, 16]
that the mean response time in processor sharing systems with state dependent service rates is
insensitive to the job size distribution, thus our performance analysis of EQUI holds for the case
where job sizes follow a general distribution.

4.3.2 Proving that EQUI is Optimal
Theorem 4.3 relies on Lemma 4.2.
Lemma 4.2. For any concave, sublinear function, s, the function i · s

(
n
i

)
is increasing in i for all

i for all i < n, and is non-decreasing in i for all i ≥ n.

Proof. To see that i · s
(
n
i

)
is increasing in i when i < n, we can consider the following difference

for any δ > 0:

i · (1 + δ)s

(
n

i · (1 + δ)

)
− i · s

(n
i

)
= i

(
(1 + δ)s

(
n

i · (1 + δ)

)
− s

(n
i

))
.

Since n
i
> 1, s increases sublinearly, and (1 + δ)s

(
n

i·(1+δ)

)
> s

(
n
i

)
. Thus

i · (1 + δ)s

(
n

i · (1 + δ)

)
− i · s

(n
i

)
> 0

and i · s
(
n
i

)
is increasing in i.

For any i ≥ n, we have assumed s
(
n
i

)
= n

i
. Thus,

i · s
(n
i

)
= n ∀i ≥ n,

which is non-decreasing in i.

23

Theorem 4.3. Within our model, assuming jobs are malleable, have exponentially distributed sizes,
and all follow the same speedup function, s, E[T]EQUI ≤ E[T]P for any scheduling policy P .

Proof. Let P be a scheduling policy which processes malleable jobs and currently has i active jobs
(the system is in state i). In every state, i, P must decide (i) how many jobs, j, to run and (ii) how
to allocate the n cores amongst the j jobs. Hence, for some ~θ, the rate of departures from state i
under P is at most

µ

j∑
k=1

s(nθk) (4.1)

where 0 < j ≤ min(i, n), θk > 0 for all 1 ≤ k ≤ j, and
∑j

k=1 θk = 1. Note that (4.1) is an upper
bound on P ’s departure rate, since it assumes that the j jobs run on disjoint partitions of cores;
given that s is concave the total rate of departures will not increase when a single core (or fraction
of a core) is allocated to more than one job.

We also know that
1

j

j∑
k=1

s (nθk) ≤ s

(
n

j

)
again, by the concavity of s. Hence,

j∑
k=1

s(nθk) ≤ j · s
(
n

j

)
∀ 0 < j ≤ i, ∀ ~θ ∈ (0, 1]j

and thus an upper bound on P ’s total rate of departures from any state is of the form

j · s
(
n

j

)
µ.

By Lemma 4.2, j ·s
(
n
j

)
is non-decreasing in j. Thus, an upper bound on P ’s rate of departures

from any state i is
i · s

(n
i

)
µ. (4.2)

Furthermore, we can see that EQUI achieves this departure rate in every state, i. Hence, (4.2) is
the maximal rate of departures from any state, i.

We can now compare the Markov chain corresponding to P with the Markov chain for EQUI
(Figure 4.5) and relate the number of jobs in the system, N , under both policies. Both chains have
the same arrival rates, but the rate of departures under EQUI is greater than or equal to the rate of
departures under P in any state, i, since the departure rate chosen by EQUI is maximal. Thus,

E[N]EQUI ≤ E[N]P

and, by Little’s Law,
E[T]EQUI ≤ E[T]P.

24

4.3.3 EQUI with General Size Distributions
Theorem 4.3 requires exponentially distributed job sizes. One might think that EQUI’s insensitivity
(Lemma 4.1) might imply that EQUI is optimal under all job size distributions. However, this
is false. Consider for example the case where jobs follow a Pareto distribution with decreasing
hazard rate. Independent of the speedup function, the optimal policy should devote more cores to
jobs which have lower ages, and are thus more likely to finish in the immediate future. This differs
from EQUI’s equal division of resources.

In general, optimal scheduling of jobs with general job size distributions is an extremely diffi-
cult problem. Even optimally scheduling generally distributed jobs on a single core requires using
a policy derived from the Gittins index [89]. In our case, where the optimal scheduling policy must
allocate many cores, finding the optimal policy is at least as difficult. In fact, it is not known how
to even numerically compute the optimal policy in this case.

4.4 Fixed-Width Policies
While EQUI performs very well, it requires jobs to change their levels of parallelization while
running. Fixed-width policies require that jobs be moldable, but not necessarily malleable, which
is more realistic for certain workloads. In general, a fixed-width policy is any policy which chooses
a fixed level of parallelization, k, to use for each arriving job. Every arrival is parallelized across
k cores, and is run on the same k cores for its entire lifetime. In this section, we consider several
natural fixed-width policies.

We begin by defining the Random dispatching policy, which parallelizes each arriving job
across k cores chosen uniformly at random. It turns out (see Theorem 4.6) that Random is domi-
nated by the Random-Chunk policy; hence we devote Section 4.4.1 to Random-Chunk. In Section
4.4.2, we consider an improved fixed-width policy called JSQ-Chunk, which dispatches arrivals to
the chunk with the shortest queues.

Like EQUI, Random-Chunk and JSQ-Chunk are insensitive to the job size distribution. Thus,
our analysis of these policies admits general job size distributions, X .

4.4.1 Random-Chunk
The motivation behind the Random-Chunk policy is that we would like to use random assignment
while ensuring that the different pieces of a single job complete at the same time. For a level of
parallelization, k, we begin by partitioning the cores into c = n/k chunks of size k. We will only
consider values of k which divide n, creating a uniform partition of the cores. When a job arrives,
a chunk is selected uniformly at random, and the job is parallelized across all k cores in this chunk.

It is easy to see that under Random-Chunk each piece of a job will at all times experience the
same state, and hence each of the k job pieces will complete at the same time. Consequently, the
response time for a job is equal to the response time of any of its k pieces, which in turn is simply
the mean response time at a single core. This allows us to easily derive an expression for the overall
mean response time under Random-Chunk with a level of parallelization k in Theorem 4.4 below.

25

Theorem 4.4. The mean response time under Random-Chunk with a level of parallelization, k, is
given by

E[T]Rand-Chunk =
E[X]

s(k)− kρ.

Proof. Recall that cores follow the PS scheduling discipline. We know from [55] that the mean
response time in a single M/G/1/PS queue with arrival rate Λ, mean job size E[X] and load
ρ = ΛE[X]

n
is given by

E[T] =
E[X]

1− ρ.

It will suffice to analyze the response time of one core in our system. Under a level of paral-
lelization of k, the arrivals into a single core follow a Poisson process with rate

Λk :=
Λ

c

and the mean service requirement of job pieces is E[Xk] (see (2.1)). Thus, we can define the load
on a single core in this system to be

ρk := ΛkE[Xk].

This allows us to express E[T]Rand-Chunk under a level of parallelization of k as:

E[T]Rand-Chunk =
E[Xk]

1− ρk
=

E[Xk]

1− ρ k
s(k)

=
E[X]

s(k)− kρ.

Corollary 4.5. The optimal Random-Chunk policy uses chunk size k∗, where

k∗ = argmin
k

E[X]

s(k)− kρ.

If we define the vector kkk = (k1, k2, . . . km) to be the factors of n in increasing order, this implies:

k∗ =

km 0 ≤ ρ ≤ s(km)−s(kj−1)

E[X]

ki
s(ki+1)−s(ki)

E[X]
< ρ ≤ s(ki)−s(ki−1)

E[X]
, 1 < i < m

k1
s(k2)−s(k1)

E[X]
< ρ.

The results of this analysis are shown in Figure 4.6. This figure shows the mean response
time under various choices of k, and the shaded regions below the curves denote the values of
ρ for which each choice of k is optimal. Under high load, we see that the system is unable to
tolerate wasting resources by parallelizing jobs, and thus each job is run on a single core (k∗ = 1).
Conversely, under light load it is beneficial to pay this cost of parallelization in order to reduce the
service requirement of individual jobs.

26

Figure 4.6: Results from analysis. Mean response times under Random-Chunk dispatching, a
system with n = 16 cores, various choices of the level of parallelization k, and a hyperexponential
job size distribution with E[X] = 1 and C2 = 10. The speedup curve used is Amdahl’s law with
parameter p = 0.8.

Random-Chunk vs. Random
As we have seen, Random-Chunk yields much easier analysis than Random. Fortunately, Theorem
4.6 tells us that Random-Chunk results in lower mean response times than Random, rendering the
analysis of Random irrelevant.
Theorem 4.6. The mean response time under Random-Chunk with a fixed level of parallelization,
k, is less than under Random with the same k.

Proof. Regardless of whether we are using Random or Random-Chunk dispatching, the arrival
process into a given core is Poisson with rate Λk and the service requirement of job pieces is
distributed as Xk. Thus, the response time for the ith job piece is distributed as some random
variable Ti, and the response times of all pieces are identically distributed in both cases.

Under Random-Chunk, the response times of a job’s pieces are identical. Hence, under Random-
Chunk, the response time of a job is simply the response time of one of its pieces. Under Random,
the response time of a job is the maximum of the k response times of its k pieces. Thus, for a single
job, the response time under Random-Chunk has distribution T1 while under Random the response
time of a single job has distribution

max(T1, T2, . . . , Tk)

where Ti ∼ T . Since T ≤st max(T1, T2, . . . , Tk), we see that, for a given level of parallelization,
Random-Chunk’s mean response time is less than that of Random.

27

Mixed-Random-Chunk
Until now, we have studied Random-Chunk policies where each chunk consists of k cores. It is
conceivable, however, that allowing for type 1 chunks of size k1 and type 2 chunks of size k2 could
improve mean response time.

Having two chunk sizes introduces more dispatching parameters. One must decide how many
cores, a, to devote to type 1 chunks. One also must decide what fraction, p, of arrivals to assign
to type 1 chunks. Finding the optimal Mixed-Random-Chunk policy then requires simultaneously
optimizing over not just k1 and k2, but additionally a and p.

We find that while some instances do exist where a Mixed-Random-Chunk policy is better than
Random-Chunk, these instances occur very sparsely throughout the parameter space (k1, k2, a, p),
and the advantage gained is very slight at best. In fact, if we limit ourselves to cases where the
arrival rate into each chunk is proportional to the chunk’s size, we can prove that Mixed-Random-
Chunk is never advantageous in terms of mean response time or variance of response time (see
Appendix A.1).

4.4.2 JSQ-Chunk
The Random-Chunk policy can be greatly improved by considering the state of the system when
dispatching jobs. Under JSQ-Chunk with a level of parallelization, k, we again partition the system
into chunks of size k. When a job arrives to the system, it is parallelized across the k cores in the
chunk that is currently serving the fewest jobs. We expect that JSQ-Chunk will have much lower
mean response times than Random-Chunk and will admit higher values of k∗. To determine the
correct k∗ for JSQ-Chunk, it is important that we can accurately analyze mean response time under
JSQ-Chunk.

JSQ-Chunk is based on JSQ, an old and well-studied dispatching policy in the traditional
queueing literature which assumes no parallelization. Under JSQ, the system consists of c queues
and every incoming arrival is immediately dispatched to the queue with the smallest number of
jobs. While analyzing response times in a traditional (non-parallel) system with JSQ dispatching
is notoriously hard, [70] provides a good closed-form approximation of mean response time. The
approximation in [70] assumes FCFS queues with exponentially distributed job sizes. However, as
shown in [31], the case of PS queues with generally distributed job sizes has nearly the same mean
response time as the case of FCFS queues with exponentially distributed service requirements.
Thus, the approximation in [70] still applies to our model of PS queues and generally distributed
job sizes. This approximation states:

E[T]JSQ(Λ, c,E[X]) ≈ WM/M/c(ρ)S(ρ)R(ρ) + E[X],

where Λ is the arrival rate, c is the number of queues, X is a random variable representing the size
of a job, and ρ = ΛE[X]/c. WM/M/c is the mean time in queue in an M/M/c queueing system,
and S(ρ) and R(ρ) are experimentally derived correction factors, given in Appendix A.2.
Observation 4.7. Our parallel system with JSQ-Chunk dispatching with level of parallelization
k, n cores, c = n/k chunks, total arrival rate Λ, and job size distribution X has the same mean

28

response time as a traditional JSQ queueing system with, c queues, a total arrival rate of Λ, and
job size distribution Xk = X

s(k)
.

Observation 4.7 follows from the fact that, under JSQ-Chunk, all the cores within a chunk
have the same queue state and receive the same arrivals. This allows us to directly apply the
approximation in [70] to analyze JSQ-Chunk as follows:

E[T]JSQ-Chunk(Λ, n,E[X], k) = E[T]JSQ(Λ, n/k,E[Xk]). (4.3)

(a) JSQ-Chunk n = 16 (b) Random-Chunk n = 16

Figure 4.7: Response times under (a) JSQ-Chunk dispatching and (b) Random-Chunk dispatching.
In (a), results are show from both analysis and simulation (the jagged lines), which largely overlap.
Both graphs also show the results of analysis of EQUI. We assume a speedup curve of Amdahl’s
law with a parameter of p = 0.5 and exponentially distributed job sizes with mean E[X] = 1.

4.5 JSQ-Chunk Converges to EQUI

4.5.1 The Performance of JSQ-Chunk
Figure 4.7 shows the mean response time under JSQ-Chunk (left graph) as a function of system
load ρ, as computed using the approximation in (4.3). In addition, we also show results from
simulation which lie almost on top of the approximation results. Fortunately, we see that the
approximation for JSQ-Chunk suffices to accurately derive k∗ values. Analogous results of the
analysis of Random-Chunk are shown in the right graph. We find that, for a given load ρ, k∗

is generally lower under Random-Chunk dispatching as compared with JSQ-Chunk due to JSQ-
Chunk’s superior load balancing. Furthermore, we see that the performance of JSQ-Chunk is much
closer to that of EQUI than Random-Chunk. While the response time of Random-Chunk does not
depend on the total number of cores, it is not clear how JSQ-Chunk will behave as the number of

29

cores becomes large. We will now see that mean response time under JSQ-Chunk approaches that
of EQUI as the system scales.

Figure 4.8: Analysis of mean response time under JSQ-Chunk dispatching and EQUI with a large
number of cores (n = 512). We assume a speedup curve of Amdahl’s law with a parameter of
p = 0.5 mean job size E[X] = 1. Increasing the number of cores narrows the gap between
JSQ-Chunk and EQUI, especially at the labeled critical load points.

4.5.2 Why JSQ-Chunk is Close to EQUI
As we saw in Figure 4.7, the mean response time under JSQ-Chunk (with optimal k∗) is close to
that under EQUI. Figure 4.8 shows that, as we increase the number of cores to n = 512, JSQ-
Chunk becomes even closer to EQUI. This is surprising because JSQ-Chunk uses a fixed level of
parallelization, while EQUI continuously changes its level of parallelization based on the system
state. This phenomenon can be viewed as EQUI choosing an effective level of parallelization of
k∗. Figure 4.8 also illustrates the critical load points, xk∗ for values of k∗, at which JSQ-Chunk
is indifferent between two choices of k∗. As n increases, these critical load points converge to
the instability points for the corresponding choices of k∗, as the curves become more L-shaped.
In looking at Figure 4.8, we see that it is just below these critical load points that JSQ-Chunk’s
performance is closest to the performance of EQUI. The rest of this section is devoted to formally
stating and proving this observation (see Theorem 4.9 below).

We first note that, given a fixed value of λ, a fixed mean job size E[X], and a speedup function
s, the choice of the optimal level of parallelization under JSQ-Chunk, k∗, depends only on n, the
number of cores in the system. Let k∗(n) denote this optimal level of parallelization given some
values of these other system parameters. In particular, note that Λ = λn will increase with n,
and thus the system load, ρ, remains fixed for all values of n. When n is small, changes in n will
have a significant impact on the values of k∗(n), but for sufficiently large values of n, k∗(n) will
become constant in n. This is summarized in the following lemma regarding the performance of
JSQ-Chunk.

30

Lemma 4.8. Given a fixed value of λ, a fixed value of µ = 1
E[X]

, and some speedup function s,
let k∗(n) denote the optimal level of parallelization under JSQ-Chunk in a system of size n. Let
E[T]JSQ-Chunk be the mean response time under JSQ-Chunk with level of parallelization k∗(n).
There exists some constant k∗, not dependent on n, such that

lim
n→∞

k∗(n) = k∗

and
lim
n→∞

E[T]JSQ-Chunk =
1

s(k∗)µ
.

Proof. We can observe that, in this case, the system load ρ = λ
µ

is constant (does not depend on
n). We know from [35] that for a fixed system load ρ, the probability of queuing under JSQ (and
hence also JSQ-Chunk) vanishes as the number of cores becomes large. Thus, the mean response
time under JSQ-Chunk with any level of parallelization, k, such that the system is stable, will
converge to 1

s(k)µ
where µ = 1

E[X]
. Since load is fixed, there exists some level of parallelization,

k∗, which is the highest value of k for which the JSQ-Chunk system is stable. We know that the
mean response time under JSQ-Chunk with level of parallelization k∗ converges to 1

s(k∗)µ
. For any

k > k∗, the system is unstable. For any k < k∗, the mean response time under JSQ-Chunk with
level of parallelization k converges to 1

s(k)µ
≥ 1

s(k∗)µ
since the speedup function is non-decreasing.

Thus,

lim
n→∞

E[T]JSQ-Chunk =
1

s(k∗)µ

as desired.

We will refer to limn→∞ k
∗(n) as k∗ for the remainder of the section.

We now want to show that as n→∞, E[T]EQUI → 1
s(k∗)µ

also. That is, EQUI is behaving as
if it was using a fixed level of parallelization of k∗.

To relate the performance of EQUI to k∗, it will be helpful to examine the behavior of EQUI at
the critical load points. Recall that we can define

Λk∗ =
Λ

c
=
λn

c
,

where c = n
k∗

is the number of chunks and

ρk∗ = Λk∗E[Xk∗]

is the load observed by a chunk of size k∗. We can see from Lemma 4.8 that the critical load points
move towards the instability points as n increases. Thus, we define a critical load point under a
level of parallelization of k∗ to be the point where ρk∗ = 1. Observe that

ρk∗ = 1⇐⇒ Λ = cs(k∗)µ.

We now evaluate EQUI at critical load points where Λ = cs(k∗)µ. Note that when k∗ = 1, the
mean response time under both EQUI and JSQ-Chunk will tend towards infinity. Thus, we only
consider cases where k∗ > 1.

31

Theorem 4.9. Given any fixed k∗ > 1, let E[T]
EQUI
ρk∗=1 be the mean response time under EQUI

when ρk∗ = 1. Then,

lim
n→∞

E[T]
EQUI
ρk∗=1 =

1

s(k∗)µ
= lim

ρk∗→1−
lim
n→∞

E[T]JSQ-Chunk. (4.4)

Proof. In this proof we limit our discussion to exponentially distributed job sizes. However, be-
cause EQUI and JSQ-Chunk are insensitive to the job size distribution (see Section 4.3.1 and
Section 4.4.2), our proof generalizes to the case where jobs are generally distributed. We can see
that the right hand side of this claim follows directly from Lemma 4.8, and we thus proceed to
analyzing the mean response time under EQUI.

It will be helpful to start by examining a threshold chain as shown in Figure 4.9. Observe that
the service rate below the threshold state is µlow and the service rate above the threshold state is
µhigh. We define

ρlow :=
Λ

µlow
, ρhigh :=

Λ

µhigh
.

We can solve for the mean response time, T , in such a threshold chain, and find that

E[T]thresh =
1

Λ
·
(
t+

ρlow
1− ρlow

+
1

1− ρhigh
+

1 + t− tρhigh
ρhigh − 1 + ρtlow(ρlow − ρhigh)

)
. (4.5)

Constructing an Upper Bound

We now construct a threshold chain which gives an upper bound (UB) on the mean response time
under EQUI with arrival rate Λ = cs(k∗)µ (and thus ρk∗ = 1) and service rate µ per core. To do
this, we set t = dc(1 + ε)e, µlow = s(n)µ and µhigh = dc(1 + ε)es

(
n

dc(1+ε)e

)
µ for any ε > 0. Note

that all departure rates in the UB chain are lower than those of EQUI (see Figure 4.5), and thus this
chain provides an upper bound on the mean response time under EQUI. Our UB chain has:

ρlow =
Λ

s(n)µ
=
cs(k∗)µ

s(n)µ

and

ρhigh =
Λ

dc(1 + ε)es
(

n
dc(1+ε)e

)
µ

=
cs(k∗)µ

dc(1 + ε)es
(

n
dc(1+ε)e

)
µ
.

Figure 4.9: A threshold chain with threshold state t and arrival rate Λ. For all states i ≤ t, the
service rate is µlow and for all states i > t, the service rate is µhigh.

32

First note that by Lemma 4.2,

s(n) < cs(k∗) < dc(1 + ε)es
(

n

dc(1 + ε)e

)
.

Thus ρhigh < 1 < ρlow. We now apply (4.5) to see that

lim
n→∞

E[T]UB = lim
n→∞

1

Λ
·
(
dc(1 + ε)e+

ρlow
1− ρlow

+
1

1− ρhigh
+

1 + dc(1 + ε)e(1− ρhigh)
ρhigh − 1 + ρ

dc(1+ε)e
low (ρlow − ρhigh)

)
.

We can see that

lim
n→∞

1

Λ
· ρlow

1− ρlow
= lim

n→∞

1

Λ
· 1/µlow

1/Λ− 1/µlow
= 0,

since s(n) is bounded and µlow therefore converges to a positive constant. Furthermore, since ρhigh
converges to a constant less than 1,

lim
n→∞

1

Λ
· 1

1− ρhigh
= 0.

Finally, we see that

lim
n→∞

1 + dc(1 + ε)e(1− ρhigh)
Λ
(
ρhigh − 1 + ρ

dc(1+ε)e
low (ρlow − ρhigh)

) = 0,

since the numerator grows linearly in n and the denominator grows exponentially in n. Thus,

lim
n→∞

E[T]UB = lim
n→∞

1

Λ
· dc(1 + ε)e

= lim
n→∞

1

Λ
· (c(1 + ε) + o(n))

= (1 + ε)
1

s(k∗)µ
.

Constructing a Lower Bound

Our argument for constructing a lower bound (LB) is largely the same. We again assume Λ =

cs(k∗)µ (and thus ρk∗ = 1) and we set t = bc(1 − ε)c, µlow = bc(1 − ε)cs
(

n
bc(1−ε)c

)
, and

µhigh = nµ. Note that all departure rates in the LB chain are higher than those of EQUI, and thus
this chain provides a lower bound on the mean response time under EQUI. We now have

ρlow =
Λ

bc(1− ε)cs
(

n
bc(1−ε)c

)
µ

=
cs(k∗)µ

bc(1− ε)cs
(

n
bc(1−ε)c

)
µ

33

and

ρhigh =
Λ

nµ
=
cs(k∗)µ

nµ
=
s(k∗)µ

k∗µ
.

By Lemma 4.2 we again see that ρhigh < 1 < ρlow. We apply (4.5) to see that

lim
n→∞

E[T]LB =
1

Λ
·
(

lim
n→∞
bc(1− ε)c+

ρlow
1− ρlow

+
1

1− ρhigh
+

1 + bc(1− ε)c(1 + ρhigh)

ρhigh − 1 + ρ
bc(1−ε)c
low (ρlow − ρhigh)

)
.

Since ρlow converges to a constant greater than 1 and ρhigh is a constant,

lim
n→∞

1

Λ
· ρlow

1− ρlow
= 0 and lim

n→∞

1

Λ
· 1

1− ρhigh
= 0.

Finally, we see that

lim
n→∞

1 + bc(1− ε)c(1 + ρhigh)

Λ
(
ρhigh − 1 + ρ

bc(1−ε)c
low (ρlow − ρhigh)

) = 0,

since the numerator grows linearly in n and the denominator grows exponentially in n. Thus,

lim
n→∞

E[T]UB = lim
n→∞

1

Λ
· bc(1− ε)c

= lim
n→∞

1

Λ
· (c(1− ε)− o(n))

= (1− ε) 1

s(k∗)µ
.

We have therefore shown that

(1− ε) 1

s(k∗)µ
≤ lim

n→∞
E[T]

EQUI
ρk∗=1 ≤ (1 + ε)

1

s(k∗)µ

for any 0 < ε ≤ 1 and we have thus shown (4.4) as desired.

4.6 Conclusion
This chapter introduces the question of how to allocate cores to jobs in a stochastic model of a mul-
ticore machine where all jobs have sublinear speedup functions. In particular, we examine the case
where job sizes are unknown and exponentially distributed, and all jobs follow the same speedup
function, s(k). In the case where all jobs are malleable, we prove that the well-known EQUI policy
minimizes mean response time by maximizing instantaneous system efficiency. Intuitively, we find
that when the scheduler cannot differentiate between jobs on the basis of their remaining sizes nor
their speedup functions, the optimal policy is to simply complete work at the fastest rate possible.

34

While the EQUI policy works well when jobs are malleable, this may not always be the case.
Hence, we also study how to choose a good scheduling policy when jobs are only moldable. While
it seems that the ability to dynamically change the number of cores allocated to each job should
provide a massive benefit with respect to mean response time, we find that one can still achieve
near-optimal performance by using the optimal fixed level of parallelization, k∗. Hence, if jobs are
moldable but not malleable, the correct choice of scheduling policy can still result in near-optimal
performance. We show how to analytically determine k∗ as a function of system load, the speedup
curve, the job size distribution, the number of cores, and the dispatching policy.

The results of this chapter show the potential for great improvement in the performance of
systems where the user is tasked with reserving the cores they intend to use. For example, consider
a multicore server where each user greedily tries to use all the cores on a machine in order to
complete their own job as fast as possible. In a vacuum, a job might benefit from running on all of
the available cores, but doing so results in a highly inefficient use of resources and is therefore not
an effective strategy for minimizing the overall mean response time across many jobs. The results
of this chapter show that, in fact, giving large allocations to individual jobs is actually the worst
allocation to use in terms of its overall effect on mean response time. When job sizes are unknown
to the system, we are better off allowing the system to make scheduling decisions that maximize
system efficiency by sharing cores equally.

The work described in this chapter also created a new line of theory research within the field
of parallel scheduling by performing the first average-case analysis of scheduling policies for par-
allelizable jobs. Using a stochastic model of parallel jobs with sizes and speedup functions, we
provided the first description of policies that could perform optimally or near-optimally when
scheduling parallelizable jobs. These results provide interesting context to the previously known
worst-case results about the EQUI policy. Prior worst-case work tells us that EQUI is far from
optimal in the worst case, but that EQUI may still perform as well as possible given the adversarial
assumptions made in the worst-case model. In this chapter, we pinpoint exactly why EQUI can be
a good policy in some settings, and give sufficient conditions for EQUI to be optimal with respect
to mean response time.

The flip side of this observation is that, when job sizes are known to the system, or some jobs
are known to be more parallelizable than others, we can see that the arguments made in this chapter
will fall apart. However, while the worst-case theory literature continues to advocate for the use
of EQUI in these cases, our models will suggest new, more complex policies which will greatly
outperform EQUI. In the subsequent chapters, we will see that maximizing the instantaneous
system efficiency is no longer sufficient for minimizing mean response time when jobs can be
differentiated on the basis of their sizes and speedup functions. We will show how an optimal
policy can reduce the mean response time across jobs by sacrificing instantaneous system efficiency
in order to prioritize shorter jobs and preserve the future efficiency of the system.

35

36

Chapter 5

Scheduling With Job Sizes

5.1 Introduction
In Chapter 4 we found that under certain circumstances, maximizing instantaneous system effi-
ciency results in a good scheduling policy. Specifically, when all jobs follow the same speedup
function and have exponentially distributed sizes, the optimal policy, EQUI, maximizes instanta-
neous system efficiency. However, in many important real-world systems, the size of each job will
be known to the system. Hence, in this chapter, we will relinquish the assumption that job sizes
are unknown, and show that an optimal policy can greatly outperform an efficiency-maximizing
policy with respect to mean response time when job sizes are known to the system.

In a wide variety of systems, there is sufficient information to make highly accurate predictions
about the remaining sizes of the jobs in the system. However, modern systems often fail to grasp
the importance of this size information when making scheduling decisions. For example, consider
analytics databases which process parallelizable queries. These systems often rely on cost-based
query optimizers [21] which are designed to estimate the inherent size of each query. Nonetheless,
many databases either process jobs in first-come-first-served (FCFS) order [75] or use EQUI [58].
Similarly, machine learning frameworks process jobs which require completing a known number
of iterations of stochastic gradient descent. Here, the number of iterations required is proportional
to the size of a job. However, both real-world systems [67] and academic schedulers [82] do not
use job sizes to make their scheduling decisions. We will see that the scheduling policies used in
these state-of-the-art systems can be dramatically improved by properly leveraging the available
job size information.

5.1.1 Scheduling Tradeoffs
This chapter considers the case where jobs sizes are exactly known to the system, but jobs still
cannot be differentiated on the basis of their speedup function. This gives the scheduler the ability
to see, at every moment in time, which jobs have shorter remaining sizes.

In this case, we can consider how the availability of job size information changes the optimality
results from the previous chapter. Figure 5.1 shows an illustration of the tradeoffs a policy must

37

Maximize	System	Efficiency

Complete	short	jobs	before	long	jobs

Preserve	Future	Efficiency

Limit	individual	allocations Defer	parallelizable	work

Chapter	5

Chapter	6

Chapter	7

Shorter	jobs	get	larger	allocations

Figure 5.1: When job sizes are known to the system, a scheduling policy must balance a tradeoff
between maximizing instantaneous system efficiency and favoring short jobs.

balance, updated to reflect the availability of job size information. We see that, compared to
the policies of Chapter 4, policies in this chapter will have to balance a new tradeoff between
maximizing instantaneous system efficiency and favoring short jobs over long jobs.

Key Insight

In general, the mean response time across a set of jobs will be reduced when shorter jobs are com-
pleted before longer jobs. In fact, in the case where we have a single-core system, the optimal
policy for allocating that single core to jobs of known sizes is the Shortest Remaining Processing
Time (SRPT) policy, which allocates the entire core to the job with smallest remaining size [93].
Additionally, in a multicore system where jobs are perfectly parallelizable, we note that the sys-
tem’s many cores really function as a single large processor which can be arbitrarily allocated
without any loss in instantaneous system efficiency. Hence, if jobs are perfectly parallelizable,
SRPT is optimal with respect to mean response time.

However, as we saw in Chapter 4, system efficiency becomes a concern when jobs are only
partially parallelizable. If we were to employ SRPT when scheduling partially parallelizable jobs,
allocating all cores to the shortest job in the system, the loss in system efficiency could be arbitrarily
high. The question, then, is how to weigh the benefit of favoring a short job against the loss of
instantaneous system efficiency that results from allocating more cores to one individual job. In
particular, we have shown that EQUI maximizes instantaneous system efficiency, and SRPT gives
strict priority to short jobs, but neither of these policies is optimal in general when job sizes are
known. We will show in this chapter that an optimal policy must split the difference between EQUI
and SRPT, figuring out how to favor short jobs while still maintaining the overall efficiency of the
system.

5.1.2 Why Core Allocation is Counter-intuitive
Consider a simple system with n = 10 cores and M = 2 identical jobs of size 1, where s(k) = k.5,
and where we wish to minimize mean response time (which is equivalent to slowdown in this case).
A queueing theorist might look at this problem and say that to minimize response time, we should

38

use the SRPT policy, first allocating all cores to job one and then all cores to job two. However, this
causes the system to be very inefficient. Another intuitive argument would be that, since everything
in this system is symmetric, the optimal allocation should be symmetric. Hence, one might think
to allocate half the cores to job one and half the cores to job two. While this equal allocation does
maximize the efficiency of the system by ensuring that neither job receives too many cores, it does
not minimize their mean response time. Theorem 5.9 will show that the optimal policy in this
case is to allocate 75% of the cores to job one and 25% of the cores to job two. In our simple,
symmetric system, the optimal allocation is very asymmetric! Note that this asymmetry is not an
artifact of the form of the speedup function used. For example, if we had instead assumed that the
speedup function s was Amdahl’s Law [46] with a parallelizable fraction of f = .9, the optimal
split is to allocate 63.5% of the system to one of the jobs. Instead, the optimal policy balances the
tradeoff between using an efficient equal allocation and using the inefficient SRPT policy which
favors small jobs. If we imagine a set of M arbitrarily sized jobs, one suspects that the optimal
policy again favors shorter jobs, but it is not obvious how to calculate the exact allocations for this
policy.

5.1.3 Why Finding the Optimal Policy is Hard
At first glance, solving for the optimal policy seems amenable to classical optimization techniques.
However, naive application of these techniques would require solving M ! optimization problems,
each consisting of O(M2) variables and O(M) constraints. Furthermore, although these tech-
niques could produce the optimal policy for a single problem instance, it is unlikely that they
would yield a closed form solution. We instead advocate for finding a closed form solution for the
optimal policy, which allows us to build intuition about the underlying dynamics of the system.

To understand the source of this complexity, we will first consider the problem of minimizing
the total response time of a set of just two jobs of sizes x1 and x2 respectively. If we assume that
the optimal policy completes job 2 first, we can write an expression for the total response time of
the two jobs as follows:

T1 + T2 =
2 · x2

s(θ2(0))
+

(
x1 − s(θ1(0))·x2

s(θ2(0))

)
s(n)

.

The first term in this expression describes the total response time accrued between time 0 and time
T2. The duration of this period is x2

s(θ2(0))
, and because there are two jobs in the system during this

period, the total response time accrued during the period is 2·x2
s(θ2(0))

. The second term encodes the
remaining time required to finish job 1 after job 2 completes. This expression assumes that job
allocations only change at the time of a departure, which we will prove formally in Theorem 5.1.
More interestingly, however, this expression implicitly encodes the idea that the policy finishes job
2 before job 1. If, on the other hand, job 1 finishes first, the expression would change to

T1 + T2 =
2 · x1

s(θ1(0))
+

(
x2 − s(θ2(0))·x1

s(θ1(0))

)
s(n)

.

39

This has two main implications. First, it is possible that the allocation policy which minimizes
a particular expression for total response time does not complete jobs in the order encoded in
the expression. In this case, the value of the expression is meaningless – it does not equal the
total response time of the jobs under the computed policy. Hence, to find the optimal policy with
respect to a particular completion order, one must minimize the corresponding expression for total
response time subject to constraints which maintain the completion order of the allocation policy.
Second, because the objective function depends on the completion order of the jobs, there is no
single function to try to minimize to recover an optimal policy. Instead, we are interested in the
global minimum across all of the M ! completion orders, each of which has its own local minimum
that can be obtained by constrained minimization.

When there are only two jobs, it is tractable to directly solve for the optimal policy via known
constrained optimization methods. One can use Lagrange multipliers with two constraints – one to
ensure a valid allocation policy and one to enforce the completion order. One must solve two such
optimization problems corresponding to each of the potential completion orders. However, given
a set of M jobs with M ! possible completion orders, this naive approach would require solving
M ! optimization problems, each consisting of O(M2) variables used to define an allocation policy
and O(M) constraints. Even if some of this complexity could be elided by, for instance, proving
the completion order of the optimal policy (see Theorem 5.2), Lagrange multipliers are unlikely to
emit a closed form given such a complex objective function and large set of constraints.

Additionally, one may think to apply classical techniques from the deterministic scheduling
literature. Specifically, one technique is to show that the problem of minimizing weighted response
time can be reduced to solving a linear program where the feasible region is a polymatroid [12,
107]. The polymatroid technique can be used to show that a system is indexable (the optimal policy
is a simple priority policy) or even decomposable (job priorities do not depend on the other jobs in
the system). This technique can be used to provide a greedy algorithm for obtaining the optimal
policy. Unfortunately, the polymatroid technique is not straightforward to apply in our case.

Specifically, one generally proceeds by showing that a problem satisfies the so-called gener-
alized conservation laws [12, 107]. However, these conservation laws require scheduling policies
which are work-conserving, meaning the total rate at which the system completes work remains
constant over time. Allocation policies in our setting are not work conserving in general, and the
allocations used by the optimal policy do not maintain a constant work rate (see Figure 5.3). Ad-
ditionally, due to the form of the speedup function s(k) = kp, the region of achievable weighted
response times is not a polytope. Furthermore, the optimal policy we derive in Theorem 5.9 will
show that our problem is not decomposable for the case of minimizing weighted response time
where weights favor small jobs. While there may exist a reduction of our problem that would
allow one to establish some form of conservation laws, it is far from obvious what the “conserved
quantity” would be for our problem which would allow for application of these techniques.

Prior work has investigated the related problem of scheduling flows in networks where the
system capacity evolves over time [88]. However, this work derives an optimal policy only in the
case when the work rates of each job are constrained to lie in a series of polymatroids that describe
the system capacity at each moment in time. This assumption does not hold in our setting where
the work rate of each job is defined by the speedup function s(k) = kp.

40

Hence, standard techniques do not appear to be compatible with our goal of finding the optimal
policy with respect to weighted response time.

5.1.4 Contributions
Given a set of jobs with known sizes, this chapter presents the optimal allocation policy with
respect to mean response time. We call this policy, which balances the tradeoff between EQUI
and SRPT, high efficiency SRPT (heSRPT). We generalize heSRPT to optimize for a broad class
of weighted response time metrics which includes the mean slowdown metric (see Section 5.2).
Our analysis considers the case where all jobs are present in the system at time 0. While this is a
common case in practice, it is also interesting to consider an online version of the problem, where
jobs arrive over time. Unfortunately, it has been shown that, in general, no optimal policy exists to
minimize mean slowdown in the online case [6]. We demonstrate that heSRPT, which is optimal
in the offline case, provides an excellent heuristic policy, Adaptive-heSRPT, for minimizing mean
slowdown in the online case. Adaptive-heSRPT often performs an order of magnitude better than
policies previously suggested in the literature.

In Section 5.3, we provide a complete overview of our results, but here we summarize the main
contributions of this chapter.
• To derive the optimal allocation function, we first develop a new technique in Section 5.4 to

reduce the dimensionality of the optimization problem. This dimensionality reduction leverages
two key properties of the optimal policy. First, in Section 5.4.1, we show that the optimal policy
must complete jobs in shortest-job-first order. Then, in Section 5.4.2, we prove the scale-free
property of the optimal policy which illustrates the optimal substructure of the optimal policy.
These insights reduce the problem of solving M ! optimization problems of O(M2) variables
and O(M) constraints to the problem of solving one, unconstrained optimization problem of
exactly M variables.

• In Section 5.4.3, we solve our simplified optimization problem to derive the first closed form
expression for the optimal allocation of n cores to M jobs which minimizes weighted response
time when weights favor small jobs. At any moment in time t we define

θ∗(t) = (θ∗1(t), θ∗2(t), . . . , θ∗M),

where θ∗i (t) denotes the fraction of the n cores allocated to job i at time t. Note that θ∗i (t) does
not depend on n. Our optimal allocation balances the size-awareness of SRPT and the high
efficiency of EQUI. We thus refer to our optimal policy as high efficiency SRPT (heSRPT) (see
Theorem 5.9). We also provide a closed form expression for the weighted response time under
heSRPT (see Theorem 5.10).

• In Section 5.5.2, we numerically compare the optimal policies with respect to both mean slow-
down and mean response time to other heuristic policies proposed in the literature and show that
our optimal policies significantly outperform these competitors.

• Finally, Section 5.5.3 turns to the online setting where jobs arrive over time. We propose an
online version of heSRPT called Adaptive-heSRPT which uses the allocations from heSRPT to

41

0

5

10

15

20

25

0 10 20 30

Number of Cores (k)

S
pe

ed
up

 s
(k

) Benchmark

blackscholes

bodytrack

canneal

Figure 5.2: Various speedup functions of the form s(k) = kp (dotted lines) which have been fit to
real speedup curves (solid lines) measured from jobs in the PARSEC-3 parallel benchmarks[109].
The three jobs, blackscholes, bodytrack, and canneal, are best fit by the functions where p = .89,
p = .82, and p = .69 respectively.

recalculate core allocations on every arrival and departure. Adaptive-heSRPT significantly out-
performs competitor policies from the literature in simulation, often by an order of magnitude.

5.2 Our Model
Our model assumes there are n identical cores which must be allocated to M parallelizable jobs.
AllM jobs are present at time t = 0. Job i is assumed to have some inherent size xi where, without
loss of generality (WLOG),

x1 ≥ x2 ≥ . . . ≥ xM .

In general we will assume that all jobs follow the same speedup function, s : R+ → R+, which
is of the form

s(k) = kp

for some 0 < p < 1.
We choose the family of functions s(k) = kp because they are (i) sublinear and concave, (ii)

can be fit to a variety of empirically measured speedup functions (see Figure 5.2) [109], and (iii)
simplify the analysis in this chapter. Note that [46] assumes s(k) = kp where p = 0.5 and explicitly
notes that using speedup functions of another form does not significantly impact their results.

In this chapter, we assume that all jobs are malleable, and hence the number of cores allocated
to a job can change over the course of the job’s lifetime.

In general, we assume that there is some policy, P , which allocates cores to jobs at every time,
t. When describing the state of the system, we will use mP (t) to denote the number of remaining
jobs in the system at time t, and xPi (t) to denote the remaining size of job i at time t. To describe
the state of each job at time t, let W P

i (t) denote the total amount of work done by policy P on job
i by time t. Let W P

i (t1, t2) be the amount of work done by policy P on job i on the interval [t1, t2).
That is,

W P
i (t1, t2) = W P

i (t2)−W P
i (t1).

42

We denote the completion time of job i under policy P as T Pi . When the policy P is implied, we
will drop the superscript.

We will assume that the number of cores allocated to a job need not be discrete.
For each job, i, we define a corresponding weight wi > 0. We then define the weighted response

time for a set of jobs under policy P , F P , to be

F P =
M∑
i=1

wi · Ti.

By manipulating the weights associated with each job, one can derive metrics with different in-
tuitive meanings. We say that weights favor small jobs if larger weights are always assigned to
smaller jobs. That is, if

w1 ≤ w2 ≤ . . . ≤ wM .

The class of weighted response time metrics where weights favor small jobs includes several
popular metrics. First, note that the objective of minimizing mean response time is equivalent to
minimizing weighted response time when wi = 1 for each job, i. Another important metric that
belongs to this class of metrics is mean slowdown. The mean slowdown of a policy P , S

P
is

defined as

S
P

=
1

M
·
M∑
i=1

T Pi
xi/s(n)

.

The objective of minimizing mean slowdown is equivalent to minimizing weighted response time
when wi = 1

xi/s(n)
. Clearly, weights favor small jobs in this setting. Slowdown is a measure of

how a job was interfered with by other jobs in the system, and is often the metric of interest in the
theoretical parallel scheduling literature (where it is also called stretch) [68], as well as the HPC
community (where it is called expansion factor) [50].

For the sake of generality, this chapter considers the problem of finding the policy P ∗ which
minimizes the weighted response time for a set of M jobs when weights favor small jobs. Let F ∗

be the weighted response time under this optimal policy. We will denote the allocation function of
the optimal policy as θ∗(t). Similarly, we let m∗(t), x∗i (t), W ∗

i (t) and T ∗i denote the corresponding
quantities under the optimal policy.

5.3 Overview of Our Results
Our goal is to determine the optimal allocation of cores to jobs at every time, t, in order to minimize
the weighted response time of a set of M jobs of known size where weights favor small jobs. We
derive a closed form for the optimal allocation function

θ∗(t) = (θ∗1(t), θ∗2(t), . . . , θ∗M(t))

which defines the allocation for each job at any moment in time, t, that minimizes weighted re-
sponse time. We now provide an overview of the main theorems from this chapter.

43

We begin by showing that the optimal policy completes jobs in Shortest-Job-First (SJF) order.
The proof of this theorem uses an interchange argument to show that any policy which violates
the SJF completion order can be improved. Because jobs follow a concave speedup function, a
standard interchange proof fails. Our proof requires careful accounting, and interchanges cores
between many jobs simultaneously. This claim is stated in Theorem 5.2.
Theorem 5.2 (Optimal Completion Order). The optimal policy completes jobs in Shortest-Job-
First (SJF) order:

M,M − 1,M − 2, . . . , 1.

Since jobs are completed in SJF order, we can also conclude that, at time t, the jobs left in the
system are specifically jobs 1, 2, . . . ,m(t). Theorem 5.2 is proven in Section 5.4.1.

Theorem 5.2 does not rely on the specific form of the speedup function – it holds if s(k) is any
increasing, strictly concave function.

Besides completion order, the other key property of the optimal allocation that we exploit is
the scale-free property. Our scale-free property states that for any job, i, job i’s allocation relative
to jobs completed after job i (jobs larger than job i) is constant throughout job i’s lifetime. This
property is stated formally in Theorem 5.5.
Theorem 5.5 (Scale-free Property). For any job, i, there exists a constant ci such that, for all
t < T ∗i

θ∗i (t)∑i
j=1 θ

∗
j (t)

= ci.

The scale-free property has an intuitive interpretation. One can imagine the optimal policy as
starting with some optimal allocation function θ∗(0), which gives a θ∗i (0) fraction of the cores to
job i at time 0. When job M completes, it will leave behind a set of θ∗M(0) · n newly idle cores.
The scale-free property tells us that the new value of the optimal allocation is found by reallocating
these idle cores to each job i < M in proportion to θ∗i (0). That is, of the θ∗M(0) · n newly available
cores, job i should receive

θ∗i (0)∑M−1
j=1 θ∗j (0)

· θ∗M(0) · n

additional cores.
An example of the scale-free property in action can be seen in Figure 5.3. Here, the optimal

allocation policy gives all 3 jobs a non-zero allocation a time t = 0. When job 3 completes, its
cores are reallocated to jobs 1 and 2. The allocations of job 1 and job 2 both increase, but the ratio
of these jobs’ allocations remains constant.

The scale-free property provides an optimal substructure that we exploit to reduce the dimen-
sionality of our optimization problem. For example, consider the case where the optimal allocation
function is known for a set of M−1 jobs, and we wish to additionally consider adding anM th job.
If we first decide how many cores to allocate to job M , the scale-free property tells us that stealing
these cores from the other M − 1 jobs in proportion to their existing allocations will produce the
optimal policy. Hence, knowing the optimal policy for a set of M − 1 jobs reduces the problem of
finding the optimal policy for a set of M jobs to a single variable optimization problem. Theorem
5.5 is proven in Section 5.4.2.

44

0.00

0.25

0.50

0.75

1.00

0.00 0.230.23 0.440.44 0.820.00 0.230.23 0.440.44 0.820.00 0.230.23 0.440.44 0.82
Time t

A
llo

ca
tio

n
θ(

t)

Job Number
x3 = 2

x2 = 3

x1 = 5

Allocation Over Time

Figure 5.3: Allocations made by the optimal allocation policy with respect to mean slowdown,
heSRPT, completing a set of M = 3 jobs where the speedup function is s(k) = k.5 and n = 100.
Job 3 completes at time t = .23, job 2 completes at time t = .44 and job 1 completes at time
t = .82. Jobs are finished in Shortest Job First order. Rather than allocating the whole system to
the shortest job, heSRPT optimally shares the system between all active jobs.

Note that, while we state the scale-free property above for the optimal policy, the scale-free
property actually holds for a more a general class of policies. For any given completion order of
the jobs, the policy which minimizes weighted response time while completing jobs in the given
order will obey the scale-free property.

We are now finally ready to state Theorem 5.9, which provides the allocation function for the
optimal allocation policy which minimizes weighted response time when weights favors small
jobs.
Theorem 5.9 (Optimal Allocation Function). At time t, when m(t) jobs remain in the system,

θ∗i (t) =

(

z(i)
z(m(t))

) 1
1−p −

(
z(i−1)
z(m(t))

) 1
1−p

1 ≤ i ≤ m(t)

0 i > m(t)

where

z(k) =
k∑
i=1

wi.

We refer to the optimal allocation policy which uses θ∗(t) as heSRPT.
Theorem 5.9 is proven in Section 5.4.3. Given the optimal allocation function θ∗(t), we can

also explicitly compute the optimal weighted response time for any set of M jobs. This is stated in
Theorem 5.10.
Theorem 5.10 (Optimal Weighted Response Time). Given a set of M jobs of size x1 ≥ x2 ≥
. . . ≥ xM , the weighted response time, F ∗, under the optimal allocation policy θ∗(t) is given by

F ∗ =
1

s(n)

M∑
k=1

xk ·
[
z(k)

1
1−p − z(k − 1)

1
1−p
]1−p

45

where

z(k) =
k∑
i=1

wi.

Note that the optimal allocation policy biases its allocations towards shorter jobs, but does not
give strict priority to these jobs in order to maintain the overall efficiency of the system. That is,

0 < θ∗1(t) < θ∗2(t) < . . . < θ∗m(t)(t).

This is illustrated in Figure 5.3, where the smallest remaining jobs always get the largest allocations
under the optimal policy. We refer to the optimal policy derived in Theorem 5.9 as High Efficiency
Shortest-Remaining-Processing-Time or heSRPT.

Section 5.5.1 discusses how to apply Theorems 5.9 and 5.10 in order to optimize both the mean
slowdown and mean response time metrics. These applications are summarized in Corollary 5.11.

Corollary 5.11 (Optimal Mean Slowdown and Mean Response Time). If we define

wi =
1

xi/s(n)
and thus z(k) =

k∑
i=1

1

xi/s(n)
,

Theorem 5.9 yields the optimal policy with respect to mean slowdown and Theorem 5.10 yields the
optimal total slowdown.

If we define
wi = 1 and thus z(k) = k,

Theorem 5.9 yields the optimal policy with respect to mean response time and Theorem 5.10 yields
the optimal total response time.

The remainder of Section 5.5 is devoted to the development of Adaptive-heSRPT, an online
version of heSRPT.

5.4 Minimizing Weighted Response Time

5.4.1 The Optimal Completion Order
To determine the optimal completion order of jobs, we first show that the optimal allocation func-
tion remains constant between job departures. This implies that the optimal allocation has M
decision points where new allocations must be determined.
Theorem 5.1. Consider any two times t1 and t2 where, WLOG, t1 < t2. Let m∗(t) denote the
number of jobs in the system at time t under the optimal policy. If m∗(t1) = m∗(t2) then

θ∗(t1) = θ∗(t2).

Proof. Consider any time interval [t1, t2] during which no job departs the system, and hence
m∗(t1) = m∗(t2). Assume for contradiction that under the optimal policy θ∗(t1) 6= θ∗(t2). To

46

produce a contradiction, we will show that the weighted response time under the optimal pol-
icy can be improved by using a constant allocation during the time interval [t1, t2]. The constant
allocation we use is equal to the average value of θ∗(t) during the interval [t1, t2].

Specifically, consider the allocation function θ∗(t) where

θ∗(t) =

{
1

t2−t1

∫ t2
t1
θ∗(T)dT ∀t1 ≤ t ≤ t2

θ∗(t) otherwise.

Note that θ∗(t) is constant during the interval [t1, t2]. Furthermore, because
∑m(t)

i=1 θ∗i (t) ≤ 1 for
any time t,

∑m(t)
i=1 θ∗i (t) ≤ 1 at every time t as well, and θ∗(t) is therefore a feasible allocation

function. Because the speedup function, s, is a strictly concave function, Jensen’s inequality gives∫ t2

t1

s
(
θ∗(t)

)
dt ≥

∫ t2

t1

s (θ∗(t)) dt

and for at least one job, i, the above inequality will be strict. Hence, the residual size of each job
under the allocation function θ∗(t) at time t2 is at most the residual size of that job under θ∗(t) at
time t2, and the residual time of job i is strictly less under the new policy at time t2. This guarantees
that no jobs will have its response time increased by this transformation and at least one job will
have its response time decreased by this transformation. We have thus constructed a policy with a
lower weighted response time than the optimal policy, a contradiction.

For the rest of the chapter, we will therefore only consider allocation functions which change
exclusively at departure times.

We can now show that the optimal policy will complete jobs in Shortest-Job-First order.
Theorem 5.2 (Optimal Completion Order). The optimal policy completes jobs in Shortest-Job-
First (SJF) order:

M,M − 1,M − 2, . . . , 1.

Proof. Assume the contrary, that the optimal policy does not follow the SJF completion order.
This means there exist two jobs α and β such that xα < xβ but T ∗β < T ∗α . Note that any number of
completions may occur between job α and job β.

If the allocation to job α had always been at least as large as the allocation to job β, it is easy to
see that job α would have finished first. Hence, we can identify some intervals of time where: (i)
the allocations to job α and job β are constant because there are no departures and (ii) the allocation
to job β is higher than the allocation to job α. Let I be the smallest set of disjoint intervals such
that for every [t1, t2) = i ∈ I

θ∗α(t) = θ∗α(t′) and θ∗β(t) = θ∗β(t′) ∀t, t′ ∈ [t1, t2) (5.1)

θ∗β(t1) > θ∗α(t1). (5.2)

Note also that on the interval [T ∗β , T
∗
α), job α receives some positive allocation while job β receives

no allocation because it is complete.

47

On some subset of these intervals we will perform an interchange which will reduce the
weighted response time of the jobs, producing a contradiction. Let P be the policy resulting from
this interchange. Under P , we will fully exchange β and α’s allocations on the interval [T ∗β , T

∗
α).

That is, for any t ∈ [T ∗β , T
∗
α), θPβ (t) = θ∗α(t) and θPα (t) = 0. To offset this interchange we will

reallocate cores from β to α on some subset of the intervals in I . We will argue that, after this
interchange, T Pβ = T ∗α and T Pα < T ∗β , leading to a reduction in weighted response time.

Let W P
i (t) be the total amount of work done by policy P on job i by time t. Let W P

i (t1, t2) be
the amount of work done by policy P on job i on the interval [t1, t2). That is,

W P
i (t1, t2) = W P

i (t2)−W P
i (t1).

Let γ = W ∗
α(T ∗β , T

∗
α). Since job α finished at exactly time T ∗α , we know that W ∗

α(T ∗β) = xα − γ.
Similarly, we know that

W ∗
β (T ∗β) = xβ.

We can see that policy P has the capacity to do up to γ work on job β on the interval [T ∗β , T
∗
α).

Specifically, if
W P
β (T ∗β) = xβ − γ

then T Pβ = T ∗α .
We will now reallocate cores from job β to job α on some of the intervals in I until W P

β (T ∗β) =
xβ − γ. On every such interval i = [t1, t2) ∈ I we will choose

0 ≤ δi ≤ θ∗β(t1)− θ∗α(t1)

and let
θPβ (t1) = θ∗β(t1)− δi and θPα (t1) = θ∗α(t1) + δi.

Decreasing job β’s allocation on this interval has a well defined effect on W P
β (T ∗β). Namely,

decreasing an allocation of a θ∗β(t1) fraction of the cores by δi decreases W P
β (T ∗β) by

(t2 − t1)(s(θ∗β(t1) · n)− s((θ∗β(t1)− δi) · n)).

Note that, for any interval i ∈ I , W P
β (T ∗β) is a continuous, decreasing function of δi.

We will now iteratively apply the following interchange algorithm. Initialize δi = 0, ∀i ∈ I .
For each interval i ∈ I , try setting δi to be θ∗β(i) − θ∗α(i). If W P

β (T ∗β) is greater than xβ − γ after
this interchange, proceed to the next interval. If W P

β (T ∗β) < xβ − γ using this value of δi, there
must exist some 0 < δi < θ∗β(i) − θ∗α(i) such that W P

β (T ∗β) = xβ − γ by the intermediate value
theorem. Select this value of δi and terminate the algorithm.

To see this algorithm terminates, consider what would happen if

δi = θ∗β(i)− θ∗α(i) ∀i ∈ I.

In this case,
θPβ (t) ≤ θ∗α(t) ∀t ≤ T ∗β

48

which would imply that

W P
β (T ∗β) ≤ W ∗

α(T ∗β) = xα − γ < xβ − γ.

Hence the algorithm will terminate before running out of intervals in I . By construction, we know
that T Pβ = T ∗α .

We now show that, after performing the interchange, T Pα < T ∗β . To see this, consider the total
amount of work done on any interval in i = [t1, t2) ∈ I before and after the interchange. Because
only the allocations to α and β have changed, it is clear that

m(t1)∑
j=1

W P
j (t1, t2)−W ∗

j (t1, t2) = (W P
α (t1, t2) +W P

β (t1, t2))− (W ∗
α(t1, t2) +W ∗

β (t1, t2)).

By the strict concavity of s, we know that the second derivative of s is negative. As illustrated in
Figure 5.4, and because θ∗β(t1)− δi ≥ θ∗α(t1) by construction, we know that

s((θ∗α(t1) + δi)n)− s(θ∗α(t1)n) > s(θ∗β(t1)n)− s((θ∗β(t1)− δi)n). (5.3)

}0

2

4

6

θα
∗(t1)N (θα

∗(t1) + δ)N (θβ
∗(t1) − δ)N θβ

∗(t1)N

Number of Cores (k)

S
p

e
e

d
u

p
 s

(k
)

δN }δN

Figure 5.4: An illustration of (5.3). Because the speedup function, s, is concave, its second deriva-
tive is negative. Hence, s increases less on the interval [(θ∗β(t1)− δ)n, θ∗β(t1)n] than on the interval
[θ∗α(t1)n, (θ∗α(t1) + δ)n].

Factoring out n gives

s(θ∗α(t1) + δi)− s(θ∗α(t1)) > s(θ∗β(t1))− s(θ∗β(t1)− δi)

and thus (
s(θ∗α(t1) + δi) + s(θ∗β(t1)− δi)

)
−
(
s(θ∗α(t1)) + s(θ∗β(t1))

)
> 0.

Multiplying both sides by (t2 − t1), we see that

(W P
α (t1, t2) +W P

β (t1, t2))− (W ∗
α(t1, t2) +W ∗

β (t1, t2)) > 0

49

since both allocations are constant on the interval [t1, t2). That is, the total amount of work done
on interval i has increased. Since this holds for all i ∈ I we have that

∑
[t1,t2)∈I

(W P
α (t1, t2) +W P

β (t1, t2))− (W ∗
α(t1, t2) +W ∗

β (t1, t2)) > 0

∑
[t1,t2)∈I

W P
α (t1, t2)−W ∗

α(t1, t2)−
∑

[t1,t2)∈I

W ∗
β (t1, t2)−W P

β (t1, t2) > 0. (5.4)

Again, by construction, we have decreased the amount of work done on job β during the intervals
in I by exactly γ. That is, ∑

[t1,t2)∈I

W ∗
β (t1, t2)−W P

β (t1, t2) = γ

and hence by (5.4) ∑
[t1,t2)∈I

W P
α (t1, t2)−W ∗

α(t1, t2) > γ.

Recall that W ∗
α(T ∗β) = xα − γ. Thus

W P
α (T ∗β)−W ∗

α(T ∗β) =
∑

[t1,t2)∈I

W P
α (t1, t2)−W ∗

α(t1, t2)

W P
α (T ∗β)− (xα − γ) > γ

W P
α (T ∗β) > xα.

This implies that, under policy P , job α finishes before time T ∗β .
We can thus conclude that after the interchange, policy P completes job β at exactly T ∗α and

policy P completes job α at some time before T ∗β . All other jobs are unchanged by this interchange,
and hence their response times remain the same. Hence, it suffices to show that

wαT
P
α + wβT

P
β < wαT

∗
α + wβT

∗
β .

Because weights favor small jobs we have that wβ < wα. Furthermore, we have assumed that
T ∗α > T ∗β . Hence,

wβ
(
T ∗α − T ∗β

)
< wα

(
T ∗α − T ∗β

)
wβT

∗
α + wαT

∗
β < wαT

∗
α + wβT

∗
β ,

and thus by construction

wβT
P
β + wαT

P
α < wβT

∗
α + wαT

∗
β < wαT

∗
α + wβT

∗
β .

This implies that the policy P has a lower weighted response time than the optimal policy, a
contradiction.

50

Definition 5.3. It will be useful to consider the rate at which weighted response time is accrued
in between departures. Because the optimal completion order is SJF, we know that job k will
complete directly after job k + 1, and that during the interval [T ∗k+1, T

∗
k), jobs 1 through k will be

present in the system. Hence, we define z(k) to be the rate at which total response time is accrued
during the interval [T ∗k+1, T

∗
k), where

z(k) =
k∑
i=1

wi.

5.4.2 The Scale-Free Property
The goal of this section is to characterize some optimal substructure of the optimal policy that
will allow us to reduce the search space for the optimal policy. Hence, we now prove an inter-
esting property of the optimal policy which we call the scale-free property. We will first need a
preliminary lemma.
Lemma 5.4. Consider an allocation function θ(t) which, on some time interval [0, T] leaves β
fraction of the system unused. That is,

m(t)∑
i=1

θi(t) = 1− β ∀t ∈ [0, T].

The total work done on any job i by time T under θ(t) is equivalent to the total work done on job
i by time T under an allocation function θ′(t) where

θ′(t) =
θ(t)

1− β ∀t ∈ [0, T]

in a system that runs at (1− β)p times the speed of the original system (which runs at rate 1).

Proof. Consider the policy θ′(t) in a system which runs at (1− β)p = s(1− β) times the speed of
the original system on [0, T]. The service rate of any job in this system on [0, T] is given by

s(1− β) · s(θ′(t) · n) = s((1− β) · θ′(t) · n) = s(θ(t) · n).

Since, at any time t′ ∈ [0, T], the service rate for any job i is the same under θ(t) as it is under
θ′(t) in a system which is (1−β)p times as fast, the same amount of work is done on job i by time
T in both systems.

Using Lemma 5.4 we can characterize the optimal policy. Theorem 5.5 states that a job’s allocation
relative to the jobs larger than it will remain constant for the job’s entire lifetime.
Theorem 5.5 (Scale-free Property). For any job, i, there exists a constant ci such that, for all
t < T ∗i

θ∗i (t)∑i
j=1 θ

∗
j (t)

= ci.

51

Proof. We will prove this statement by induction on the overall number of jobs, M . First, note
that the statement is trivially true when M = 1. It remains to show that if the theorem holds for
M = k, then it also holds for M = k + 1.

LetM = k+1 and let T ∗i denote the finishing time of job i under the optimal policy. Recall that
the optimal policy finishes jobs according to the SJF completion order, so T ∗i+1 ≤ T ∗i . Consider
a system which optimally processes k jobs, which WLOG are jobs 1, 2, . . . ,M − 1. We will now
ask this system to process an additional job, job M . From the perspective of the original k jobs,
there will be some constant portion of the system, θ∗M , used to process job M on the time interval
[0, T ∗M]. The remaining 1−θ∗M fraction of the system will be available during this time period. Just
after time T ∗M , there will be at most k jobs in the system, and hence by the inductive hypothesis the
optimal policy will obey the scale-free property on the interval (T ∗M , T

∗
1].

Consider the problem of minimizing the weighted response time of the M jobs given any fixed
value of θ∗M such that the SJF completion order is obeyed. We can write the optimal weighted
response time of the M jobs, F ∗, as

F ∗ = wMT
∗
M +

M−1∑
j=1

wjT
∗
j

where wMT ∗M is a constant. Clearly, optimizing weighted response time in this case is equivalent
to optimizing the weighted response time for M − 1 = k jobs with the added constraint that θ∗M is
unavailable (and hence “unused” from the perspective of jobsM − 1 through 1) during the interval
[0, T ∗M]. By Lemma 5.4, this is equivalent to having a system that runs at a fraction (1− θ∗M)p of
the speed of a normal system during the interval [0, T ∗M].

Thus, for some d > 1, we will consider the problem of optimizing weighted response time for
a set of k jobs in a system that runs at a speed 1

d
times as fast during the interval [0, T ∗M].

Let F ∗[xM−1, . . . , x1] be the optimal weighted response time of k jobs of size xM−1 . . . x1. Let
F s[xM−1, . . . , x1] be the weighted response time of these jobs in a slow system which always runs
1
d

times as fast as a normal system.
If we let T si be the finishing time of job i in the slow system, it is easy to see that

T ∗i =
T si
d

since we can just factor out a d from the expression for the completion time of every job in the
slow system. Hence, we see that

F ∗[xM−1, . . . , x1] =
F s[xM−1, . . . , x1]

d

by the same reasoning. Clearly, then, the optimal allocation function in the slow system, θs(t), is
equal to θ∗(t) at the respective departure times of each job. That is,

θ∗(T ∗j) = θs(T sj) ∀1 ≤ j ≤M − 1.

We will now consider a mixed system which is “slow” for some interval [0, T ∗M] that ends before
T sM−1, and then runs at normal speed after time T ∗M . Let FZ [xM−1, . . . , x1] denote the weighted

52

response time in this mixed system and let θZ(t) denote the optimal allocation function in the
mixed system. We can write

FZ [xM−1, . . . , x1] = z(k) · T ∗M

+ F ∗[xM−1 −
s(θZM−1)T ∗M

d
, . . . x1 −

s(θZ1)T ∗M
d

].

Similarly we can write

F s[xM−1, . . . , x1] = z(k) · T ∗M
+ F s[xM−1 −

s(θsM−1)T ∗M
d

, . . . x1 −
s(θs1)T ∗M

d
].

Let TZi be the finishing time of job i in the mixed system under θZ(t). Since z(k) · T ∗M is a
constant not dependent on the allocation function, we can see that the optimal allocation function
in the mixed system will make the same allocation decisions as the optimal allocation function in
the slow system at the corresponding departure times in each system. That is,

θ∗(T ∗j) = θs(T sj) = θZ(TZj) ∀1 ≤ j ≤M − 1.

By the inductive hypothesis, the optimal allocation function in the slow system obeys the scale-
free property. Hence, θZ(t) also obeys the scale-free property for this set of k jobs given any fixed
value of θ∗M .

We now apply Lemma 5.4 again, multiplying θZ(t) by 1−θ∗M on the interval [0, T ∗M] to recover
an allocation policy with θ∗M unused cores on [0, T ∗M]. We call the resulting policy θP (t). By
Lemma 5.4, jobs M − 1, . . . , 1 have the same residual sizes at time T ∗M in a mixed system under
θZ(t) as they do in a constant speed system under θP (t). Hence, because the mixed system under
θZ(t) and the constant speed system under θP (t) are identical after time T ∗M , the weighted response
time in these two systems is the same. Therefore, if θZ(t) is optimal in the mixed system, θP (t)
minimizes the weighted response time of jobs M − 1, . . . , 1 for any fixed value of θ∗M in a normal
speed system. Since θZ(t) obeys the scale-free property, θP (t) obeys the scale-free property for
jobs 1, . . . ,M − 1. Hence, for a set of M = k + 1 jobs, given any allocation θ∗M to job M on the
interval [0, T ∗M], the optimal allocations to the remaining M − 1 jobs obey the scale-free property.
Finally, the scale-free property is trivially satisfied for job M by allocating any fixed θ∗M to job
M on the interval [0, T ∗M] and setting ci = θ∗M . The optimal allocation function for processing the
M = k+1 jobs therefore obeys the scale-free property. This completes the proof by induction.

Definition 5.6. The scale-free property tells us that, under the optimal policy, job i’s allocation
relative to the jobs completed after it is a constant, ci. Note that the jobs completed after job i
are precisely the jobs with an initial size of at least xi, since the optimal policy follows the SJF
completion order. It will be useful to define a scale-free constant, ω∗i , for every job i, where for
any t < T ∗i

ω∗i =
1

ci
− 1 =

∑i−1
j=1 θ

∗
j (t)

θ∗i (t)
.

53

Note that we define ω1 = 0. Let ω∗ = (ω∗1, ω
∗
2, . . . , ω

∗
M) denote the scale-free constants corre-

sponding to each job.

5.4.3 Finding the Optimal Allocation Function
We will now make use of the scale-free property and our knowledge of the optimal completion
order to find the optimal allocation function. We will consider the weighted response time under
any policy, P , which obeys the scale-free property and follows the SJF completion order. In
Lemma 5.7, we derive an expression for the weighted response time under the policy P as a
function of the scale-free constants ωP . In Theorem 5.8 we then minimize this expression to find
the optimal scale-free constants and the optimal allocation function.
Lemma 5.7. Consider a policy P which obeys the scale-free property and which completes jobs
in shortest-job-first order. We define

ωPi =

∑i−1
j=1 θ

P
j (t)

θPi (t)
∀1 < i ≤M, 0 ≤ t < T Pi

and ωP1 = 0. We can then write the weighted response time under policy P as a function of
ωP = (ωP1 , ω

P
2 , . . . , ω

P
M) as follows

F P (ωP) =
1

s(n)

M∑
k=1

xk ·
[
z(k)s(1 + ωPk)− z(k − 1)s(ωPk)

]
Proof. To analyze the total weighted response time under P we will relate P to a simpler policy,
P ′, which is much easier to analyze. We define P ′ to be

θP
′

i = θP
′

i (t) = θPi (0) ∀1 ≤ i ≤M.

Importantly, each job receives some initial optimal allocation at time 0 which does not change over
time under P ′. Since allocations under P ′ are constant we have that

T P
′

k =
xk

s(θP
′

k)
.

We can now derive equations that relate T Pk to T P ′k .
By Theorem 5.5, during the interval [T P

′

k+1, T
P ′

k],

ωPi = ωP
′

i ∀1 ≤ i ≤ k.

Note that a fraction of the system
∑M

i=k+1 θ
P ′
i is unused during this interval, and hence by Lemma

5.4, we have that

T P
′

k − T P
′

k+1 =
T Pk − T Pk+1

s(θP
′

1 + · · ·+ θP
′

k)
.

54

Let αk = 1

s(θP
′

1 +···+θP ′k)
be the scaling factor during this interval.

If we define xM+1 = 0 and T PM+1 = 0, we can express the weighted response time under policy
P , F P , as

F P = z(M)T PM + z(M − 1)(T PM−1 − T PM) + · · ·+ z(2)(T P2 − T P3) + z(1)(T P1 − T P2)

=
M∑
k=1

z(k)(T Pk − T Pk+1)

=
M∑
k=1

z(k)
T P

′

k − T P
′

k+1

αk
.

We can now further expand this expression in terms of the job sizes, using the fact that s(ab) =
s(a) · s(b), as follows:

F P =
M∑
k=1

z(k)

xk
s(θP

′
k n)
− xk+1

s(θP
′

k+1n)

αk

=
1

s(n)

M∑
k=1

z(k) ·
[
xks(1 + ωP

′

k)− xk+1s(ω
P ′

k+1)
]

=
1

s(n)

M∑
k=1

xk ·
[
z(k)s(1 + ωPk)− z(k − 1)s(ωPk)

]
(5.5)

as desired.

We now have an expression for the weighted response time of any policy P which obeys
the scale-free property and completes jobs in SJF order. Since the optimal policy obeys these
properties, the choice of P which minimizes the above expression for weighted response time
must be the optimal policy. In Theorem 5.8 we find a closed form expression for the optimal
scale-free constants.
Theorem 5.8 (Optimal Scale-Free Constants). The scale-free constants of the optimal policy are
given by the expression

ω∗k =
1(

z(k)
z(k−1)

) 1
1−p − 1

∀1 < k ≤M.

Proof. Consider a policy P which obeys the scale-free property and completes jobs in SJF order.
Let F P (ωP) be the expression for weighted response time for P from Lemma 5.7. Our goal is to
find a closed form expression forω∗, the scale-free constants which minimize the above expression
for weighted response time.

A sufficient condition for finding ω∗ is that a policy completes jobs in SJF order and satisfies
the following first-order conditions:

∂F P

∂ωPk
= 0 ∀1 ≤ k ≤M

55

The second-order conditions are satisfied trivially. Note that solely satisfying the first order
conditions is insufficient, because the resulting solution is not guaranteed to respect the SJF com-
pletion order. Luckily, we can show that any solution which satisfies the first-order conditions also
completes jobs in SJF order. To see this, we will begin by finding the allocation function, ΘP (t),
which satisfies the first-order conditions.

The first order conditions, obtained by differentiating (5.5), give

z(k)s′(1 + ωPk)− z(k − 1)s′(ωPk) = 0 ∀1 ≤ k ≤M

and hence
ωPk =

1(
z(k)
z(k−1)

) 1
1−p − 1

∀1 < k ≤M

We can show that the values of ΘP
k (t) are increasing in k (see B.1). That is, smaller jobs

always have larger allocations than larger jobs under ΘP (t). This implies that ΘP (t) follows the
SJF completion order, since a larger job cannot complete before a smaller job unless it receives
a larger allocation for some period of time. ΘP (t) therefore satisfies the sufficient condition for
optimality. We thus have found a closed form expression for the optimal scale free constants. That
is,

ω∗k =
1(

z(k)
z(k−1)

) 1
1−p − 1

∀1 < k ≤M

as desired.

We now derive the optimal allocation function in Theorem 5.9.
Theorem 5.9 (Optimal Allocation Function). At time t, when m(t) jobs remain in the system,

θ∗i (t) =

(

z(i)
z(m(t))

) 1
1−p −

(
z(i−1)
z(m(t))

) 1
1−p

1 ≤ i ≤ m(t)

0 i > m(t)

where

z(k) =
k∑
i=1

wi.

We refer to the optimal allocation policy which uses θ∗(t) as heSRPT.

Proof. We can now solve a system of equations to derive the optimal allocation function. Consider
a time, t, when there are m(t) jobs in the system. Since the optimal completion order is SJF, we
know that the jobs in the system are specifically jobs 1, 2, . . . ,m(t). We know that the allocation
to jobs m(t) + 1, . . . ,M is 0, since these jobs have been completed. Hence, we have that

θ∗1 + θ∗2 + . . .+ θ∗m(t) = 1.

56

Furthermore we have m(t)− 1 constraints provided by the expressions for ω∗2, ω
∗
3, . . . , ω

∗
m(t).

ω∗2 =
θ∗1(t)

θ∗2(t)
, ω∗3 =

θ∗2(t) + θ∗1(t)

θ∗3(t)
, · · · , ω∗m(t) =

∑m(t)−1
i=1 θ∗i (t)

θ∗m(t)(t)
.

These can be written as

θ∗1(t) = ω∗2θ
∗
2(t)

θ∗1(t) + θ∗2(t) = ω∗3θ
∗
3(t)

· · ·
θ∗1(t) + θ∗2(t) + · · ·+ θ∗m(t)−1(t) = ω∗m(t)θm(t)

θ∗1 + θ∗2 + . . .+ θ∗m(t) = 1

and then rearranged as

θ∗m(t)(t) =
1

1 + ω∗m(t)

θ∗m(t)−1(t) =
θ∗m(t)(t)ω

∗
m(t)

1 + ω∗m(t)−1

=
ω∗m(t)

(1 + ω∗m(t)−1)(1 + ω∗m(t))

· · ·
θ∗2(t) =

θ∗3(t)ω∗3
1 + ω∗2

=
ω∗3 · · ·ω∗m(t)

(1 + ω∗2) · · · (1 + ω∗m(t))

θ∗1(t) =
θ∗2(t)ω∗2
1 + ω∗1

=
ω∗2 · · ·ω∗m(t)

(1 + ω∗1) · · · (1 + ω∗m(t))
.

We can now plug in the known values of ω∗i and find that

θ∗i (t) =

(
z(i)

z(m(t))

) 1
1−p

−
(
z(i− 1)

z(m(t))

) 1
1−p

∀1 ≤ i ≤ m(t)

This argument holds for any m(t) ≥ 1, and hence we have fully specified the optimal allocation
function.

Taken together, the results of this section yield an expression for weighted response time under
the optimal allocation policy. This expression is stated in Theorem 5.10.
Theorem 5.10 (Optimal Weighted Response Time). Given a set of M jobs of size x1 ≥ x2 ≥
. . . ≥ xM , the weighted response time, F ∗, under the optimal allocation policy θ∗(t) is given by

F ∗ =
1

s(n)

M∑
k=1

xk ·
[
z(k)

1
1−p − z(k − 1)

1
1−p
]1−p

where

z(k) =
k∑
i=1

wi.

57

5.5 Discussion and Evaluation
We now examine the impact of the results shown in Section 5.4.

Section 5.5.1 shows how the results of Section 5.4 can be applied to provide the optimal policy
with respect to mean slowdown and mean response time.

We perform a numerical evaluation of heSRPT in Section 5.5.2. We compare heSRPT to
several competitor policies from the literature and show that heSRPT not only outperforms these
policies as expected, but often reduces slowdown by over 30%.

The above results apply in the common case where all jobs are present at time 0, but it is
also interesting to consider the online case where jobs arrive over time. To address the online
case, we use heSRPT as the basis of a heuristic policy. Section 5.5.3 compares our heuristic pol-
icy, Adaptive-heSRPT, to other heuristic allocation policies from the literature. Adaptive-heSRPT
vastly outperforms other heuristic policies in this online case.

5.5.1 Applying heSRPT
The optimality results of Section 5.4.3 were stated in terms of any weighted response time metric
where weights favor small jobs. Specifically, this class of metrics can be used to find the optimal
policy with respect to several popular metrics including mean slowdown and mean response time.
This is summarized in the following corollary.
Corollary 5.11 (Optimal Mean Slowdown and Mean Response Time). If we define

wi =
1

xi/s(n)
and thus z(k) =

k∑
i=1

1

xi/s(n)
,

Theorem 5.9 yields the optimal policy with respect to mean slowdown and Theorem 5.10 yields the
optimal total slowdown.

If we define
wi = 1 and thus z(k) = k,

Theorem 5.9 yields the optimal policy with respect to mean response time and Theorem 5.10 yields
the optimal total response time.

This corollary follows directly from the definitions of mean slowdown and mean response time,
respectively. Specifically, our results hold in these cases because the weights used in both cases
favor small jobs.

One might ask which, if any, of our results hold in the case where weights do not favor small
jobs. If weights do not favor small jobs it is easy to construct an example where one should not
complete jobs in SJF order. Giving a job of any size a sufficiently high weight can cause it to
complete first under the optimal policy. In addition to obviously contradicting Theorem 5.2, the
SJF completion order was exploited in the proof of Theorem 5.8. It is worth noting, however, that
regardless of the weights used, the optimal policy will obey the scale free property of Theorem 5.5.

58

Parameter p = 0.05 Parameter p = 0.3 Parameter p = 0.5 Parameter p = 0.75 Parameter p = 0.9 Parameter p = 0.99

0

100

200

300

0

50

100

150

200

0

30

60

90

0

5

10

15

0

2

4

6

0.0

0.5

1.0

1.5

2.0

112 111 113 11340

he
SR

PT

SR
PT

EQ
UI

HE
LL

[6
2]

KN
EE

[6
2]

he
SR

PT
SR

PT
EQ

UI
HE

LL
[6

2]
KN

EE
[6

2]

he
SR

PT

SR
PT

EQ
UI

HE
LL

[6
2]

KN
EE

[6
2]

he
SR

PT

SR
PT

EQ
UI

HE
LL

[6
2]

KN
EE

[6
2]

he
SR

PT

SR
PT

EQ
UI

HE
LL

[6
2]

KN
EE

[6
2]

he
SR

PT

SR
PT

EQ
UI

HE
LL

[6
2]

KN
EE

[6
2]

M
ea

n
 S

lo
w

d
ow

n

Figure 5.5: Mean slowdown of heSRPT and allocation policies from the literature in the offline
setting with all jobs present at time 0. Evaluation assumes n = 1, 000, 000 cores and M = 500
jobs whose sizes are Pareto(α = .8) distributed. Each graph shows mean slowdown for one value
of the speedup parameter, p, where s(k) = kp. heSRPT often dominates by over 30%.

5.5.2 Numerical Evaluation: Offline Setting
We now compare the optimal mean slowdown under heSRPT with the mean slowdown under
policies from the literature.

Our comparison continues to assume that all jobs are present at time 0. While we have a closed
form expression for the optimal mean slowdown under heSRPT, we wish to compare heSRPT to
policies for which there is no closed form analysis. Hence, we perform a numerical analysis of
heSRPT and several policies from the literature.

We compare heSRPT to the following list of competitor policies:
SRPT allocates the entire system to the single job with shortest remaining processing time.

While SRPT is optimal when p = 1, we expect SRPT to perform poorly when jobs make inefficient
use of cores. When all jobs are present at time 0, SRPT is equivalent to the RS policy [104] which
minimizes mean slowdown in an M/G/1.

EQUI allocates an equal fraction of the cores to each job at every moment in time. EQUI has
been analyzed using competitive analysis [24, 25] in similar models of parallelizable jobs, and was
shown to be optimal in expectation when job sizes are unknown and exponentially distributed in
Chapter 6. Other policies such as Intermediate-SRPT [49] reduce to EQUI in our model where the
number of jobs, M , is assumed to be less than the number of cores, n.

HELL is a heuristic policy proposed in [62] which, similarly to heSRPT, tries to balance system
efficiency with biasing towards short jobs. HELL defines a job’s efficiency to be the function s(k)

k
.

HELL then iteratively allocates cores. In each iteration, HELL identifies the job which can achieve
highest ratio of efficiency to remaining processing time, and allocates to this job the cores required
to achieve this maximal ratio. This process is repeated until all cores are allocated. While HELL
is consistent with the goal of heSRPT, the specific ratio that HELL uses is just a heuristic.

KNEE is the other heuristic policy proposed in [62]. KNEE defines a job’s knee allocation
to be the number of cores for which the job’s marginal reduction in run-time falls below some
threshold, α. KNEE then iteratively allocates cores. In each iteration, KNEE identifies the job
with the lowest knee allocation and gives this job its knee allocation. This process repeats until all

59

cores are allocated. Because there is no principled way to choose this α, we perform a brute-force
search of the parameter space and present the results given the best α parameter we found. Hence,
results for KNEE are an optimistic prediction of KNEE’s performance.

We evaluate heSRPT and the competitor policies in a system of n = 1, 000, 000 cores and
M = 500 jobs whose sizes are Pareto(α = .8) distributed. The speedup parameter p is set to
values between 0.05 and 0.99. Figure 5.5 shows the results of this analysis.

heSRPT outperforms every competitor policy in every case as expected. When p is low, EQUI
is within 1% of heSRPT, but EQUI is over 3× worse than heSRPT when p = 0.99. Conversely,
when p = 0.99, SRPT is nearly optimal. However, SRPT is an order of magnitude worse than
heSRPT when p = 0.05. While HELL performs similarly to SRPT in most cases, it is 50% worse
than optimal when p = 0.05. The KNEE policy is the best of the competitor policies that we
consider. In the worst case, when p = 0.99, KNEE is roughly 50% worse than heSRPT. However,
these results for KNEE required brute-force tuning of the allocation policy. We examined several
other job size distributions and in all cases we saw similar trends.

Because the competitor policies described in this section were designed to minimize mean re-
sponse time, we now compare the optimal mean response time under heSRPT to the mean response
time of these competitor policies. The competitor policies remain unchanged from their descrip-
tions in this section, and the conditions of our analysis (numbers of cores, job size distribution,
speedup function) remain the same as well.

Figure 5.6 shows the results of our analysis. We see that the results with respect to mean
response time are generally similar to the results of Figure 5.5. heSRPT once again outperforms
every competitor policy by at least 30% in at least one case. Hence, the results shown in Figure 5.5
are not only caused by the fact that the competitor policies optimize for a different metric. Even
when comparing policies with respect to mean response time, each of the competitor policies can
be far from optimal.

Parameter p = 0.05 Parameter p = 0.3 Parameter p = 0.5 Parameter p = 0.75 Parameter p = 0.9 Parameter p = 0.99

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0

1

2

0

10

20

30

40

0

25

50

75

100

125

0

1000

2000

3000

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e

34k 3k1k 95 95 3.6 3.6

he
SR
PT

SR
PT
EQ
UI

HE
LL
[6
2]

KN
EE
[6
2]

he
SR
PT

SR
PT
EQ
UI

HE
LL
[6
2]

KN
EE
[6
2]

he
SR
PT

SR
PT
EQ
UI

HE
LL
[6
2]

KN
EE
[6
2]

he
SR
PT

SR
PT
EQ
UI

HE
LL
[6
2]

KN
EE
[6
2]

he
SR
PT

SR
PT
EQ
UI

HE
LL
[6
2]

KN
EE
[6
2]

he
SR
PT

SR
PT
EQ
UI

HE
LL
[6
2]

KN
EE
[6
2]

Figure 5.6: A comparison of the optimal mean response time under heSRPT to other allocation
policies found in the literature. Each policy is evaluated on a system of n = 1, 000, 000 cores and
a set of M = 500 jobs whose sizes are drawn from a Pareto distribution with shape parameter .8.
Each graph shows the mean response time under each policy with various values of the speedup
parameter, p, where the speedup function is given by s(k) = kp. heSRPT outperforms every
competitor by at least 30% in at least one case.

60

Parameter p = 0.3 Parameter p = 0.5 Parameter p = 0.75 Parameter p = 0.9

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

1

10

100

10

100

1000

10

100

1000

10000

10

100

1000

10000

System Load

M
e

a
n

 S
lo

w
d

o
w

n

policy
SRPT≈RS≈HELL≈KNEE

SRPT≈RS≈HELL≈
KNEE SRPT≈RS

SRPT
≈R

S≈
HEL

L≈
KNEE

[62]

[103]

[62]

Figure 5.7: Mean slowdown of A-heSRPT and policies from the literature in the online setting.
Simulations assume n = 10, 000 cores and a Poisson arrival process. Job sizes are Pareto(α = 1.5)
distributed. Each graph shows mean slowdown for one value of the speedup parameter, p, where
s(k) = kp. A-heSRPT often dominates by an order of magnitude.

5.5.3 Numerical Evaluation: Online Setting
While we have shown that heSRPT provides the optimal mean slowdown in the case where all jobs
are present at time 0, minimizing the slowdown of a stream of arriving parallelizable jobs remains
an open theoretical problem.

To understand the added complexity of the online setting, consider the problem of allocating
cores to two jobs at time 0, while knowing that an arrival will occur at time 1. The optimal policy
might try to complete one job quickly and allow the arrival to compete for cores with the second
job, or it might try and complete both of the original jobs before time 1 in order to reduce the
response time of the arriving job. In general, it is no longer sufficient to compare two jobs and
decide which to complete first. One must also decide how many jobs to complete before the next
arrival. This prevents the results in this chapter from generalizing cleanly to the online case.

We therefore use simulation to compare the performance of heSRPT to the competitor policies
described above in an online setting where jobs arrive over time. For this comparison, we define a
heuristic online policy, inspired by heSRPT, which we refer to as Adaptive-heSRPT (A-heSRPT).
A-heSRPT recalculates the allocation to each job every time a job departs from or arrives to the
system, using the heSRPT allocations as defined in Theorem 5.9. All of the other competitor
policies we examine generalize to online setting in a similar way, reevaluating their allocation
decisions on each arrival or departure.

For the sake of completeness, we also examine an additional competitor policy in the on-
line case, the RS policy [104] which is known to minimize mean slowdown online for non-
parallelizable jobs in an M/G/1 system [48]. The RS policy allocates all cores to the job with
the lowest product of remaining size (R) times initial size (S). RS is identical to SRPT if all jobs
are present at time 0, but must be considered separately in the online case.

Figure 5.7 shows that A-heSRPT outperforms all competitor policies in every case, often by
several orders of magnitude. When jobs are highly parallelizable, policies such as SRPT and
RS which aggressively favor small jobs can occasionally compete with A-heSRPT. However, as
load increases and the allocation decision becomes more complex, A-heSRPT vastly outperforms

61

the competition. Conversely, when jobs have a low level of parallelizability (low p), SRPT, RS,
HELL and KNEE fail to maintain the efficiency of the system and perform poorly. EQUI, which
maximizes efficiency but does not favor small jobs, follows the opposite trend – EQUI performs
decently when p is low, but it performs poorly when p is high. A-heSRPT is the only policy which
is able to handle high and low values of p over a range of system loads.

5.6 Conclusion
This chapter addresses the problem of scheduling parallelizable jobs of known size in order to
minimize an important class of weighted response time metrics. When designing a scheduling
policy, it is tempting to use an efficiency-maximizing policy such as EQUI. However, when job
sizes are known, an optimal policy might be willing to sacrifice system efficiency in order to favor
smaller jobs. Strictly favoring short jobs by using an SRPT policy sacrifices too much system
efficiency, and is far from optimal in general. This chapter shows that the optimal policy, heSRPT,
must carefully balance the tradeoff between instantaneous system efficiency and favoring short
jobs. While our optimality results are derived in the case where all jobs are present at time 0,
heSRPT serves as the basis for an online policy that performs well in practice.

From Section 5.5, it is clear that systems with known job sizes stand to benefit greatly from
implementing heSRPT. However, this chapter also has important implications for systems where
job sizes are currently not available to the system. Many of these systems do not make job size
information available to the scheduler largely because the importance of such information is not
well-understood by the systems community. For example, work has been done to better predict
the speedup function a data center job will receive [23]. Similar attempts can be made to predict
the inherent sizes of data center jobs. The results of this chapter show that, if we could develop
mechanisms for accurately predicting job sizes in data centers, response times in these systems
could be significantly reduced.

Having considered both the case where job sizes are completely unknown and the case where
job sizes are known exactly, it is natural to ask how a scheduling policy should behave when given
partial information about the sizes of the jobs. For example, if the job sizes are unknown, but are
known to follow a Pareto distribution, the expected remaining size of job will change depending
on how long the job has been running. Scheduling jobs with generally-distributed sizes in multi-
server systems remains as one of the most important open problems in the queueing community
[33]. While recent work has looked at scheduling non-parallelizable jobs with unknown sizes in a
multi-server system [90], these results require heavy-traffic analysis. Hence, the question of how
to schedule parallelizable jobs of unknown, generally distributed sizes remains an open problem
at the forefront of performance modeling research [37].

We have now seen one way in which a scheduling policy may be able to reduce job response
times by sacrificing the instantaneous system efficiency. However, this chapter still assumes that
all jobs follow a single speedup function. In the next two chapters we will see that additional,
analogous tradeoffs will arise when jobs are permitted to follow different speedup functions. Here,
rather than sacrificing instantaneous system efficiency to favor short jobs, an optimal policy may
defer parallelizable work to preserve the future efficiency of the system. When jobs follow multiple

62

speedup functions and have known sizes, an allocation policy must weigh multiple competing
tradeoffs simultaneously.

63

64

Chapter 6

Scheduling With Multiple Speedup
Functions

6.1 Introduction
In both Chapter 4 and Chapter 5 we have restricted our discussion to the case where all jobs
follow the same speedup function. This could be the case if, for example, a system was tasked
with processing jobs that represented instances of a single application being invoked with different
inputs. It is natural to ask, however, how a scheduling policy should behave when some jobs are
known to be more parallelizable than others.

Scheduling jobs which follow different speedup functions is particularly important because
modern parallel workloads can be astonishingly diverse [100]. Jobs from these heterogeneous
workloads can differ dramatically in both their inherent sizes and in how effectively they can be
parallelized [23]. This heterogeneity often occurs when different jobs in a given workload repre-
sent fundamentally different types of computation. For instance, a simple database lookup which
retrieves a single record may only be capable of running on a single core and may complete in just
milliseconds. On the other hand, data analytics queries generally require scanning entire tables and
aggregating statistics over large sets of records [76]. As such, databases are generally designed to
allow these analytics queries to be highly parallelizable [58]. As we will see in this chapter, em-
ploying scheduling policies which explicitly account for the heterogeneity of the workloads they
serve can dramatically improve system performance.

6.1.1 Scheduling Tradeoffs
This chapter considers the case where jobs may belong to one of two classes, each of which has its
own speedup function, si. We will assume that job sizes are once again unknown and exponentially
distributed, but that the scheduler can identify which class a job belongs to. That is, the scheduler
knows that some jobs are more parallelizable than others.

This chapter will show how we can optimally schedule parallelizable jobs which are heteroge-
neous with respect to their speedup functions. Figure 6.1 shows an illustration of the tradeoffs a

65

Maximize	System	Efficiency

Complete	short	jobs	before	long	jobs

Preserve	Future	Efficiency

Limit	individual	allocations Defer	parallelizable	work

Chapter	5

Chapter	6

Chapter	7

Shorter	jobs	get	larger	allocations

Figure 6.1: When job sizes are known to the system, a scheduling policy must balance a tradeoff
between maximizing instantaneous system efficiency maximizing future system efficiency.

policy must balance, updated to reflect the case where jobs follow different speedup functions.

Key Insight

The scheduling policies in this chapter will have to change in two principle ways in order to effec-
tively leverage the system’s knowledge of each job’s speedup function.

First, it should be clear that when jobs follow different speedup functions, EQUI is no longer
guaranteed to maximize instantaneous system efficiency. We argued in Chapter 4 that EQUI max-
imized instantaneous system efficiency by equalizing each job’s marginal benefit from receiving
additional cores. Extending this reasoning to the case where jobs follow different speedup func-
tions will require us to derive a new efficiency-maximizing policy that gives larger allocations to
the more parallelizable jobs in the system.

Second, this chapter will show that when jobs follow different speedup functions, maximiz-
ing instantaneous system efficiency is no longer sufficient for minimizing mean response time.
In Chapter 4, when jobs could not be differentiated on the basis of their sizes or speedup func-
tions, the order in which we completed the jobs had no effect on the overall mean response time.
However, when jobs follow different speedup functions, there can be a massive difference between
completing a more parallelizable job and completing a less parallelizable job. For example, con-
sider the case where the system is processing one perfectly parallelizable job, and one job that
cannot be parallelized at all. If the perfectly parallelizable job is completed first, the system will
only be able to effectively utilize one core to complete the remaining job. On the other hand, if
the non-parallelizable job is completed first, the remaining perfectly parallelizable job can make
use of all n cores. As this example illustrates, an optimal policy must balance a tradeoff between
the instantaneous system efficiency in the present state and the future efficiency of the system as
new jobs arrive and are completed. Specifically, an optimal may choose to defer parallelizable
work, sacrificing some instantaneous system efficiency by reducing the allocations to the more
parallelizable jobs in order to keep these more flexible jobs in the system in the future.

66

6.1.2 Contributions
In Section 6.3 we begin by considering the case where the speedup functions for each class can
be of a very general form – any two concave, increasing speedup functions such that s1(k) <
s2(k) ∀k > 1. While we can numerically compute an optimal policy in this case, the generality
of the model makes the problem difficult to solve analytically.

Then, in Section 6.4 we will consider an important special case where jobs are in one of two
particular classes. The first class of jobs, which we call elastic, consists of jobs which are perfectly
parallelizable. That is, elastic jobs follow a speedup function sE(k) = k for all k ≥ 0. The second
class of jobs, which we refer to as inelastic, consists of jobs which are not parallelizable. That is,
inelastic jobs follow a speedup function sI(k) = 1 for all k ≥ 1. We see that, in this case, we can
derive the form of the optimal policy, even if the elastic and inelastic jobs follow different job size
distributions.

The contributions of this chapter are as follows:
• In Section 6.3, we consider the case where the two classes of jobs may follow different speedup

functions of general forms. In this case, we can numerically compute an optimal policy which
balances the tradeoff between present and future efficiency by deferring parallelizable work.

• In Section 6.3 we also analyze a policy called GREEDY∗, which defers parallelizable work in a
limited manner, and performs near-optimally in practice.

• Next, in Section 6.4, we consider the case where jobs are either elastic or inelastic. We pro-
pose two natural scheduling policies which aim to minimize the mean response time across
jobs. First, the Elastic-First policy gives strict preemptive priority to elastic jobs and aims to
minimize mean response time by maximizing the rate at which jobs depart the system. Second,
the Inelastic-First policy gives strict preemptive priority to inelastic jobs. By deferring elas-
tic work for as long as possible, Inelastic-First maximizes average system efficiency. It is not
immediately obvious if either of these policies is optimal, or which policy is better.

• We show in Section 6.4.3 that if elastic and inelastic jobs follow the same exponential size
distribution, Inelastic-First is optimal with respect to mean response time. This argument uses
precedence relations to show that deferring elastic work increases the long run efficiency of the
system.

• Then, in Section 6.4.4, we show that in the case where elastic jobs are larger on average than
inelastic jobs, Inelastic-First is optimal with respect to mean response time. This requires the
introduction of a novel sample path argument. Our key insight is that Inelastic-First minimizes
the expected amount of inelastic work in the system as well as the expected total work in
the system. As long as elastic jobs are larger than inelastic jobs on average, this suffices for
minimizing mean response time.

• In the case where elastic jobs are smaller on average than inelastic jobs, Inelastic-First is no
longer optimal. We illustrate this via a counterexample in Section 6.4.5 which shows that
Elastic-First can outperform Inelastic-First. In order to determine when Elastic-First outper-
forms Inelastic-First, we perform the first analysis of both the Elastic-First and Inelastic-First
scheduling policies in Section 6.5. This analysis leverages recent techniques for solving high-
dimensional Markov chains. Our analytical results match simulation.

67

6.2 Our Model
Our goal is to derive and analyze policies which minimize the mean response time across jobs. In
this chapter, WLOG, we assume that each of the n cores processes jobs with a rate of 1 unit of
work per second. Hence, a job’s size is equal to its running time on a single core. We assume that
job sizes are unknown to the system, and are drawn from exponential distributions. We consider
the case where jobs belong to one of two classes of jobs, where each class of jobs follows its own
corresponding speedup function.

6.2.1 General Speedup Functions
In section 6.3, we begin by considering the case where the speedup functions for each class follow
a very general form. We assume that class 1 jobs arrive according to a Poisson process with rate λ1

and follow a speedup function s1(k) while class 2 jobs arrive according to a Poisson process with
rate λ2 and follow a speedup function s2(k). We assume only that s1 and s2 are any two increasing,
concave functions such that

s1(k) < s2(k) ∀k > 1.

We assume that the job sizes of both classes are unknown to the system and are exponentially
distributed with rate µ.

We model the system under any policy π as a continuous time Markov chain where each state
denotes the number of jobs belonging to each class that are currently in the system. That is, we
define a continuous time Markov process {(Nπ

1 (t), Nπ
2 (t)) : t ≥ 0} where

(Nπ
1 (t), Nπ

2 (t)) ∈ Z2
≥0, ∀t ≥ 0.

We define Nπ
1 (t) to be the number of class 1 jobs in system at time t and we define Nπ

2 (t) to be
the number of class 2 jobs in system at time t. We let the state (Nπ

1 (t), Nπ
1 (t)) = (i, j) denote that

there are i class 1 jobs and j class 2 jobs currently in the system.
Because job sizes are exponential and arrivals occur according to a Poisson process, at any

moment in time t, the distributions of remaining job sizes and the distributions of times until the
next arrival for each job class can be fully specified by the numbers of jobs belonging to each class
which are currently in the system. Hence, we will only consider policies which are stationary and
deterministic, meaning the policy π makes the same allocation decision at every time t, given that
the system is in state (i, j). Specifically, we define π1(i, j) to be the number of cores allocated to
class 1 jobs in state (i, j) under policy π, and we define π2(i, j) to be the number of cores allocated
to class 2 jobs in state (i, j) under policy π.

6.2.2 Elastic and Inelastic Jobs
Because this general formulation of the problem is hard to solve analytically, Section 6.4 considers
a special case where each job is either elastic or inelastic. Elastic jobs follow a speedup function

68

sE(k) and inelastic jobs follow a speedup function sI(k) where

sE(k) = k ∀k ≥ 0 sI(k) =

{
k 0 ≤ k ≤ 1

1 k > 1

That is, elastic jobs are perfectly parallelizable while inelastic jobs receive no benefit from running
on more than 1 core.

Note that all of the results presented in this chapter hold equally if inelastic jobs can run on
up to some fixed number of cores, C < n. We can simply renormalize our allocation policies to
consider allocating in units of n

C
cores. After renormalizing, inelastic jobs can once again receive

up to one unit of allocation while elastic jobs can receive any number of units of allocation. While
our results do not depend on the value of C, we consider the case where C = 1 for the sake of
simplifying our notation.

We define λE , λI , πE(i, j), πI(i, j), Nπ
E , and Nπ

I to be the same quantities as in the general
case, but corresponding to elastic and inelastic jobs respectively. Furthermore, we allow the elastic
and inelastic job size distributions to differ. We assume that elastic job sizes are exponentially
distributed with rate µE while inelastic job sizes are exponentially distributed with rate µI . We
let XE and XI be random variables representing the sizes of an elastic job or an inelastic job
respectively.

We refer to a policy π as work conserving if and only if, in any state (i, j),

πI(i, j) + πE(i, j) ≥ i,

and
πI(i, j) + πE(i, j) ≥ n · 1{j>0}.

That is, π never leaves cores idle if there is an eligible job in the system. In Appendix C.1 we
show that there exists an optimal policy for processing elastic and inelastic jobs which is also work
conserving. It therefore suffices to only consider work conserving policies throughout our analysis.

Given that we only consider work conserving policies, note that

πI(i, j) ≤ i ∀(i, j) ∈ Z2
≥0,

πE(i, j) ≤ n · 1{j>0} ∀(i, j) ∈ Z2
≥0,

and
πI(i, j) + πE(i, j) ≤ n ∀(i, j) ∈ Z2

≥0.

In general, πI(i, j) +πE(i, j) could be less than n if there are not a sufficient number of jobs to use
all n cores, or if π chooses to idle cores instead of allocating them to an eligible job.

We define the system load, ρ to be

ρ ≡ λI
nµI

+
λE
nµE

. (6.1)

In Appendix C.2 we show that for any work conserving policy, π, (Nπ
I (t), Nπ

E(t)) is an ergodic
Markov chain if ρ < 1. Because there exists an optimal work conserving policy, (6.1) is necessary
for stability under any policy π′. We therefore only consider the regime where ρ < 1.

69

In the case of elastic and inelastic jobs, we will track several stochastic quantities in our system.
We define the total number of jobs in the system, Nπ(t), as

Nπ(t) = Nπ
I (t) +Nπ

E(t).

We also define W π(t) to be the total work in the system under policy π at time t, where total work
is the sum of the remaining sizes of all jobs in the system. Similarly, we let W π

E(t) and W π
I (t) be

the total elastic work and the total inelastic work in the system under policy π at time t. These
quantities are the sums of the remaining sizes of all elastic or inelastic jobs respectively. When
referring to the corresponding steady-state quantities, we omit the argument t.

We will investigate the performance of two allocation policies for processing elastic and inelas-
tic jobs, Elastic-First (EF) and Inelastic-First (IF). EF gives strict preemptive priority to elastic
jobs, and processes jobs in first-come-first-serve (FCFS) order within each job class. That is, in
any state (i, j) where j > 0, EF allocates all n cores to the elastic job with the earliest arrival
time. In any state (i, j) where j = 0, EF allocates one core to each inelastic job, in FCFS order,
until either all jobs have received a core or all n cores have been allocated. By contrast, IF gives
strict preemptive priority to inelastic jobs while processing jobs in FCFS order within each job
class. Under IF, in any state (i, j) where i < n, one core is allocated to each inelastic job and the
remaining n− i cores are allocated to the elastic job with the earliest arrival time if there is one. In
any state (i, j) where i ≥ n, all n cores are allocated to the inelastic jobs with the n earliest arrival
times.

6.3 General Speedup Functions
In this section, we consider the case where jobs may have different speedup functions of a very
general form. To facilitate this generality in the forms of the speedup functions, we will assume
throughout this section that the sizes of jobs from both classes are exponentially distributed with
rate µ.

From Chapter 4 recall that, when all jobs were exponentially distributed and followed a single
speedup function, the optimal scheduling policy with respect to mean response time was EQUI.
We will see in Section 6.3.1 that, in the case of multiple speedup functions, EQUI is no longer
the optimal policy. In Section 6.3.2, we propose a class of policies called GREEDY which maxi-
mize the departure rate in every state. We then describe the optimal GREEDY policy, GREEDY∗

in Section 6.3.3. While GREEDY∗ is not optimal in general (see Section 6.3.5), we show that
GREEDY∗ performs near-optimally in a wide range of settings (Sections 6.3.4 and 6.3.5). Finally
in Section 6.3.6, we return to fixed-width policies and explain why they are insufficient when there
are multiple speedup functions.

6.3.1 EQUI is No Longer Optimal
We have already seen that EQUI is optimal when jobs are homogeneous with respect to speedup.
One might assume that, since EQUI bases its decisions on the number of jobs in the system rather
than the jobs’ speedup functions, EQUI could continue to perform well when there are multiple

70

(a) EQUI vs. OPT (b) GREEDY∗ vs. OPT

Figure 6.2: Heat maps showing the percentage difference in the mean response time in the system,
E[T], between (a) EQUI and OPT and between (b) GREEDY∗ and OPT, in the case of two speedup
functions where s1 and s2 are Amdahl’s law with parameters p1 and p2 respectively. Here E[X] = 1

2

and λ1 = λ2 = 5. The axes represent different values of p for each class. GREEDY∗, EQUI, and
OPT were evaluated numerically using the MDP formulation given in Section 6.3.4. These heat
maps look similar under various values of λ1 and λ2.

speedup functions. However, it turns out that EQUI’s performance is suboptimal even when there
are just two speedup functions (see Figure 6.2a). While EQUI’s performance is actually close to
optimal in the cases where s1 and s2 are similar, we see that EQUI’s performance relative to the
optimal policy becomes worse as the difference between the speedup functions increases.

To see why EQUI is suboptimal in this case, recall that EQUI’s optimality stems from the
fact that it maximizes the instantaneous system efficiency in every state when jobs follow a single
speedup function (see proof of Theorem 4.3). When jobs are permitted to have different speedup
functions, maximizing the instantaneous system efficiency requires allocating more cores to class
2 jobs and fewer cores to class 1 jobs.

6.3.2 A GREEDY Class of Policies
We have seen that EQUI fails to maximize the instantaneous system efficiency when there are
multiple speedup functions. Would a policy that maximizes the instantaneous system efficiency be
optimal in this case? We define the GREEDY class of policies to be the policies which achieve the
maximum possible instantaneous system efficiency in every state.

To describe the policies in GREEDY, we again consider the case where jobs belong to one of
two job classes. For any state (i, j) where there are i class 1 jobs and j class 2 jobs, instantaneous
system efficiency is proportional to the total rate of departures in the state. Hence, we will consider
maximizing the total rate of departures via a two step process. First, a policy π must decide how
many cores, π1(i, j), to allocate to the i class 1 jobs. The remaining π2(i, j) = n − π1(i, j) cores

71

will be allocated to class 2 jobs. Second, the policy must decide how to divide the π1(i, j) cores
among the class 1 jobs and the π2(i, j) cores among the class 2 jobs. We have seen that, when
dividing cores among a set of jobs with a single speedup function, EQUI maximizes the total rate
of departures of this set of jobs. For a given choice of π1(i, j), the π1(i, j) cores should thus be
evenly divided among the class 1 jobs and the π2(i, j) cores should be evenly divided among the
class 2 jobs in order to maximize the total rate of departures. Thus, only the first decision remains.

To find an allocation of cores which maximizes the rate of departures, we first define β(i, j),
the maximum rate of departures from the state (i, j):

β(i, j) = max
α∈[0,n]

is1

(α
i

)
µ+ js2

(
n− α
j

)
µ. (6.2)

Then, we can say that a policy, G, is in GREEDY if and only if

G1(i, j) ∈
{
α : is1

(α
i

)
µ+ js2

(
n− α
j

)
µ = β(i, j)

}
. (6.3)

This same two-step process will generalize to the case when jobs follow more than 2 speedup
functions.

Crucially, note that GREEDY is truly a class of policies, since, in a given state, there may be
multiple choices of G1(i, j) which satisfy (6.3). That is, there could be multiple allocations which
achieve the maximal total rate of departures. For example, consider a system with 4 cores where
both jobs classes have the same service rate µ = 1

E[X]
. If there are 4 class 1 jobs and 4 class 2 jobs,

any choice of G1(i, j) ∈ [0, 4] results in the maximal rate of departures, nµ. This begs the question
of which policy from the GREEDY class achieves the best performance.

6.3.3 The Best GREEDY Policy: GREEDY∗

We now define GREEDY∗, a policy which dominates all other GREEDY policies with respect to
mean response time. Consider two GREEDY policies, G and G′. In any state (i, j), both policies
achieve the same maximal rate of departures. However, G might achieve this rate by having a
higher departure rate for class 1 jobs and a lower departure rate for class 2 jobs as compared to G′.
If class 1 jobs are less parallelizable than class 2 jobs, we say that G “defers parallelizable work”
in this state, which is a strategy that could benefit G in the future.

The GREEDY∗ policy is the GREEDY policy which in all states opts to defer parallelizable
work when possible. Specifically, in the case of two job classes: GREEDY∗ allocates G∗1(i, j)
cores to class 1 jobs (the less parallelizable class), where G∗1(i, j) is the maximum value of π1(i, j)
satisfying (6.3). That is,

G∗1(i, j) = max

{
α : is1

(α
i

)
µ+ js2

(
n− α
j

)
µ = β(i, j)

}
.

In other words, G∗1(i, j) allows GREEDY∗ to attain the maximal rate of departures while also
maximizing the rate at which class 1 jobs are completed. Theorem 6.1 shows that GREEDY∗

dominates all other GREEDY policies.

72

Theorem 6.1. For any GREEDY policy, G,

E[T]GREEDY∗ ≤ E[T]G.

Proof. Consider the performance of GREEDY∗ and G on the state space S = {(i, j) : i, j ∈ N}.
We will use the technique of precedence relations (see, e.g., [3, 17]) to compare the mean number
of customers, E[N], under GREEDY∗ to that underG. This requires that we define a value function
for G, V G(i, j), and a cost function, c(i, j). We define the cost of being in state (i, j) to be

c(i, j) = i+ j

so that the average cost of performing policy G is equal to the mean number of customers, E[N].
We also define γGi (i, j) to be the rate of departures of class i jobs from the state (i, j) under policy
G.

We then define V G(i, j) to be the asymptotic total difference in the accrued cost under G when
starting in state (i, j) as opposed to some designated reference state. We require the following
lemma which establishes a useful property of V G.

Lemma 6.2. For any GREEDY policy, G, and any (i, j) ∈ S,

V G(i+ 1, j) > V G(i, j + 1).

Proof. We begin by defining V G
n as follows:

V G
n+1(i, j) = AGn (i, j) + IGn (i, j)

where

AGn (i, j) =c(i, j) + λ1

(
V G
n (i+ 1, j)− V G

n (i, j)
)

+ λ2

(
V G
n (i, j + 1)− V G

n (i, j)
)

and

IGn =γG1 (i, j)
(
V G
n ((i− 1)+, j)− V G

n (i, j)
)

+ γG2 (i, j)
(
V G
n (i, (j − 1)+)− V G

n (i, j)
)

and V G
0 (i, j) = i+ j + i

i+j+1
for all (i, j) ∈ S.

Recall that γGi (i, j) denotes the departure rate of class i jobs from state (i, j) under policy G,
λi denotes the arrival rate of class i jobs, and c(i, j) = i+ j. From [81] we know that

lim
n→∞

V G
n (i, j)− V G

n (y1, y2) = V G(i, j)− V G(y1, y2).

Thus, if we can prove that our claim holds for V G
n (i, j) for all n ≥ 0, then it must hold

for V G(i, j) as well (see, for example, [56]). We will now prove that all three of the following
properties of V G

n hold for all n ≥ 0 by induction:

1. V G
n (i+ 1, j) > V G

n (i, j)

2. V G
n (i, j + 1) > V G

n (i, j)

73

3. V G
n (i+ 1, j) > V G

n (i, j + 1)

Note that the first two properties will be necessary for our proof of the third property, and the
lemma follows directly from the third property.

We can easily verify that all three properties hold when n = 0 due to our choice of V G
0 . We

now wish to show that if these properties hold for V G
n , they must hold for V G

n+1.
To prove property 1, we wish to show that

V G
n+1(i+ 1, j)− V G

n+1(i, j) = AGn (i+ 1, j)− AGn (i, j) + IGn (i+ 1, j)− IGn (i, j) > 0.

We can easily see that AGn (i+ 1, j)−AGn (i, j) > 0, since the cost function c(i, j) is increasing
in i and V G

n (i, j) is increasing in i by the property 1 of the inductive hypothesis. To see that
IGn (i+ 1, j)− IGn (i, j) > 0, we can expand the terms as follows:

IGn (i+ 1, j)− IGn (i, j)

= γG1 (i, j)
(
V G
n (i, j)− V G

n ((i− 1)+, j)
)

+ γG2 (i, j)
(
V G
n (i, j)− V G

n (i, (j − 1)+)
)

+ γG2 (i+ 1, j)
(
V G
n (i+ 1, (j − 1)+)− V G

n (i, j)
)

+
(
1− γG1 (i+ 1, j)− γG2 (i+ 1, j)

) (
V G
n (i+ 1, j)− V G

n (i, j)
)
.

Each line here is positive by the inductive hypothesis and the fact that(
1− γG1 (i+ 1, j)− γG2 (i+ 1, j)

)
≥ 0

since the system was uniformized to one. Thus property 1 holds. The proof of property 2 follows
a very similar argument.

To show property 3 we wish to show that

V G
n+1(i+ 1, j)− V G

n+1(i, j + 1) = AGn (i+ 1, j)− AGn (i, j + 1) + IGn (i+ 1, j)− IGn (i, j + 1) > 0.

We can easily see that AGn (i + 1, j) − AGn (i, j + 1) > 0 by the inductive hypothesis. To see that
IGn (i+ 1, j)− IGn (i, j + 1) > 0, we can expand the terms as follows:

IGn (i+ 1, j)− IGn (i, j + 1)

= γG1 (i, j + 1)
(
V G
n (i, j)− V G

n ((i− 1)+, j + 1)
)

+ γG2 (i+ 1, j)
(
V G
n (i+ 1, (j − 1)+)− V G

n (i, j)
)

+
(
γG1 (i, j + 1) + γG2 (i, j + 1)− γG1 (i+ 1, j)− γG2 (i+ 1, j)

) (
V G
n (i+ 1, j)− V G

n (i, j)
)

+
(
1− γG1 (i, j + 1)− γG2 (i, j + 1)

) (
V G
n (i+ 1, j)− V G

n (i, j + 1)
)
.

We know, by assumption, that s1(k) < s2(k) for k > 1, and thus the coefficient γG1 (i, j + 1) +
γG2 (i, j + 1) − γG1 (i + 1, j) − γG2 (i + 1, j) is non-negative. Therefore, all terms in this sum are
positive by the inductive hypothesis, and property 3 holds.

All three properties therefore hold by induction, and V G(i+1, j) > V G(i, j+1) as desired.

74

We now prove Theorem 6.1 by contradiction. We begin by assuming that there exists a
GREEDY policyG 6= GREEDY∗ which is optimal in terms of E[N] and thus E[N]G ≤ E[N]G

′ for
any GREEDY policy G′. Since G 6= GREEDY∗, there exists some state, (i, j) ∈ S where G and
GREEDY∗ take different actions. Note that both i and j must be non-zero in this state, because
otherwise there is only one action which will achieve the maximal rate of departures, and G and
GREEDY∗ must therefore take the same action.

We now consider a policy G′ which takes the same action as GREEDY∗ in state (i, j), and the
same action asG in every other state. We can apply the technique of precedence relations described
in [3, 17] to show that E[N]G

′
< E[N]G. G′ can now be obtained from G by taking γG2 (i, j) −

γG
∗

2 (i, j) away from the total completion rate of class 2 jobs and adding γG∗1 (i, j)− γG1 (i, j) to the
total completion rate of class 1 jobs, where G∗ denotes GREEDY∗. Theorem 3.1 in [17] tells us
that E[N]G

′
< E[N]G if:(
γG
∗

1 (i, j)− γG1 (i, j)
)
V G(i− 1, j) <

(
γG2 (i, j)− γG∗2 (i, j)

)
V G(i, j − 1).

To see that this property holds, first note that(
γG
∗

1 (i, j)− γG1 (i′, j′)
)
−
(
γG2 (i, j)− γG∗2 (i, j)

)
=
(
γG
∗

1 (i, j) + γG
∗

2 (i, j)
)
−
(
γG1 (i, j) + γG2 (i, j)

)
= 0

since GREEDY∗ and G have the same (maximal) total rate of departures in every state. Thus,

γG
∗

1 (i, j)− γG1 (i, j) = γG2 (i, j)− γG∗2 (i, j).

By Lemma 6.2, we know that

V G(i− 1, j) < V G(i, j − 1).

This implies that E[N]G
′
< E[N]G which contradicts our assumption that G is optimal in terms of

E[N]. By Little’s Law, we can reformulate this in terms of E[T].

While GREEDY∗ is the best GREEDY policy, it will turn out that it is not optimal (see Section
6.3.5). Hence, we now turn our attention to computing the optimal policy.

6.3.4 Computing the Optimal Policy
The optimal policy, OPT, must not only consider the current state of the system when choosing
how to determine the best partition (π1(i, j), π2(i, j)), but must also consider the probabilities
of transitioning to future states as well. To find a policy which balances this tradeoff between
performance in the current state and future states, we formulate the problem as a Markov Decision
Process (MDP).

We will consider an MDP with state space S = {(i, j) : i, j ∈ N}, where xi represents the
number of class i jobs in the system. The action space in any state is given by

A = {(π1(i, j), π2(i, j)) : π1(i, j) + π2(i, j) = n} .

75

Let the arrival rate of class i jobs be given by λi. Recall that, given an allocation of ai cores to xi
type i jobs, it is optimal to run the xi jobs on these cores using EQUI. Thus, given a state (i, j) and
an action (π1(i, j), π2(i, j)), the total departure rate of jobs from each class of jobs is given by

µ1(π1(i, j), i) := min{π1(i, j), i}µs
(

max

{
1,
π1(i, j)

i

})
and

µ2(π2(i, j), i) := min{π2(i, j), i}µs
(

max

{
2,
π2(i, j)

i

})
.

We choose the cost function
c(i, j) = i+ j

such that the average cost per period equals the average number of jobs in the system, E[N].
We uniformize the system at rate 1 (always achievable by scaling time) and find that Bellman’s
optimality equations [81] for this MDP are given by

E
[
NOPT

]
+ V OPT (i, j) = AOPT (i, j) +HOPT (i, j),

where

AOPT (i, j) = c(i, j) + λ1

(
V OPT (i+ 1, j)− V OPT (i, j)

)
+ λ2

(
V OPT (i, j + 1)− V OPT (i, j)

)
, (6.4)

HOPT (i, j) = V OPT (i, j) + min
(π1(i,j),π2(i,j))∈A

{

µ1(π1(i, j), i)
(
V OPT

(
(i− 1)+, j

)
− V OPT (i, j)

)
+µ2(π2(i, j), j)

(
V OPT

(
i, (j − 1)+

)
− V OPT (i, j)

)}
. (6.5)

Here, the value function V OPT (i, j) denotes the asymptotic total difference in accrued costs when
using the optimal policy and starting the system in state (i, j) instead of some reference state. While
these equations are hard to solve analytically, the optimal actions can be obtained numerically by
defining

V OPT
n+1 (i, j) = AOPTn (i, j) +HOPT

n (i, j)

with V OPT
0 (·, ·) = 0. Here, AOPTn and HOPT

n are defined as in (6.4) and (6.5), but in terms of
V OPT
n . We can then perform value iteration to extract the optimal policy [64]. We use the results

of this value iteration to compare the performance of OPT to several other policies in Figure 6.2
and Figure 6.3.

Note that using the same MDP formulation when there exists only one speedup function results
in a much simpler expression for V OPT which clearly yields EQUI.

76

Figure 6.3: Heat map showing the percentage difference in the mean response time, E[T], between
JSQ-Chunk with the optimal k∗ and OPT , in the case of two speedup functions where s1 and s2 are
Amdahl’s law with parameters p1 and p2 respectively. Here E[X1] = E[X2] = 1 and λ1 = λ2 = 2.
The axes represent the value of pi for each class. OPT was evaluated numerically using the MDP
formulation given in Section 6.3.4 and the results for JSQ-Chunk come from analysis.

6.3.5 GREEDY∗ is Near-Optimal
Surprisingly, even GREEDY∗ is not optimal for minimizing mean response time as shown in Figure
6.2b (although it is always within 1% of OPT in the figure). The same intuition that led us to believe
that GREEDY∗ is the best GREEDY policy can be used to explain why GREEDY∗ is not optimal.
We have already seen that deferring parallelizable work is advantageous to GREEDY∗. However,
we were only comparing GREEDY∗ to policies with maximal overall departure rate. It turns out
that the advantage of deferring parallelizable work can be so great that a policy stands to benefit
from achieving a submaximal overall rate of departures in order to defer parallelizable work.

6.3.6 Does Fixed-Width Scheduling Work?
We saw in Chapter 4 that, when jobs of unknown size follow a single speedup function, the JSQ-
Chunk policy with the optimal chunk size k∗ will often achieve near-optimal performance (see
Section 4.5.2). Is this still true when jobs are permitted to have different speedup curves? Figure
6.3 compares JSQ-Chunk with OPT for the case of two speedup functions. We see two trends:
Trend 1: Along the thick arrow in Figure 6.3, JSQ-Chunk becomes further from OPT as
p1 + p2 increases.

Trend 1 makes intuitive sense since, when jobs are more parallelizable, OPT will be able to
more effectively exploit this parallelism while JSQ-Chunk will be limited by being restricted to
use a single k∗ for each job. Nonetheless, trend 1 becomes irrelevant as the number of cores, n,
increases, since JSQ-Chunk converges to OPT when p1 equals p2 (single speedup function). Thus,
we are more interested in trend 2.

77

Trend 2: Along any thin diagonal in Figure 6.3 (p1 + p2 = constant), JSQ-Chunk becomes
further from OPT as we move outward on the diagonal.

Trend 2 follows from two observations. First, Theorem 6.3 proves that JSQ-Chunk’s perfor-
mance is fixed along these diagonals. Second, we have reason to believe that the mean response
time under OPT should decrease as we move further outward along these diagonals (see Observa-
tion 6.4). Together, these observations explain trend 2. The rest of this section discusses Theorem
6.3 and Observation 6.4.
Theorem 6.3. Given two speedup functions, s1 and s2, where s1 follows Amdahl’s law with pa-
rameter p1 and s2 follows Amdahl’s law with parameter p2, and λ1 = λ2, the mean response time
under JSQ-Chunk with the optimal k∗ is constant for any (p1, p2) such that p1 + p2 = c, where c is
a constant.

Proof. In the case of two speedup functions, under JSQ-Chunk with level of parallelization, k, Xk

from (2.1) becomes:

Xk =

{
X

s1(k)
w.p. λ1

λ1+λ2
X

s2(k)
w.p. λ2

λ1+λ2

.

We now prove that, for any given k, E[Xk] is constant whenever p1 + p2 = c. By definition,
when λ1 = λ2,

E[Xk] =
1

2
· E[X]

s1(k)
+

1

2
· E[X]

s2(k)
. (6.6)

Since s1 and s2 are both instances of Amdahl’s law, we can use a property of Amdahl’s law that
states

1

2
· 1

s1(k)
+

1

2
· 1

s2(k)
=

1

s3(k)
, (6.7)

where s3(k) is the speedup function for Amdahl’s law with parameter p3 = p1+p2
2

. Combining
(6.6) and (6.7) we have

E[Xk] =
E[X]

s3(k)
,

which is a constant, provided that p1 + p2 = c.
As stated in Section 4.4.2, the performance of JSQ-Chunk depends only on E[Xk]. Hence,

along any diagonal where p1 + p2 = c, the mean response time under JSQ-Chunk with chunk
size k remains constant. Since any choice of k leads to constant performance along the diagonal,
setting k to k∗ will also keep JSQ-Chunk constant along this diagonal. Hence, the mean response
time under JSQ-Chunk with the optimal k∗ is constant when p1 + p2 = c.

Observation 6.4. Along any diagonal where p1 + p2 = c, where c is a constant and λ1 = λ2, we
expect the mean response time under OPT to decrease as | p1 − p2 | increases.

Although the mean job size is constant along this diagonal, when | p1 − p2 | is higher, the
optimal policy has additional information about which jobs will take longer to run. In effect, this
allows OPT to favor jobs which benefit more from parallelization and leads to a lower overall mean
response time. A similar effect was observed in [106], where assigning jobs different service rates
lowered optimal mean response time.

78

Remark 6.5. Although Theorem 6.3 and Observation 6.4 assume that λ1 = λ2, they are easily
generalized to cases where the arrival rates are not equal. In these cases, the diagonals along
which E[Xk] will be constant will have a different slope. Nonetheless, trend 2 will still occur along
these diagonals.

Unlike trend 1, which disappears as the number of cores, n, increases, we do not expect trend
2 to vanish. This is supported by our evaluation of OPT under higher values of n (not shown). We
thus conclude that JSQ-Chunk does not perform near-optimally when jobs follow multiple speedup
functions.

6.4 The Case of Elastic and Inelastic Jobs
The results of the prior section showed that, when the form of our speedup functions is uncon-
strained, computing an optimal policy can be computationally intensive. In this section, we con-
sider an important special case where jobs are assumed to either be perfectly parallelizable, or not
at all parallelizable.

6.4.1 Elastic and Inelastic Jobs in the Real World
It is common to find systems which use a shared set of resources to process both elastic and
inelastic jobs. In such settings, elastic jobs typically have more inherent work than the inelastic
jobs. For example, consider a cluster which must process a stream of many MapReduce jobs [22].
From the cluster’s point of view, this workload produces a stream of map stages and reduce stages.
Map stages (elastic) are designed to be highly parallelized and do the bulk of the computational
work. Reduce stages (inelastic) are inherently sequential and do much less total work than a
map stage. As another example, modern machine learning frameworks [67] advocate the use
of a single platform for both the training and serving of models. Training jobs (elastic) are large,
requiring large data sets and many training epochs. Distributed training methods such as distributed
stochastic gradient descent are also designed to scale out across an arbitrary number of nodes [61].
Once a model has been trained, serving the model (inelastic), which consists of feeding a computed
model a single data point in order to retrieve a single prediction, is done sequentially and requires
comparatively little processing power.

It is less common for elastic jobs to be smaller than inelastic jobs in practice, given the overhead
involved in writing parallel code. If the amount of inherent work required for a job is small to begin
with, system developers may not choose to add the additional data structures and synchronization
mechanisms required to make the job elastic. One exception is HPC workloads. In this setting,
there are often both malleable jobs (elastic) [30] and jobs with hard requirements (inelastic). While
malleable jobs are designed to run on any number of cores, jobs with hard requirements demand a
fixed number of cores. It is unclear which class of jobs we would expect to involve more inherent
work.

79

6.4.2 Optimal Scheduling of Elastic and Inelastic Jobs
This section will consider both of the above cases. Recall that we allow elastic and inelastic jobs
to follow different exponential size distributions with rates µE and µI respectively. First, we show
that if µI ≥ µE , then IF is optimal for minimizing mean response time. Second, we show that if
µI < µE , then IF is not necessarily optimal.

In Section 6.4.3, we begin by considering the special case where µI = µE . In this case where
we have homogeneous sizes, our analysis follows directly from Theorem 6.1 in the previous sec-
tion. Unfortunately, we will show that the argument used to extend Theorem 6.1 does not extend
to the case where µI 6= µE .

In Section 6.4.4, we therefore develop a new argument to handle the case where µI ≥ µE .
Using a novel sample path argument, we prove that IF is the optimal policy in this case.

Lastly, in section 6.4.5, we consider the case where µI < µE . Here, we construct a very simple
example demonstrating that IF is not optimal in this environment. Furthermore, in this example,
we show the policy EF actually outperforms IF. We do not know what policy is optimal in this
regime.

6.4.3 Optimality when µI = µE

We first consider the case where µI = µE . In this case, IF is optimal with respect to minimizing
mean response time. As stated in Section 6.1.1, the optimal policy should balance the tradeoff
between completing jobs quickly and preserving future system efficiency. When µI = µE , IF
maximizes future system efficiency without reducing the instantaneous system efficiency. We
argue this formally in Theorem 6.6 by leveraging Theorem 6.1.
Theorem 6.6. If jobs are either elastic or inelastic, IF is optimal with respect to minimizing mean
response time when µI = µE .

Proof. Following the terminology of Section 6.3, we can consider GREEDY and GREEDY∗ in
the context of the case where jobs are either elastic or inelastic. In this case, we can clearly apply
Theorem 6.1 to see that

E[T]GREEDY∗ = min
π∈GREEDY

E[T π]. (6.8)

To leverage this result, we note that when µI = µE in our model, a policy is in GREEDY if
and only if it does not idle servers unnecessarily.

We now argue that IF, which is non-idling, must be equivalent to GREEDY*. Consider the
server allocations made by GREEDY∗ in any state (i, j). In states where IF allocates zero servers
to elastic jobs, IFE(i, j) is clearly minimal. In any state (i, j) where IFE(i, j) > 0, servers
cannot be reallocated from elastic jobs to inelastic jobs, since all i inelastic jobs must already be
in service. Hence, reducing IFE(i, j) in this case results in a policy which is not in GREEDY.
IFE(i, j) is therefore minimal amongst GREEDY policies in any state (i, j), and IF is equivalent
to GREEDY*.

We show in Appendix C.1 that there exists an optimal policy which is non-idling. Hence, when
µI = µE , there is an optimal policy in GREEDY. This implies that GREEDY* must be optimal

80

with respect to mean response time. Thus, IF, which is equivalent to GREEDY*, is optimal with
respect to mean response time.

Why the prior argument does not generalize
Unfortunately, the results of Section 6.3 do not extend to the case where µI 6= µE . In particular, the
proof of Theorem 6.1 uses a precedence relation between any two states (i, j−1) and (i−1, j). This
claim essentially states that a policy π in state (i, j) would perform better by transitioning to state
(i− 1, j) than it would by transitioning to state (i, j − 1). In the case where µI = µE , this makes
perfect intuitive sense. In this case, both states (i − 1, j) and (i, j − 1) contain the same amount
of expected total work. Hence, it is better to be in state (i − 1, j), which benefits from having
an additional elastic job. Consider how this intuition changes when µI > µE . In this case, state
(i, j−1) has less expected total work, but state (i−1, j) has more expected elastic work. It turns out
that the precedence relation shown in Section 6.3 no longer holds when µI 6= µE . Moreover, even
if the precedence relations were to hold when µI > µI , Theorem 6.1 would yield that GREEDY*
is optimal amongst GREEDY policies, not optimal amongst all policies. We must therefore devise
a new argument to reason about the optimal allocation policy for elastic and inelastic jobs when
these jobs follow different size distributions.

6.4.4 Optimality when µI ≥ µE

We will show IF is optimal in the more general case of µI ≥ µE . While our goal is to minimize
mean response time, we note that via Little’s Law [35], it suffices to minimize the mean total
number of jobs in the system. 1

First, we start by defining a class of policies P which serve inelastic jobs on a first-come-first-
serve (FCFS) basis; elastic jobs can be served in any order. In more detail, a policy π is said to be
in class P if the following hold true:
1. π is work-conserving.

2. π serves inelastic jobs in FCFS order. In particular, if π allocates N servers to inelastic jobs
at time t (N may be fractional, and there may be more than N inelastic jobs in the systems),
the allocation must give bNc servers to the bNc inelastic jobs with the earliest arrival times. If
there is a remaining fraction of a server, it may then be allocated to the inelastic job with the
next earliest arrival time.

Clearly, IF ∈ P .
Road map: Theorem 6.7 argues that we only need to compare IF to policies in P . Specifically,
P contains some optimal policy that minimizes the mean number of jobs in system and mean
response time.

Next, in Theorem 6.8 we present a novel sample path argument which shows that IF has
stochastically less work in the system than any policy in P . We will directly leverage this fact to
show that, out of all policies π ∈ P , IF has the least expected inelastic work in system and also
the least expected total work in system.

1Little’s Law states that for any ergodic system with average total arrival rate λ, the mean response time, E[T] is
related to the mean total number of jobs in system, E[N] via the formula E[T] = E[N]

λ .

81

i, ji-1,j i+1,j

i, j-1

i, j+1

λI

λE

πI(i, j)µI

πE(i, j)µE

Figure 6.4: The Markov chain (Nπ
I (t), Nπ

E(t)) for a stationary, deterministic, work-conserving
allocation policy, π.

Finally, In Theorem 6.10 we show that, of all policies in P , IF minimizes the expected number
of jobs in system. Thus, by Little’s Law, IF is optimal with respect to mean response time.

Analysis. We now present Theorem 6.7.
Theorem 6.7. The class P contains a policy π which minimizes both mean response time and
mean number of jobs in system. Specifically

E [Nπ] = min
π′

{
E
[
Nπ′

]}
,

and

E [T π] = min
π′

{
E
[
T π
′
]}

,

where Nπ is the total number of jobs in the system in steady-state under policy π, and T π is the
response time of a job in the system under π in steady-state.

Proof. Recall that we will consider only stationary, deterministic, work-conserving policies which
make allocation decisions based on state (i, j). Let π be a stationary, deterministic, work-conserving
policy with the minimal mean number of jobs in system. Figure 6.4 shows the transition rates out
of state (i, j) under π.

We see that the transition rates out of the current state (i, j) under policy π depend solely on
the number of servers allocated to each type of job. Thus, neither the order in which we serve the
jobs nor how many jobs of each type are running matter. In particular, we can construct a policy
π′ such that, for any state (i, j),

πI(i, j) = π′I(i, j) and πE(i, j) = π′E(i, j)

82

and π′ serves inelastic jobs in FCFS order. The policy π′ has the same Markov chain as π, so the
expected numbers of jobs in system under π and π′ are identical. Because π is work-conserving,
π′ is also work-conserving. Hence, π′ is in P and achieves the minimal mean number of jobs in
system.

The power of Theorem 6.7 is that, to show IF is optimal with respect to mean response time,
it now suffices to show:

E [N IF] ≤ E [Nπ] ∀π ∈ P . (6.9)

However, it is hard to directly compare the numbers of jobs under different policies. We get around
this roadblock by instead analyzing how the remaining work in the system under IF relates to other
policies π ∈ P . In particular, we obtain the following strong result.
Theorem 6.8. For all policies π ∈ P , if we assume that

(Nπ
I (0), Nπ

E(0)) = (N IF

I (0), N IF

E (0)),

then:
W IF(t) ≤ST W π(t) and W IF

I (t) ≤ST W π
I (t) ∀t ≥ 0,

where W π(t) is the total remaining work under policy π at time t, W π
I (t) is the remaining inelastic

work under policy π at time t, and ≤ST denotes stochastic dominance.

Proof. Fix an arbitrary policy π ∈ P , and let us consider a fixed arrival sequence, that is, a fixed
sequence of arrival times and job sizes. We couple π and IF under this sequence. Here, it suffices
to consider arrival sequences where the total number of job arrivals up to any time t is finite, as
this occurs with probability 1.

Recall that W π
I (t) and W π

E(t) are respectively the remaining inelastic and elastic work in the
system at time t under scheduling policy π. Furthermore, also recall that W π(t), the total work at
time t, is given by:

W π(t) = W π
I (t) +W π

E(t).

In order to show the desired stochastic dominance relations, it will suffice to show that on any
such arrival sequence

W IF

I (t) ≤ W π
I (t) and W IF(t) ≤ W π(t) ∀t ≥ 0.

First, we see it is immediate that, under our arrival sequence, W IF
I (t) ≤ W π

I (t) for all t ≥ 0.
Since IF and π process inelastic jobs in FCFS order, each inelastic job enters service at least as
early under IF as it does under π. Furthermore, IF never preempts inelastic jobs. Hence, at each
time t, the remaining size of each inelastic job that has arrived by time t is no larger under IF than
it is under π. Since the inelastic work in system is just the sum of the remaining sizes of inelastic
jobs, the total inelastic work at time t under IF is less than the total inelastic work at time t under
π.

It remains to show that
W IF(t) ≤ W π(t) ∀t ≥ 0. (6.10)

83

We prove our claim by induction. For a base case, it is clear that W IF(0) ≤ W π(0), as the
policies have the same set of jobs at time zero, and no work has been completed. For any time t,
we partition the interval [0, t) into subintervals [ti, ti+1) such that either
1. IF allocates all n servers on [ti, ti+1), or
2. IF allocates strictly less than n servers on [ti, ti+1).

We now induct on i, and show that W IF(ti) ≤ W π(ti) implies W IF(ti+1) ≤ W π(ti+1).
If the interval [ti, ti+1) falls into case (1), IF is completing work at the maximal rate of any

policy. In particular, IF completes exactly (ti+1 − ti) · n work on [ti, ti+1]. Let ω denote the work
completed by π on [ti, ti+1). Then, we must have ω ≤ (ti+1 − ti) · n. Since IF and π experience
the same set of arrivals on this interval, we have:

W π(ti+1)−W IF(ti+1) = (W π(ti)− ω)− (W IF(ti)− (ti+1 − ti) · n)

= (W π(ti)−W IF(ti)) + ((ti+1 − ti) · n− ω)

≥ 0.

Thus, we have W IF(ti+1) ≤ W π(ti+1), as desired.
If the interval [ti, ti+1) falls into case (2), IF allocates strictly less than n servers on [ti, ti+1).

We aim to show thatW IF(ti+1) ≤ W π(ti+1). Observe that IF can have no elastic jobs in its system
on [ti, ti+1). This is because we have defined IF to be work-conserving. Hence, if there was an
elastic job, IF would run it on all available servers.

Observe that, assuming no elastic job arrives at time ti+1,

W IF(ti+1) = W IF

I (ti+1).

Likewise, we know
W π(ti+1) = W π

I (ti+1) +W π
E(ti+1) ≥ W π

I (ti+1).

We get the inequality above because π cannot have negative elastic work at time ti+1. Finally,
we have

W π(ti+1)−W IF(ti+1) = (W π
I (ti+1) +W π

E(ti+1))−W IF

I (ti+1)

= (W π
I (ti+1)−W IF

I (ti+1)) +W π
E(ti+1)

≥ W π
I (ti+1)−W IF

I (ti+1)

≥ 0,

where the last inequality follows from the fact that W IF
I (t′) ≤ W π

I (t′) for all t′ ≥ 0. Thus, we have
W IF(ti+1) ≤ W π(ti+1).

Note that some elastic work could arrive at exactly time ti+1. However, this increases the total
work in both systems by the same amount and thus has no effect on the ordering of these quantities.

Thus, for any interval [ti, ti+1), if W IF(ti) ≤ W π(ti), then we have W IF(ti+1) ≤ W π(ti+1).
Since W IF(0) ≤ W π(0), it follows that this inequality holds at the end of the last subinterval. The
end of this final subinterval is exactly time t. Thus, for any t ≥ 0, we have W IF(t) ≤ W π(t), as
desired.

84

We have thus found a coupling of π and IF such that the amount of total work and the amount
of inelastic work in each system is ordered at every moment in time. This implies that

W IF

I (t) ≤ST W π
I (t) ∀t ≥ 0

and
W IF(t) ≤ST W π(t) ∀t ≥ 0

as desired.

In other words, IF is the best policy in P for minimizing remaining inelastic and total work in
the system. One possible explanation for this is that, by deferring parallelizable work, IF ensures
that all n servers are saturated with work for as long as possible.

We now understand that, out of all policies in P , IF is optimal with respect to minimizing
both expected remaining inelastic work and expected remaining total work at any time t. We now
establish a relationship between expected remaining work and expected number of jobs in system.
Lemma 6.9. For any policy π, we have:

E[W π
I] =

1

µI
E[Nπ

I] and E[W π
E] =

1

µE
E[Nπ

E],

where W π
I and Nπ

I are respectively the inelastic work and number of inelastic jobs in the system
in steady-state under policy π, and where the size of an inelastic job is XI ∼ Exp(µI). W π

E , N
π
E,

and µE are the analogous quantities for elastic jobs.

Proof. We do the proof for the inelastic relationship, but the proof for the elastic relationship is
identical. Let the random variable Nπ

I (t) denote the number of inelastic jobs in the system under
policy π at time t. For every ` ∈ {1, . . . , Nπ

I (t)}we defineRπ
`,I(t) as the remaining size of inelastic

job ` under policy π at time t.
Recall W π

I (t) is the remaining inelastic work in system at time t under policy π. We have the
following equivalence:

W π
I (t) =

Nπ
I (t)∑
`=1

Rπ
`,I(t).

By the memoryless property of the exponential distribution, the remaining size of jobs ` ∈
{1, . . . , Nπ

I (t)} are exponentially distributed. Specifically, Rπ
`,I(t) ∼ Exp(µI), for any policy π or

time t. Thus, Nπ
I (t) and Rπ

`,I(t) are independent and we have that

E[W π
I (t)] = E[Rπ

`,I(t)] · E[Nπ
I (t)]

= E[XI] · E[Nπ
I (t)].

As shown in Appendix C.2, E[Nπ
I (t)] converges to E[Nπ

I] as t→∞. This implies the convergence
of E[W π

I (t)]. Thus, taking the limit as t→∞ yields

E[W π
I] = E[XI] · E[Nπ

I] =
1

µI
· E[Nπ

I],

85

as desired 2.

We can now show that IF has the lowest expected number of jobs in system when µI ≥ µE .
Theorem 6.10. For any policy π, if µI ≥ µE , we have:

E [N IF] ≤ E [Nπ] .

And via Little’s Law, we have:
E [T IF] ≤ E [T π] .

Proof. Because there exists an optimal work-conserving policy in P , it suffices to consider any
policy π ∈ P . We write total work under π as W π = W π

I + W π
E . Likewise, we have the equality

Nπ = Nπ
I +Nπ

E . First, from Lemma 6.9, we have the following equalities:

E[W π
I] =

1

µI
E[Nπ

I] and E[W π
E] =

1

µE
E[Nπ

E].

Furthermore, by the stochastic dominance results of Theorem 6.8,

E[W IF

I] ≤ E[W π
I] and E[W IF] ≤ E[W π]

Thus, we have:

E [N IF] = E [N IF

I +N IF

E]

= µIE [W IF

I] + µEE [W IF

E]

= (µI − µE)E [W IF

I] + µEE [W IF

I +W IF

E]

≤ (µI − µE)E [W π
I] + µEE [W π

I +W π
E] (6.11)

= µIE [W π
I] + µEE [W π

E]

= E[Nπ
I] + E[Nπ

E] = E[Nπ]

Note, we leverage the fact µI ≥ µE in (6.11). If µE > µI , then µI − µE would be negative, so we
would not be able establish a relationship like (6.11). This completes the proof.

We have therefore established that IF is optimal with respect to mean response time when
µI ≥ µE .

6.4.5 Failure when µI < µE

Now, we consider the case when µI < µE . Here, we demonstrate that IF is not optimal in
minimizing mean response time. In fact, IF is not even optimal in the simplified environment
where there are only two servers and no arrivals. We construct our counterexample in Theorem
6.11 below.

2Technically, we have only proven that E[Wπ
I (t)] converges to some value, but not that it converges to E[Wπ

I].
This would be sufficient for our subsequent results. In fact, E[Wπ

I (t)] converges to E[Wπ
I] as t → ∞, but we omit

this proof for brevity.

86

Theorem 6.11. In general, IF is not optimal for minimizing mean response time when µI < µE .

Proof. Assume we have n = 2 servers, µE = 2µI , and there are no arrivals. We show that, if the
system starts with two inelastic jobs and one elastic job, the policy EF outperforms IF.

We directly compute the mean response time for both policies, starting with IF. We let T IF

denote response time under IF, and T EF denote response time under elastic first. We have:

E [T IF] =
3

2µI
+

2

µI + µE
+

µI
µI + µE

(
1

2µE

)
+

µE
µI + µE

(
1

µI

)
=

35

12µI
.

On the other hand, we see:

E[T EF] =
3

2µE
+

2

2µI
+

1

µI
=

33

12µI
.

In particular, we have E[T EF] < E [T IF]. Thus, in general, IF is not optimal when µI < µE . In
fact, in this environment, we see EF outperforms IF.

6.5 Response Time Analysis with Elastic and Inelastic Jobs
From the results of Section 6.4, we know that IF is optimal with respect to mean response time
when µI ≥ µE . However, Section 6.4 also shows that EF can outperform IF when µI < µE . This
begs the question of which allocation policy, IF or EF, performs better for given values of µI and
µE .

In this section we derive the mean response time for EF under a range of values of µI , µE , λI ,
λE , and n. First, in Section 6.5.1, we present the Markov chains for EF. This Markov chain is 2D-
infinite. Then, in Section 6.5.2, we present a technique from the stochastic literature called Busy
Period Transitions [77, 78] which reduces the 2D-infinite chain to a 1D-infinite chain. Although
Busy Period Transitions produce an approximation, it is known to be highly accurate, with errors
of less than 1% [39, 40, 41, 77, 78]. Finally, in Section 6.5.3, we apply standard Matrix-Analytic
methods to solve the 1D-infinite Markov chain, obtaining the stationary distribution and finally the
mean response time under EF. The analysis for the IF policy is similar, and thus we defer it to
Appendix C.3.

The results of our analysis for IF and EF are shown in Figures 6.6, 6.7, and 6.8. We compared
our analysis with simulation, and all numbers agree within 1%. Note that in Section 6.3, we used
MDP-based techniques that required truncating the state space and were computationally intensive.
The techniques presented in this section do not require truncating the state space, can be tuned to
arbitrary precision, and are comparatively efficient.

Figure 6.6 presents an overview of our results, showing only the relative performance of IF
and EF as the system load, ρ, is moved from (a) low load to (b) medium load to (c) high load. In
every case, IF outperforms EF when µI ≥ µE , as expected from Theorem 6.10. When µI < µE ,
Figure 6.6 shows us that EFcan outperform IF, and that the region where EF is better grows as ρ
increases.

Figure 6.7 shows the absolute mean response times under IF and EF as a function of µI . We
again examine the system under various fixed values of ρ. The dotted lines at µI = 1 denote the

87

0, 0 1, 0 2, 0 · · · n-1, 0 n, 0 · · ·

0, 1 1, 1 2, 1 · · · n-1, 1 n, 1 ·

0, 2 1, 2 2, 2 · · · n-1, 2 n, 2 · · ·

...
...

...
...

...

λI λI λI λI λI λI

µI 2µI 3µI (n-1)µI nµI nµI

λI λI λI λI λI λI

λI λI λI λI λI λI

λE λE λE λE λEnµE nµE nµE nµE nµE

λE λE λE λE λEnµE nµE nµE nµE nµE

λE λE λE λE λEnµE nµE nµE nµE nµE

(a) Full EF chain

0, 0 1, 0 2, 0 · · · n-1, 0 n, 0 · · ·

0, b 1, b 2, b · · · n-1, b n, b · · ·

λI λI λI λI λI λI

µI 2µI 3µI (n-1)µI nµI nµI

λI λI λI λI λI λI

λE λE λE λE λEB B B B B

(b) EF chain with special states

0, 0 1, 0 2, 0 · · · n-1, 0 n, 0 · · ·

0, b1 1, b1 2, b1 · · · n-1, b1 n, b1 · · ·

0, b2 1, b2 2, b2 · · · n-1, b2 n, b2 · · ·

λI λI λI λI λI λI

µI 2µI 3µI (n-1)µI nµI nµI

λI λI λI λI λI λI

λI λI λI λI λI λI

λE λE λE λE λEγ3 γ3 γ3 γ3 γ3

γ1 γ1 γ1 γ1 γ1

γ2 γ2 γ2 γ2 γ2

(c) Final 1D EF chain

Figure 6.5: The transformation of the 2D-infinite EF chain to a 1D-infinite chain via the busy
period transformation. Special states representing an M/M/1 busy period are shown in (b). These
busy periods are approximated by a Coxian distribution in (c).

88

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

E

(a) Low load, ρ = .5

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

E

(b) Med. Load, ρ = .7

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

E

EF Superior

IF Superior

(c) High load, ρ = .9

Figure 6.6: Heat maps showing the relative performance of IF and EF as a function of µI and µE
when n = 4. We fix load ρ and vary µI and µE . To offset the changes to µI and µE , we change λI
and λE to keep ρ constant. In every graph, λI = λE . The red circles represent settings where IF
dominates EF. The blue +’s represent cases where EF dominates IF. As ρ increases, the region
where EF dominates IF grows. However, as expected, when µI ≥ µE IF dominates EF for all
loads.

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

E
[
T

]

(a) Low load, ρ = .5

0 0.5 1 1.5 2 2.5 3 3.5

I

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
[
T

]

(b) Med. load, ρ = .7

0 0.5 1 1.5 2 2.5 3 3.5

I

0

2

4

6

8

10

12

14

16

18

E
[
T

]

EF

IF

(c) High load, ρ = .9

Figure 6.7: Graphs showing the absolute mean response times under IF and EF as a function of
µI when n = 4. In each graph, we fix system load, ρ, and set µE = 1. We then vary µI . To offset
the changes in µI , we change λI and λE to keep ρ constant. In every graph, λI = λE . The dotted
lines at µI = 1 denote the case where µI = µE . Thus IF is optimal to the right of this line, while
EF may dominate IF to the left of this line. We see that the allocation policy has a major impact
on mean response time.

case where µI = µE . We therefore know that IF is optimal to the right of this line in every graph,
while EF may dominate IF to the left of this line. We see that our choice of allocation policy has
a major impact on mean response time.

While Figures 6.6 and 6.7 assume that n = 4, our analysis works equally well with any number
of servers, n. Figure 6.8 shows how the mean response time under IF and EF changes as n
increases while system load, ρ, remains constant.

89

2 4 6 8 10 12 14 16

k

5

10

15

20

25

30

35

E
[
T

]

EF

IF

(a) µI = .25, µE = 1

2 4 6 8 10 12 14 16

k

0

1

2

3

4

5

6

7

8

E
[
T

]

EF

IF

(b) µI = 3.25, µE = 1

Figure 6.8: Graphs showing the mean response time under IF and EF as a function of the number
of servers, n under high load (ρ = 0.9). The values of µI and µE are chosen to represent the
extreme ends of Figure 6.7c (where the performance gap between the policies is the largest). Even
when n = 16, the difference between IF and EF remains large.

6.5.1 Markov Chains for IF and EF
Figure 6.5a shows the Markov chain which exactly describes EF. The corresponding IF chain
is given in Appendix C.3. Recall that the state (i, j) denotes having i inelastic jobs and j elastic
jobs in the system. This chain is infinite in 2 dimensions – the number of inelastic jobs and the
number of elastic jobs. Because there is no general method for solving 2D-infinite Markov chains,
we provide a technique for converting this chain to a 1D-infinite Markov chain in Section 6.5.2.

6.5.2 Converting From 2D-Infinite to 1D-Infinite
To reduce the dimensionality of the Markov chain for EF we follow a three step process:
Step 1: Response time of elastic jobs is trivial. Under EF, elastic jobs have preemptive priority
over inelastic jobs. Thus, their behavior is independent of the state of inelastic jobs in the system.
We can therefore model the response time of elastic jobs as an M/M/1 queueing system with
arrival rate λE and service rate nµE , which is well understood in the queueing literature [55].
What remains is to understand the response time of the inelastic jobs.
Step 2: The busy period transformation. Looking at Figure 6.5a, we notice that the chain has
a repeating structure when there is at least 1 elastic job in the system (j ≥ 1). We leverage this
repeating structure to reduce the Markov chain for EF to a 1D-infinite chain. Specifically, while
there are elastic jobs in the system, EF does not process any inelastic jobs. The length of time
where EF is not processing any inelastic jobs can be viewed as an M/M/1 busy period. In an
M/M/1 system, a busy period is defined to be the time between when a job arrives into an empty
system until the system empties. In our case, this busy period is the time from when an elastic job
arrives into a system with no elastic jobs until the system next has 0 elastic jobs. In Figure 6.5b,
we show how to the entire portion of the Markov chain where j ≥ 0 with a set of special states
which represent the duration of an M/M/1 busy period for the elastic jobs.
Step 3: Creating 1D chain for inelastic jobs. Looking at Figure 6.5b, we note the bolded tran-

90

sition arrows (labeled “B”) emanating from the busy period states. Because the duration of an
M/M/1 busy period is not exponentially distributed, we must replace these special transitions
with a mixture of exponential states (a Coxian distribution) which accurately approximates the du-
ration of a busy period. A technique for matching the first three moments of the busy period with a
Coxian is given in [77]. The 1D-infinite chain resulting from this technique is described in Figure
6.5c.

We use the same three-step technique to make an analogous simplification of the Markov chain
for IF (see Appendix C.3).

Given these 1D-infinite chains, we now apply standard matrix analytic techniques to solve for
mean response time.

6.5.3 Matrix Analytic Method
We now explain how to analyze IF and EF using the 1D-infinite Markov chains developed in the
previous section. We do this by applying matrix analytic methods [57, 72, 73]. Matrix analytic
methods are iterative procedures which compute the stationary distribution of a repeating, 1D-
infinite Markov chain.

Consider Figure 6.5c, which shows the 1D-infinite chain for EF. Observe that each column of
this chain, after the first column, has identical transitions. The idea of matrix analytic methods is
to represent the stationary distribution of column j+1 as a product of the stationary distribution of
column j and some unknown matrix R. The matrix R is determined iteratively through a numeric
procedure [57, 72, 73]. This procedure yields the stationary distribution of the chain. Using the
stationary distribution we can easily determine the mean number of inelastic jobs, and hence the
mean response time for inelastic jobs (recall that the response time for elastic jobs under EF is
trivial). An analogous argument can be applied to solve the 1D-infinite chain for IF.

6.6 Conclusion
This chapter establishes optimality results and provides the first stochastic analysis of policies for
scheduling jobs which are heterogeneous with respect to parallelizability. We consider the case
where jobs belong to one of two classes, with one class of jobs being more parallelizable than the
other. While it is intuitive that a scheduling policy should try and maximize instantaneous system
efficiency just as EQUI did in the single-speedup function case, an optimal policy must also defer
parallelizable work in order to preserve the future efficiency of the system. We show that a policy
called GREEDY∗, which both maximizes instantaneous system efficiency and defers parallelizable
work when possible, achieves a near-optimal mean response time in many cases.

Additionally, we show that when jobs are either elastic or inelastic, GREEDY∗ can perform
optimally. In this case, the Inelastic-First (IF) policy, which gives strict preemptive priority to
inelastic jobs, is equivalent to GREEDY∗. We prove that IF is optimal for minimizing the mean
response time across jobs in the common case where elastic jobs are larger on average than inelastic
jobs. We also provide an analysis of mean response times under the Elastic-First (EF) and Inelastic-
First (IF) policies.

91

It is interesting to note that some systems [23, 82] employ heuristic policies that could be
considered part of the GREEDY class of policies. However, these policies are based solely on
a intuitive understanding of instantaneous system efficiency. As a result, we are unaware of any
system which currently employs a GREEDY∗ policy, despite the fact that GREEDY∗ is provably
the best GREEDY policy. By failing to defer parallelizable work, these systems are performing
suboptimally. It would therefore be interesting to the compare the performance of a numerically
computed optimal policy to one of these heuristic policies given a real-world workload of jobs with
different speedup functions.

The most pressing theoretical question that this chapter poses is how one should schedule
elastic and inelastic jobs when elastic jobs are smaller on average than inelastic jobs. This chapter
shows that, in this case, EF can outperform IF. However, we do not show that EF is the optimal
allocation policy. We can in fact prove that, in each state, the optimal policy either gives strict
priority to an elastic job or strict priority to the inelastic jobs in the system. However, numerically
computed optimal policies appear to use a mixture of actions, prioritizing inelastic jobs in some
states and prioritizing elastic jobs in other states. We conjecture that an optimal policy in this case
has the form of a threshold policy. That is, there is some finite region of the state space outside
of which the optimal action is to prioritize the smaller elastic jobs. Unfortunately, a proof of this
property has remained elusive.

As it turns out, our results on scheduling elastic and inelastic jobs provide important intuition
about another important model of parallelizable jobs. In many cases, a parallelizable job is neither
fully elastic nor fully inelastic, but rather is composed of different phases. That is, a job may
alternate between being fully parallelizable at some times and non-parallelizable at other times.
In Chapter 7, we will use the intuition developed in this chapter to develop optimal scheduling
policies for parallelizable jobs composed of elastic and inelastic phases.

92

Chapter 7

Scheduling Jobs with Phases

7.1 Introduction
To this point, we have considered several different variants of the same basic model described in
Section 2. Aside from some technical assumptions, we have focused on how different assumptions
about the job sizes (known vs. unknown) and different assumptions about the speedup functions
(single speedup function vs. multiple speedup functions) change the kinds of scheduling policies
we should use to minimize job response times. In this final chapter, however, we consider use cases
where the scheduler knows more about each job than just its overall size and speedup function.

In many systems, each parallelizable job is actually composed of a series of distinct phases,
where each phase has its own corresponding size and speedup function. The difficulty in schedul-
ing such jobs arises largely from the fact that each job’s parallelizability is not constant over time.
That is, a job may be alternate between being highly parallelizable or not at all parallelizable
depending on the type of computation it is doing at each moment in time.

A wide variety of computer systems process jobs composed of phases. Databases explicitly
invoke the elastic and inelastic phases of a database query during query execution [110]. Cluster
schedulers [23], distributed computing platforms (e.g. Hadoop [92] and Apache Spark [108]),
distributed machine learning frameworks [62], and supercomputers all process jobs composed of
a mixture of highly parallelizable and highly sequential phases. Furthermore, it is common for the
scheduling policies in these systems to be aware of each job’s current phase [74, 96].

Although the above systems have the ability to track the current phase of each running job,
the systems do not effectively leverage this information to make optimal scheduling decisions. In
this chapter, we therefore address the problem of phase-aware scheduling by designing scheduling
policies that use the available phase information about each job to reduce job response times.

We will examine this problem by looking focusing on the example of scheduling in databases,
where a single query will alternate between highly parallelizable phases and non-parallelizable
phases. Specifically, modern databases translate queries into a pipeline composed of multiple
phases corresponding to different database operations [75]. For example, a phase that corresponds
to a sequential table scan is generally elastic, while a phase corresponding to a table join might
be inelastic. Figure 7.1 shows that this phenomenon holds for a variety of queries from the Star

93

0.03% 6.32% 93.41% 0.03% 0.2%

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
0

20

40

Threads

S
pe

ed
up

Query 2.1
0.01% 1.69% 97.36% 0.04% 0.89%

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
0

20

40

Threads

S
pe

ed
up

Query 2.2

3.95% 95.74% 0.01% 0.13% 0.17%

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
0

20

40

Threads

S
pe

ed
up

Query 4.1
1.09% 98.58% 0.01% 0.13% 0.19%

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
0

20

40

Threads

S
pe

ed
up

Query 4.2

Figure 7.1: Speedup functions for each phase of four queries from the Star Schema Benchmark.
Queries were executed using the NoisePage database [75]. Phases are either elastic (highly paral-
lelizable) or inelastic (highly sequential). The percentages denote the fraction of time spent in each
phase when the query was run on a single core. Despite the queries spending most of their time in
elastic phases, the overall speedup function of each query is highly sublinear due to Amdahl’s law.

Schema Benchmark [76].

7.1.1 Scheduling Tradeoffs
In this chapter, we consider the case where jobs are composed of elastic and inelastic phases. We
will consider cases where the scheduler has limited information about each job’s phases and phase
sizes, and cases where the exact sequence and sizes of a job’s phases are known to the scheduler.

This chapter will show how we can construct optimal phase-aware scheduling policies, which
account for the different phases that each job moves through over time. Figure 7.2 shows an
illustration of the tradeoffs that such a policy must balance, updated to reflect the case where jobs
are composed of elastic and inelastic phases.

Maximize	System	Efficiency

Complete	short	jobs	before	long	jobs

Preserve	Future	Efficiency

Limit	individual	allocations Defer	parallelizable	work

Chapter	7

Shorter	jobs	get	larger	allocations

Figure 7.2: Designing good phase-aware scheduling policies involves balancing multiple tradeoffs
simultaneously.

94

Key Insight

It turns out that, in order to construct good phase-aware scheduling policies, we often have to
balance all of the tradeoffs shown in Figure 7.2 simultaneously. If a job is known to have a shorter
remaining size, or a shorter expected remaining size, a scheduling policy should favor this job.
However, we should avoid allocating multiple cores to a job if it is in an inelastic phase. Given
a set of jobs that are in a mixture of elastic and inelastic phases, a scheduling policy should still
defer parallelizable work to preserve the future efficiency of the system. That is, it is generally
beneficial to give priority to jobs in inelastic phases. To make matters even more complex, it could
be the case that some jobs are in short elastic phases while other jobs are in long inelastic phases.
Here, we will see that our choice of scheduling policy will depend on what is known about the
exact sequence of phases comprising each job in the system. In short, to derive new phase-aware
scheduling policies, we must combine the intuition and mathematical results developed in various
prior chapters in order to address all of the tradeoffs shown in Figure 7.2.

7.1.2 Contributions
Although real-world systems process jobs composed of phases, and these systems are often aware
of the current phase of each job, phase-aware scheduling remains an open problem. Hence, our
first contribution is a stochastic model of jobs composed of elastic and inelastic phases. Under this
model, we derive a provably optimal scheduling policy.

As we saw in Chapter 6, when scheduling jobs that are either entirely elastic or entirely in-
elastic, the IF policy was optimal with respect to mean response time. This raises the question
of whether IF can be generalized to a policy that performs well when scheduling jobs composed
of elastic and inelastic phases. In this chapter we show that IF, which gives priority to jobs in
inelastic phases, is the optimal policy for scheduling jobs composed of elastic and inelastic phases
in many cases. This optimal policy greatly outperforms both the PA-FCFS policy used in real
systems and the EQUI policy proposed for scheduling jobs composed of phases in the worst-case
literature. Because our optimality results require some simplifying assumptions, we validate IF’s
performance through a range of simulations, including a simulation of a database running queries
from the Star Schema Benchmark [76].

The specific contributions of this chapter are summarized as follows:
• We first present a novel model of parallelizable jobs composed of elastic and inelastic phases

where the scheduler knows, at all times, what phase a job is in. This model generalizes the
models used in previous chapters, where we assumed that all jobs followed a single speedup
function throughout their lifetimes.

• We prove that the Inelastic First (IF) policy, which defers parallelizable work by giving
strict priority to jobs which are in an inelastic phase, is optimal under our model. Because
the proof of optimality requires a complex coupling argument, we break this claim down by
considering special cases which are easier to understand. We begin by proving the optimality
of IF in simpler models in Section 7.4 before proving our more general claim in Section 7.5.

• In Section 7.6, we perform an extensive simulation-based performance evaluation to illus-

95

E I C

µE qµI

(1− q)µI

Figure 7.3: The Markov chain governing the evolution of a multi-phase job when running on a
single core. E refers to the elastic phase, I refers to the inelastic phase, and C is the completion
state.

trate that IF outperforms a range of scheduling policies. Even in settings that violate the
assumptions of our model, IF can perform nearly 30% better than the PA-FCFS policy
used in modern databases and a factor of 3 better than the EQUI policy advocated for in the
worst-case theory literature.

• Lastly, in Section 7.7, we perform a case study on scheduling in databases where queries
consist of elastic and inelastic phases. In this setting, the scheduler sometimes has additional
information about each query beyond just the query’s current phase. We show how to gener-
alize IF to leverage this additional information and improve upon state-of-the-art database
scheduling by roughly 50% in simulation.

7.2 Our Model
In this section, we present a model of jobs composed of distinct phases running in a system con-
sisting of n homogeneous cores.

Multi-phase Jobs
We begin by noting that in a wide range of systems applications, job phases are either highly par-
allelizable or highly sequential. Figure 7.1 shows that database queries often follow this pattern.
A similar phenomenon applies in systems using a map-reduce paradigm [22] where parallelizable
map stages are interlaced with sequential reduce stages. Machine learning training jobs also con-
sist of highly parallelizable iterations of distributed gradient descent followed by a sequential step
that coalesces the results on a central parameter server [62]. Hence, while job phases could po-
tentially experience intermediate parallelizability, we will consider the highly practical case where
job phases are either elastic, perfectly parallelizable, or inelastic, totally sequential.

To model the duration of each job phase, we define a phase’s inherent size to be the amount of
time it takes the phase to complete when run on a single core. This is analogous to and compatible
with our notion of a job’s size, in that a job’s inherent size is the sum of the sizes of the job’s phases.
For analytical tractability, we will assume that inelastic phase sizes are distributed as Exp(µI)
and elastic phase sizes are distributed as Exp(µE), and that all phase sizes are independently
distributed. Although the scheduler often knows the current phase of each job in the system, it
is less common in real systems for the scheduler to know the full sequence of phases comprising

96

each job, or the size of each phase. Hence, we will generally assume that the scheduler knows
the current phase of each job, but that the scheduler does not know the future phases or any of the
phase sizes of a job. In Section 7.7, we consider scheduling in databases, where it is common for
the database to have additional information about each job’s phases and phase sizes.

Our definition of elastic and inelastic phases is analogous to our definition of elastic and inelas-
tic jobs in Chapter 6. Elastic and inelastic phases follow the speedup functions sE(k) and sI(k) as
defined in Section 6.2.2. That is, elastic phases are perfectly parallelizable, while inelastic phases
receive no benefit from running on more than one core. The result is that, when run on k cores,
and elastic phase of size XE will complete in time

XE

sE(k)

and an inelastic phase of size XI will complete in time

XI

sI(k)
.

Note that this definition is compatible with our notion of elastic and inelastic jobs. Specifically, a
job is elastic if all of its phases are elastic, and a job is inelastic if all of its phases are inelastic.

Because the sizes of a job’s phases are assumed to be exponentially distributed and unknown
to the system, we model a multi-phase job via a continuous-time Markov chain, as shown in Fig-
ure 7.3. We model each job via a Markov chain consisting of three states: an E state that denotes
that the job is in an elastic phase, an I state that denotes that the job is in an inelastic phase, and an
absorbing state, C, that denotes that the job has been completed. Each arriving job can either start
in the E state or in the I state. We assume that a job can only transition to the completion state
from the inelastic state. This is realistic for a wide range of systems where the results of a parallel
computation must be sequentially coalesced and returned to the user [22, 44, 108]. It also simpli-
fies our analysis without weakening our results (see Remark 7.3). We define q to be the probability
that a job completes after an inelastic phase; with probability 1 − q the job will transition to an
elastic phase.

We assume that all jobs evolve according to the same underlying Markov chain. However, the
exact number of phases and the sizes of the phases belonging to each job can be different. Under
this model, the expected total inherent size of a job depends on whether the job begins with an E
phase or an I phase, and is given by the following expressions:

E[Job size if start in E] =

(
1

µE
+

1

µI

)
1

q

E[Job size if start in I] =

(
1

µE
+

1

µI

)
1

q
− 1

µE

We refer to the completion of a job’s final inelastic phase as a job completion. We refer to
the completion of any of the job’s phases as a transition. An inelastic transition occurs when an
inelastic phase is completed and an elastic transition occurs when an elastic phase is completed.

97

Job 7 Job 6 Job 5 Job 4
Arrivals

Job 1

Job 2

Job 3

K = 4 Servers

Elastic
Phases

Inelastic
Phases

Figure 7.4: The central queue and cores for our system. Jobs 1-7 are all modeled by the Markov
chain presented in Figure 7.3. We use solid orange to illustrate the elastic phases of jobs, and
crosshatched blue to illustrate the inelastic phases. While we assume the number of remaining
phases is unknown to the scheduler, we have drawn out the remaining phases to illustrate job
structure. Here, there are n = 4 cores. Two cores are allocated to jobs in an inelastic phase (Jobs
1 and 2), and two cores are allocated to a single job in an elastic phase (Job 3).

Scheduling Policies
A scheduling policy, π, determines how to allocate the n cores to the jobs in the system at every
moment in time. Although our policies are fully preemptive, we assume that policies only change
their allocation at times of job arrivals, transitions, or job completions. When a job is in an inelastic
phase, it can be allocated up to one core (i.e., fractional allocations are admitted). When a job is in
an elastic phase, it can be allocated any number of cores up to n.

To find an optimal scheduling policy, it suffices to only consider policies that do not idle cores
unnecessarily. This follows from Theorem C.1, which showed that there exists a non-idling optimal
scheduling policy for scheduling jobs consisting of either a single elastic phase or a single inelastic
phase. The proof of C.1 can be trivially extended to the case where jobs consist of multiple phases.
Hence, we only consider non-idling scheduling policies.

Because the sizes of a job’s phases are exponentially distributed and unknown to the system,
we first consider policies that make allocation decisions based only on the type of each job’s
current phase. In Section 7.7.1, however, we discuss the case where scheduling policies may have
additional information about the phase sizes for each job.

This chapter focuses on the analysis of the Inelastic First (IF) policy, which we generalize
from Chapter 6 to handle the case where jobs are composed of multiple phases. Specifically, at
every moment in time, IF gives strict priority to jobs that are in inelastic phases. If there are i jobs
in the system that are in an inelastic phase, then IF allocates min{i, n} cores to these jobs. IF
then allocates any remaining cores to a job in an elastic phase if such a job exists, otherwise these
extra cores remain idle. Our intuition is that this generalization of IF will remain a good policy
because it continues to defer parallelizable work. We will show that IF again increases system

98

efficiency by keeping flexible elastic phases in the system, ensuring that all n cores can remain
utilized.

We show that IF is optimal with respect to minimizing mean response time. In addition to
deferring parallelizable work, IF is a good policy because it is also able to favor jobs with smaller
expected remaining sizes. Observe that IF does not require any knowledge of the job parameters
(µI , µE , and q). Thus, optimally scheduling multi-phase jobs can be done regardless of whether
these parameters are known to the system.

Arrival Processes and Metrics
In this chapter, we allow for an arbitrary arrival process. To be precise, we first define an arrival
time sequence as two fixed, infinite sequences, (tn)n≥1 and (`n)n≥1, where tn is the time at which
the nth job arrives and `n ∈ {E, I} denotes whether the arriving job begins with either an E phase
or an I phase. We define an arrival time process as a distribution over arrival sequences.

We define the response time of the nth job under policy π to be the time from when the job
arrives until it completes. We denote this quantity by the random variable T (n)

π . We let Tπ denote
the steady-state response time whenever this quantity exists.

As an example, consider the case where the arrival time process is a Poisson process with rate
λ and each job starts with an E phase with probability rE and with an I phase with probability rI .
Then we can define the system load as:

ρ = System load =
λ · E[Job size]

n
,

where
E[Job size] = rE · E[Job size if start in E] + rI · E[Job size if start in I] .

In this setting, if ρ < 1, the steady-state mean response time under policy π exists and is denoted
by E[Tπ].

Stochastically Minimizing the Number of Jobs in System
We show that IF minimizes the steady-state mean response time across jobs. To show this, we
prove a series of claims about the number of jobs in the system at any point in time. Namely, we
argue that IF stochastically maximizes the number of jobs completed by any point in time. This
is equivalent to saying IF stochastically minimizes the number of jobs in system at any point in
time.

To reason about the number of completions by time t, we will count the number of elastic and
inelastic transitions as well as the number of job completions. We define Cπ(t) to be the number
of job completions by time t under policy π. We define Iπ(t) (and Eπ(t)) to be the number of
inelastic (resp. elastic) transitions under policy π by time t. Finally, we define Iπ(s, t) to be the
number of inelastic transitions under π on the interval (s, t] and we define Eπ(s, t) and Cπ(s, t)
analogously.

99

With respect to the number of jobs in system, let Nπ(t) denote the number of jobs present at
time t, under policy π. We define NE

π (t) to be the number of jobs in an elastic phase at time t
under π and we define N I

π(t) to be the number of jobs in an inelastic phase at time t under π.

7.3 Overview of Theorems
In this section, we provide an overview of the theoretical results in Sections 7.4 and 7.5.

7.3.1 Main Result
We first state the main theorem in full generality. At a high level, the theorem states that IF is
the most effective policy in terms of completing jobs. More specifically, we show that the number
of jobs completed by any point in time under IF stochastically dominates the number of jobs
completed by the same time under any other algorithm.
Theorem 7.1. Consider a n core system serving multi-phase jobs. The policy IF stochastically
maximizes the number of jobs completed by any point in time. Specifically, for a policy A, let
CA(t) denote the number of jobs completed by time t and let NA(t) denote the number of jobs
in the system at t. Then under any arbitrary arrival time process, CIF(t) ≥st CA(t) for all times
t ≥ 0. Consequently, NIF(t) ≤st NA(t) for all times t ≥ 0.

We can leverage Theorem 7.1 to derive far-reaching results about job response time. In particu-
lar, if the arrival time process is a renewal process1, we can show that IFminimizes the steady-state
mean response time. We formalize this idea in the following immediate corollary of Theorem 7.1.

Corollary 7.2. Suppose the same system setup as in Theorem 7.1. For any arbitrary policy A, let
TA be the steady-state job response time when it exists. If the arrival time process is a renewal
process, then E [TIF] ≤ E [TA].

Proof. By Theorem 7.1, we know IF stochastically minimizes the number of jobs in the system
at any point in time. Since the arrival time process is a renewal process, this implies that IF
minimizes the steady-state mean number of jobs in the system. By Little’s law, minimizing the
mean number of jobs in the system suffices for minimizing the steady-state mean response time.

Theorem 7.1 and its corollary show that IF succeeds by both deferring parallelizable work
and working on jobs with smaller expected remaining sizes. Specifically, while elastic phases
can be completed more quickly by parallelizing across all cores, there are benefits to keeping
elastic phases in the system. These elastic phases are flexible and can ensure that all n cores
remain utilized. It is also possible to allocate some cores to inelastic phases without significantly
increasing the run time of an elastic phase. Furthermore, jobs in inelastic phases have smaller
expected remaining sizes. Hence, deferring parallelizable work also results in favoring shorter

1By a renewal process, we mean the inter-arrival times tn− tn−1 are i.i.d., and that the initial phases of jobs pn are
i.i.d. as well.

100

E I C

µ µ

(a) Two-phase job with equal
rate

E I C

µE µI

(b) Two-phase job with un-
equal rates

E I C

µE qµI

(1− q)µI

(c) Multi-phase job

Figure 7.5: The three job structures we consider. E refers to the elastic state, I refers to the
inelastic state, and C refers to the completion state. In Figure 7.5(a), jobs just have two phases,
both with inherent size distributed as Exp(µ). In Figure 7.5(b), jobs still have two phases. Phase
I has size distributed as Exp(µI), and phase E has size distributed as Exp(µE). In Figure 7.5(c),
we add in potential transitions from phase I to phase E.

jobs. For these reasons, the optimal policy, IF, defers as much parallelizable work as possible
without over-allocating to inelastic phases.
Remark 7.3. One might assume that IF benefits not from deferring parallelizable work, but rather
from how we have defined our model, where jobs in inelastic phases have smaller expected remain-
ing sizes. However, as we show in Section 7.7, simply favoring jobs with smaller remaining sizes
(as done by the PA-SRPT policy) is not nearly as important as deferring parallelizable work in
real-world settings.

7.3.2 How We Prove Theorem 7.1
We now provide a road map for how we prove Theorem 7.1. At a high level, we note that it suffices
to find a coupling between two systems, one running IF and one running an arbitrary policy A,
under which CIF(t) ≥ CA(t),∀t ≥ 0. However, finding such a coupling is difficult due to the
complicated job structure in Figure 7.3. In particular, the inherent size distributions are different
between the two phases and jobs are composed of an unknown number of elastic and inelastic
phases.

We therefore begin by considering several simpler job structures, as seen in Figure 7.5. The
simplest job structure has elastic and inelastic phases with the same size distribution, and does
not allow transitions from an inelastic phase to an elastic phase. We then add the complexities
gradually back to the model. In each case, we argue that studying the number of inelastic transitions
suffices to understand the total number of job completions. Recalling that IA(t) is the number of
inelastic transitions under A by time t, we prove that, for any policy A, there exists a coupling
under which IIF(t) ≥ IA(t) for all t ≥ 0. We then argue that, under this coupling, CIF(t) ≥ CA(t)
for all t ≥ 0.

In Section 7.4.1, we start with the simplest job structure as shown in Figure 7.5(a). In this
structure, jobs consist of a single elastic phase followed by a single inelastic phase. Moreover,
we assume the inherent sizes of both the elastic and inelastic phases are identically distributed as
Exp(µ). We refer to such jobs as two-phase jobs with equal rates. We are able to couple two
systems experiencing jobs of this structure by (1) having them experience the same sequence of
arrivals and (2) splitting time into roughly uniform chunks of length Exp(nµ). At the end of each

101

chunk of time, the systems will both potentially experience a job transition. By splitting time into
“busy” and “idle” periods under this coupling (as defined in the proof of Lemma 7.4), we prove
the desired result.

We then consider the slightly more complicated job structure shown in Figure 7.5(b) in Sec-
tion 7.4.2. In this job structure, jobs again consist of a single elastic phase followed by a single
inelastic phase. However, we drop the assumption that the inherent sizes of elastic and inelastic
phases are identically distributed. We refer to such jobs as two-phase jobs with unequal rates.
Although having unequal rates between phases complicates the splitting of time into roughly equal
blocks, we work around this by leveraging a trick called uniformization. More specifically, we
reformulate this more general job structure as a Markov chain in which the elastic and inelas-
tic phases have the same inherent size distribution, but with some additional self-loop transitions
added to the chain. We then expand our existing coupling argument by coupling the transition
outcomes of the two systems.

Finally, we consider the general job structure as shown in Figure 7.5(c) in Section 7.5. In
this job structure, jobs have alternating elastic and inelastic phases, each with a different service
rate. We refer to such jobs as multi-phase jobs. This case seems quite different from the previous
settings, since now an inelastic transition can produce an elastic phase. However, we show that
such a transition is equivalent to a job completion followed immediately by an arrival of a job
beginning with an elastic phase. Using this argument, we show how a coupling in the general case
follows from our coupling in the cases with two-phase jobs.

The above arguments all leverage the fact that, for a given sample path under our model, the
policy that has completed more inelastic phases by time twill also have completed more jobs. This
is a direct result of our assumption that the final phase of each job will be an inelastic phase. In the
case where jobs may finish with an elastic phase, an optimal policy may give priority to a job in
an elastic phase if the job has a sufficiently small expected remaining size. We examine the case
where jobs finish with elastic phases in Section 7.6 and find that IF still frequently performs well.

7.4 Two-Phase Jobs

7.4.1 Two-Phase Jobs with Equal Rates
We first consider two-phase jobs with equal rates. These are jobs that consist of a single elastic
phase followed by a single inelastic phase where both phases have inherent size distributed as
Exp(µ), as illustrated in Figure 7.5(a).
Lemma 7.4. Consider a n core system serving two-phase jobs with equal rates. Consider any
policy A and let the policies IF and A start from the same initial conditions and have the same
arrival time process. Then there exists a coupling between IF and A such that IIF(t) ≥ IA(t) and
CIF(t) ≥ CA(t) for all t ≥ 0, where IIF(t) (resp. IA(t)) is the number of inelastic transitions by
time t under IF (resp.A), and CIF(t) (resp. CA(t)) is the number of jobs completed by time t under
IF (resp. A).

We begin by first describing the coupling we will use to prove Lemma 7.4. This coupling will
serve as a building block for subsequent arguments in this chapter. We then present the proof of

102

Lemma 7.4.
Note that for two-phase jobs with equal rates, every inelastic job transition is also a completion,

so we have IA(t) = CA(t) for all times t ≥ 0 under any policy A. Therefore, to prove Lemma 7.4,
it suffices to construct a coupling under which IIF(t) ≥ IA(t) for all t ≥ 0. Then the claim
CIF(t) ≥ CA(t) follows directly.

Coupling IF and A

Let SIF be the system running IF and SA be the system running any arbitrary policy A. The high-
level intuition of the coupling is as follows. Since both phases, inelastic and elastic, have inherent
size Exp(µ), we can parse time into blocks of length Exp(nµ). At the end of each of these blocks,
both systems will potentially experience a job transition. Outside of these points of time, no job
transitions can occur. This simplifies the counting of job completions and inelastic transitions.
Arrivals do not change the number of transitions or job completions, and hence we do not need
assumptions on the arrival time process.
Job arrivals: We assume that the two systems, SIF and SA, have the same number of jobs in each
phase at time 0 (for instance, seven jobs in an inelastic phase, and three jobs in an elastic phase).
Formally, we assume that NE

IF(0) = NE
A (0) and N I

IF(0) = N I
A(0).

We fix an arrival time sequence that is shared between SIF and SA. Recall that an arrival
sequence is a fixed sequence of arrival times (tn)n≥1 and a corresponding binary sequence (`n)n≥1,
where tn is the time the nth overall job arrival occurs in both systems and `n ∈ {E, I} determines
which phase a job starts in.
Job transitions and departures: Suppose the current time is t. We generate a random variable
X ∼ Exp(nµ), that is shared by both systems. Suppose s is the next unrealized arrival time in the
arrival sequence. If s < t + X , we allow the arrival to occur simultaneously into both systems.
We then set t ← s, and return to the beginning of this paragraph. If s > t + X , then we set the
current time to be t ← t + X , and then select one of the n cores uniformly at random2 (we select
the same core in both systems). If a system is running a job in its inelastic phase on this randomly
selected core, the job completes. Likewise, if the core is running a job in its elastic phase, the
system experiences an elastic transition, producing an inelastic phase. Lastly, if the core selected
is idling, nothing happens. This event (which may or may not result in a transition/departure)
will be referred to as a potential transition. In general, a time where either an arrival or potential
transition occurs will be referred to as an event time.

Additionally, if at time t the system is serving i inelastic jobs, we assume they are running on
cores 1 through i. If an elastic job is being served, it is run on cores i + 1 through e, where e is
some number less than or equal to n. The remaining cores are left idle.

2For the sake of simplicity, we assume that jobs can only be allocated an integral number of cores. However, our
result generalizes to the case where allocations are fractional. When allocations are fractional, we treat the cores as a
continuous interval, [0, n] and generate U ∼ Unif[0, n]. The type of phase running at the corresponding point in the
interval [0, n] determines what type of transition occurs.

103

Proof of Lemma 7.4

Proof. We proceed by induction on event times, as defined in Section 7.4.1. We parse time into
two types of periods: busy periods where SIF utilizes all n of its cores, and idle periods where
SIF idles at least one of its cores at any point in time. Let t0 be the start of a period (either busy
or idle). We show below that, if IIF(t0) ≥ IA(t0), then, at any point of time t during the current
period, IIF(t) ≥ IA(t). This claim is sufficient for proving Lemma 7.4 since time can be partitioned
into disjoint alternating busy and idle periods. To get a sense of how time is partitioned, refer to
Figure 7.6.

As a base case for our induction, observe that IIF(0) = IA(0). Depending on the initial condi-
tions, time t = 0 will serve as either the start of the first busy period or the first idle period.

Busy Periods: We first consider the case where time t0 marks the start of a busy period, and
assume inductively that IIF(t0) ≥ IA(t0). We show that IIF(t) ≥ IA(t) for all times t in the busy
period by contradiction. Assume for contradiction that there is some earliest time s in the busy
period such that IIF(s) < IA(s).

First, we argue that
NE

IF(t0) ≤ NE
A (t0). (7.1)

If t0 = 0, this follows directly from the shared initial conditions of SIF and SA. Now suppose
t0 > 0. Observe that, since t0 marks the beginning of a busy period, immediately before time t0,
all of the jobs in SIF must be in the inelastic phase. That is, NE

IF(t0−) = 0, and thus NE
IF(t0−) ≤

NE
A (t0−). Lastly, the event that happens at t0 can only be job arriving since t0 is the start of a busy

period. Since the arrival occurs simultaneously in both systems, it follows that NE
IF(t0) ≤ NE

A (t0),
as desired.

Next, let τ be the time for the event preceding the event at s. We claim that

IIF(τ) = IA(τ), and NIF(τ) = NA(τ), (7.2)

where NIF(τ) = NA(τ) follows from IIF(τ) = IA(τ). This is because the number of inelastic
transitions determines the number of job completions and both systems experience the same arrival
sequence. The claim IIF(τ) = IA(τ) is true since IIF(t) is non-decreasing, IA(τ) can increase by
at most 1 at time s, and s is the earliest time during the busy period for which IIF(s) < IA(s).
More specifically, we can conclude that at time s, SIF experiences an elastic transition, whereas
SA experiences an inelastic transition. This holds because IIF(s) < IA(s) and IIF(τ) = IA(τ) if
and only if IIF(s) = IIF(τ) and IA(s) = IA(τ) + 1. This implies that SA experiences an inelastic
transition at time s. Furthermore, SIF experiences an elastic transition at time s since IF does not
idle cores during a busy period.

Now, we can claim that
EIF(t0, s) ≤ EA(t0, s). (7.3)

Since we have shown that NE
IF(t0) ≤ NE

A (t0) in (7.1), it suffices to show that NE
IF(s) ≥ NE

A (s).
Per our coupling, the previous paragraph implies that SIF is running fewer inelastic jobs on the
interval [τ, s) than SA. Since SIF always runs the maximal number of inelastic jobs, we have that

104

N I
IF(τ) < N I

A(τ). Moreover, since NIF(τ) = NA(τ) by (7.2), we know that NE
IF(τ) > NE

A (τ), and
thus NE

IF(s) ≥ NE
A (s).

Finally, letM denote the number of potential transitions during (t0, s]. Since SIF is never idling
cores between times t0 and s, we have the identities:

M = EIF(t0, s) + IIF(t0, s), and M ≥ EA(t0, s) + IA(t0, s).

Consequently, utilizing (7.3) and rearranging, we have that:

IIF(t0, s) ≥ IA(t0, s). (7.4)

Moreover, recall that by definition, IIF(s) = IIF(t0) + IIF(t0, s) and IA(s) = IA(t0) + IA(t0, s).
Since we assumed IIF(t0) ≥ IIF(t0), and we know that IIF(t0, s) ≥ IA(t0, s) by (7.4), we have
IIF(s) ≥ IA(s), a contradiction. This completes the induction step for busy periods.

Idle periods: Next, we consider the case that time t0 marks the beginning of an idle period, and
again inductively assume that IIF(t0) ≥ IA(t0). To show IIF(t) ≥ IA(t) for all times t in the idle
period, we once again proceed by contradiction. That is, suppose there is some earliest time s in
the period such that IIF(s) < IA(s).

First, observe that, since SIF always chooses to idle at least one core during the idle period,
there cannot be any elastic phase jobs in the system. That is, NE

IF(t) = 0 for all times t in the idle
period.

Letting τ be defined again as the time for the event preceding the event at s, by a similar
reasoning to before, we must have that

IIF(τ) = IA(τ), (7.5)

and that, at time s, SIF does not have a transition, whereas SA experiences an inelastic transition.
Now we show that we have a contradiction. First note that the equality IIF(τ) = IA(τ) in

(7.5) implies that NIF(τ) = NA(τ). Next, since at time s, SIF does not have a transition but
SA experiences an inelastic transition, per our coupling, SIF is running strictly fewer jobs in the
inelastic phase than SA. Since SIF has no elastic jobs, this implies that NIF(τ) < NA(τ), leading
to a contradiction. This completes the induction step for idle periods.

7.4.2 Two-Phase Jobs with Unequal Rates
We now consider two-phase jobs with unequal rates, as illustrated in Figure 7.5(b). In this case,
the inherent sizes of elastic phases are distributed as Exp(µE), and the inherent sizes of inelastic
phases are distributed as Exp(µI). In this section, we will show how to generalize the coupling in
Section 7.4.1 to establish Lemma 7.5, below.
Lemma 7.5. Consider a n core system serving two-phase jobs with unequal rates. Consider any
policy A and let the policies IF and A start from the same initial conditions and have the same

105

t0 τ s

K

Time −→

Busy
Servers

(a) Busy period

t0 τ s

K

Time −→

Busy
Servers

(b) Idle period

Figure 7.6: Examples of busy and idle periods used in the proof of Lemma 7.4. The figures both
show the relative positions of the times t0, τ , and s. The value n refers to the number of cores, and
the heights of the boxes indicate how many cores SIF allocates to jobs.

arrival time process. Then there exists a coupling between IF and A such that IIF(t) ≥ IA(t) and
CIF(t) ≥ CA(t) for all t ≥ 0, where IIF(t) (resp. IA(t)) is the number of inelastic transitions by
time t under IF (resp.A), and CIF(t) (resp. CA(t)) is the number of jobs completed by time t under
IF (resp. A).

It is not trivial to apply the coupling in Section 7.4.1 to the situation where different phases
(elastic and inelastic) have different exponential rates (µE and µI). The key component of our
coupling in Section 7.4.1 was that we could parse time into blocks of length Exp(nµ) to keep both
systems in sync. Now, the size of the blocks could depend on which types of phases (elastic or
inelastic) are being served, and thus may be unequal between the two systems.

To tackle this problem, we leverage the technique of Markov chain uniformization. In uni-
formization, we find a rate µ that is at least as large as any transition rate in the Markov chain.
Our goal is to set the total transition rate out of both the elastic and inelastic states to be µ without
changing the behavior of the Markov chain. For instance, if µE > µI , we take µ := µE . Clearly,
the total transition rate out of the elastic state is already µ in this case. For the inelastic state,
because µI < µ, we add a self-loop transition that brings the total transition rate out of the state
up to µ. We can then rewrite both µI and the new self-loop transition in terms of µ. Specifically,
we can think of first transitioning out of the inelastic state with some total rate µ, and then either
moving to the completion state or experiencing a self-loop with probability pI or 1 − pI respec-
tively. By choosing pI = µI

µ
, we can re-write µI as pIµ. We then write the self-loop transition rate

as (1− pI)µ. Figure 7.7(a) shows the resulting uniformized Markov chain.
It is easy to confirm that, since we have only added some self-loop transitions, the uniformized

Markov chain is equivalent to the original Markov chain (Figure 7.5(b)). The case where µE < µI
is symmetric and the uniformized Markov chain for this case is shown in Figure 7.7(b).

To present our coupling, we will use the uniformized job model. Under the uniformized job
model, IA(t) can differ from the total number of job completions,CA(t). However, for the coupling
we present, we can use the number of inelastic transitions to directly recover the total number of
job completions.

106

E I C

µ pIµ

(1− pI)µ
(a) Two-phase job, unequal rates, µE > µI

E I C

pEµ µ

(1− pE)µ
(b) Two-phase job, unequal rates, µE < µI

Figure 7.7: Two cases of uniformizing two-phase jobs with unequal rates. In Figure 7.7(a), µE >
µI , so we take our dominating rate as µ := µE . We then take pI := µI

µ
and set the total transition

rate out of the inelastic state to be µ. With probability 1− pI , after completing an inelastic phase,
we immediately start another one. With probability pI , the job completes and exits the system.
Figure 7.7(b) shows the analogous case where µE < µI .

System Coupling

Our goal in the coupling is twofold. Once again, we want to chop up time into blocks of length
Exp(nµ) to keep SIF and SA roughly in sync. Additionally, we want to construct a coupling where
reasoning about the number of inelastic transitions, IA(t), suffices for reasoning about total job
completions, CA(t). That is, we want to find a coupling under which IIF(t) ≥ IA(t), ∀t ≥ 0
implies CIF(t) ≥ CA(t),∀t ≥ 0.

Job arrivals: SIF and SA share the same arrival time sequence, and start with the same initial
conditions.

Job transitions and departures: Our coupling in this case closely follows the coupling in Sec-
tion 7.4.1. Specifically, the current time t is updated in the same manner as in Section 7.4.1. How-
ever, we handle potential transitions slightly differently, due to uniformization. We only discuss
the case µI < µE , as the reverse case can be handled symmetrically.

When µI < µE , we take our dominating rate to be µ := µE . We generate an infinite sequence,
(Xn)n≥1, of i.i.d. Bern(pI) random variables, where pI = µI

µ
. The realizations of (Xn)n≥1 are

shared between the two systems. These coin flips will determine whether an inelastic transition
results in a self-loop or in a job completion.

Throughout time, both systems keep track of the total number of inelastic transitions which
have occurred. More concretely, each system starts with its own counter, n, which is initialized
to 0. For each system, if we randomly select a core holding an inelastic job while experiencing
a potential transition, we increment this system’s counter (n ← n + 1). We then check position
n of the shared infinite sequence of coin flips. If Xn = 1, the inelastic job completes and exits
the system. Otherwise, we have a self-loop transition and no job exits the system. Hence, for any
policy, π, at time t, we have

Cπ(t) =

Iπ(t)∑
i=1

Xi.

107

E I C

µ qpIµ

(1− q)pIµ

(1− pI)µ
(a) Multi-phase job, µE > µI

E I C

pEµ qµ

(1− q)µ

(1− pE)µ
(b) Multi-phase job, µE < µI

Figure 7.8: Two cases of uniformizing multi-phase jobs. In Figure 7.8(a), µE > µI , so we take
our dominating rate as µ := µE . We then take pI := µI

µ
, and set the the total transition rate out

of the inelastic state to be µ. With probability 1 − pI , after completing an inelastic phase, we
immediately start another one. With complementary probability pI , the job does one of two things.
With probability q, it completes. Otherwise, with probability 1 − q, it begins an elastic phase.
Figure 7.8(b) shows the analogous case where µE < µI .

Since SIF and SA share a common sequence of coin flips, IIF(t) ≥ IA(t) implies CIF(t) ≥
CA(t).

Proof of Lemma 7.5

Since we only need to show IIF(t) ≥ IA(t),∀t ≥ 0, we can use the proof of Lemma 7.4 verbatim
to prove Lemma 7.5.

7.5 Optimality in the General Case
We now consider the fully general multi-phase job structure, as seen in Figure 7.5(c). In order to
prove Theorem 7.1, it suffices to prove Lemma 7.6 below.
Lemma 7.6. Consider a n core system serving multi-phase jobs. Consider any policyA and let the
policies IF and A start from the same initial conditions and have the same arrival time process.
Then there exists a coupling between IF and A such that IIF(t) ≥ IA(t) and CIF(t) ≥ CA(t) for
all t ≥ 0, where IIF(t) (resp. IA(t)) is the number of inelastic transitions by time t under IF (resp.
A), and CIF(t) (resp. CA(t)) is the number of jobs completed by time t under IF (resp. A).

As in Section 7.4.2, we use uniformization to rewrite the job structure of Figure 7.5(c) so that
the elastic and inelastic phase transitions have equal rates. There are two possible uniformizations
here, once again depending on how µE and µI relate. Determining the dominating rate µ and
transition probabilities pI or pE is the same as in Section 7.4.2, and the two possible uniformized
Markov chains are shown in Figure 7.8. With these job structures in mind, we present the system
coupling which allows us to prove the optimality of IF.

108

7.5.1 System coupling
As in Section 7.4.1, we construct a coupling that keeps systems SA and SIF in sync with respect to
potential transition times and that allows us to use IA(t) to reason about CA(t).

Job arrivals: As in Sections 7.4.1 and 7.4.2, we let SIF and SA share the same arrival time se-
quence and start with the same initial conditions.

Job transitions and departures: For the most part, the transition process is similar to the uni-
formized case presented in Section 7.4.2. However, while we previously only needed a single
infinite sequence of i.i.d. Bernoulli random variables, here we will need two. We state the two
cases (µE < µI and µE > µI) separately, as they differ slightly in their construction.

First, we consider µE < µI (Figure 7.8(b)). Here, instead of a single sequence of coin flips,
we have two shared sequences of coin flips. The first sequence, (Xn)n≥1, is an i.i.d. sequence
of Bern(pE) random variables. If Xn = 1, the nth elastic transition results in an elastic phase
completion, producing an inelastic phase. Otherwise, if Xn = 0, the elastic transition does not
result in a phase completion. The second sequence, (Yn)n≥1, is a sequence of i.i.d. Bern(q)
random variables. Recall that q is the probability that the completion of an inelastic phase will
result in a job completion. If Yn = 0, the nth inelastic transition results in the creation of an elastic
phase. If Yn = 1, the nth inelastic transition results in a job completion.

The case when µE > µI (Figure 7.8(a)) is slightly more complex. Here, we do not have any
self-loops for elastic phases. However, there are three possible outcomes for inelastic phases. We
therefore keep track of two sequences of i.i.d. Bernoulli random variables, (Xn)n≥1 and (Yn)n≥1.
In the first sequence, Xn is distributed as Bern(pI). In the second sequence, Yn is distributed as
Bern(q).

If Xn = 0, the nth inelastic transition does not result in the completion of an inelastic phase.
If Xn = 1, the nth inelastic transition results in a phase completion, and we then examine the
sequence (Yn). If the nth inelastic transition results in the mth overall inelastic phase completion,
we check Ym. If Ym = 1, the job completes, and if Ym = 0, the job transitions to an elastic phase.

Because SIF and SA share the same sequence of coin flips, comparing the number of inelastic
transitions between systems is equivalent to comparing the number of job completions. That is, if
IIF(t) ≥ IA(t),∀t ≥ 0, then CIF(t) ≥ CA(t).

7.5.2 Proof of Lemma 7.6
Multi-phase jobs add an extra layer of complexity which prevents us from directly leveraging the
arguments used in Lemmas 7.4 and 7.5. When an inelastic phase completes, there are two possible
outcomes: either an elastic phase will be produced or a job will complete. Our insight is that we
can view the creation of an elastic phase as a job completion immediately followed by an arrival
of a job in an elastic phase. This reduction puts us back in the case of two-phase jobs with unequal
rates, allowing us to invoke Lemma 7.5. We formalize this argument in the proof of Lemma 7.6
below.

109

Proof of Lemma 7.6. Consider the above coupling under any given sample path. First, we replace
each inelastic transition that produces an elastic phase with a different type of transition. Namely,
we replace these transitions with a job completion followed immediately by an arrival of a job in an
elastic phase. We will refer to this replacement as our re-framing of the sample path. Observe that
the schedules produced in SIF and SA remain the same under the re-framing. While the number
of job completions by any point t, CIF(t) and CA(t), may change under this re-framing, the key
insight is that the number of inelastic transitions, IIF(t) and IA(t) respectively, remains identical.
Thus, if we can argue that IF maximizes the number of inelastic transitions by any point in time
under the re-framing, it does so in the original environment as well. This is sufficient for proving
that CIF(t) ≥ CA(t), ∀t ≥ 0 under the original sample path.

Second, observe that our proof of Lemma 7.5 still holds if we allow additional arrivals at
potential transition times, so long as these arrivals occur simultaneously in both systems. However,
under our re-framing, the arrivals we add may not occur simultaneously in SIF and SA since they
are generated by inelastic transitions to elastic phases. We address this issue by establishing the
following claim.

Claim. Let the sequence of additional arrival times under the re-framing be (tn) in SIF and (sn) in
SA. For any n ≥ 1, we have tn ≤ sn, i.e. the nth additional arrival occurs in SIF before it occurs
in SA.

We will prove this claim below, allowing us to complete the proof of Lemma 7.6. Specifically,
for any time t, let n be the index such that tn ≤ t < tn+1. The claim tells us that SA experiences
additional arrivals at s1 ≥ t1, s2 ≥ t2, . . . , sn+1 ≥ tn+1. However, we can view SA as a system that
has additional arrivals at t1, t2, . . . , tn+1, but chooses to not schedule these additional arrivals until
after s1, s2, . . . , sn+1. Then by Lemma 7.5, we have IIF(t) ≥ IA(t), which completes the proof of
Lemma 7.6.

Proof of the claim. We will show inductively that the nth additional arrival occurs in SIF before
it does is SA. We first argue that t1 ≤ s1. Observe that, on the time interval [0, t1 ∧ s1], SIF and
SA experience precisely the same sequence of arrivals. Hence, by Lemma 7.5, IF maximizes the
number of inelastic transitions by any time t ∈ [0, t1 ∧ s1]. In particular, it maximizes the number
inelastic transitions by time t1∧s1. Since SIF and SA share the same sequences of Bernoulli random
variables, it must be that the system with more inelastic transitions experiences the first inelastic
to elastic transition, and hence t1 ≤ s1. Now note that the schedule produced by SA is identical to
that produced by a policy which receives the additional arrival at time t1 instead of time s1, but just
chooses to ignore its existence until later on. This allows us to assume that the extra arrival into SA
occurs at t1 instead of s1. We then observe that, on the interval [0, s2 ∧ t2], if systems SIF and SA
experience the same sequence of arrivals then IF maximizes the number of inelastic transitions by
time s2 ∧ t2. Hence, we have that t2 ≤ s2.

Using the same iterative argument, it follows that SA and SIF can be assumed to experience the
same sequence of arrivals up to time sn ∧ tn, and thus by Lemma 7.5 we have that tn ≤ sn.

Having proven Lemma 7.6, we can now prove Theorem 7.1.

110

Theorem 7.1. Consider a n core system serving multi-phase jobs. The policy IF stochastically
maximizes the number of jobs completed by any point in time. Specifically, for a policy A, let
CA(t) denote the number of jobs completed by time t and let NA(t) denote the number of jobs
in the system at t. Then under any arbitrary arrival time process, CIF(t) ≥st CA(t) for all times
t ≥ 0. Consequently, NIF(t) ≤st NA(t) for all times t ≥ 0.

Proof. Lemma 7.6 implies the existence of a coupling such that CIF(t) ≥ CA(t),∀t ≥ 0. Con-
sequently, CIF(t) ≥st CA(t), ∀t ≥ 0. Since the number of jobs in the system at time t is just
the total number of arrivals by time t minus the total number of completions by time t, the claim
NIF(t) ≤st NA(t),∀t ≥ 0 also readily follows from Lemma 7.6.

7.6 Evaluation
The analysis of Section 7.5 has shown that, when jobs have the structure presented in Figure 7.3,
IF is optimal. In particular, IF minimizes the steady-state mean response time for any settings of
µE , µI , q, and any arrival time process such that the system is stable.

The purpose of this section is three-fold. First, we examine the benefit of doing IF as opposed
to other scheduling policies used in real-world systems or proposed in the literature. Second, we
will relax the assumption that the phases are exponentially distributed and consider a range of phase
size distributions from low-variability to high-variability. Third, we will consider jobs that consist
of a deterministic number of phases and may end with an elastic phase, relaxing our assumption
that jobs follow the underlying structure illustrated in Figure 7.3. We find that, even with these
relaxed assumptions, IF is almost always a great choice compared to all other competitor policies.

We begin by describing the competitor policies in Section 7.6.1. Then we show the compar-
isons to IF via simulation in Sections 7.6.2 and 7.6.3.

7.6.1 Competitor Scheduling Policies
We compare IF to three competitor policies.
EQUI is a phase-unaware policy for scheduling parallelizable jobs that has been widely advocated
for in the worst-case [24, 25, 26] theoretical literature. EQUI divides severs equally among all jobs
in the system. That is, if there are N jobs in the system, each job receives an allocation of n

N
cores

regardless of its current phase.
Phase-Aware First-Come-First-Served (PA-FCFS) is a popular policy in systems applications
because it is easy to implement with little space or time overhead. PA-FCFS proceeds by itera-
tively looking at the next earliest arriving job in the system and allocating as many cores as possible
to this job until all cores have been allocated. (A job in an inelastic phase is obviously allocated
only 1 core.)
Elastic-First (EF) gives strict priority to the earliest arriving job in an elastic phase. If no jobs are
in an elastic phase, cores are allocated to any jobs in an inelastic phase in FCFS order. Intuitively,
EF seems like it might perform well in cases where elastic phases are smaller than inelastic phases
on average. In this case, EF can be thought of as a greedy policy which continuously minimizes

111

● ● ● ● ● ● ● ● ●●●● ● ● ●
●

●
●

●
●

●●●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●
●

●
●

●●●

●

µI=.1 µI=1 µI=10 µI=100

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

0

1

2

3

System LoadA
p

p
ro

x
im

a
tio

n
 R

a
tio

 o
f
O

p
tim

a
l

Policy
● EF

EQUI
IF
PA−FCFS

Figure 7.9: The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and
IF when compared with the optimal mean response time. Phases have exponentially distributed
inherent sizes. IF is optimal (see Section 7.5) and thus has an approximation ratio of 1. In each
case, n = 100, µE = 1, q = 0.2, and jobs arrive according to a Poisson process. All jobs begin
with an elastic phase. Results are shown as µI varies from µI = 0.1 (the rare case where inelastic
phases are long compared to elastic phases) to µI = 100 (the more common case where inelastic
phases are short compared to elastic phases).

the expected time until the next phase completion. This is analogous to the GREEDY∗ policy
proposed in Chapter 6. However, we will see that this intuition is wrong.

7.6.2 Evaluation of Policies Under Our Job Model
Figure 7.9 shows the results of simulations comparing the performance of IF, EQUI, PA-FCFS,
and EF under the model defined in Section 7.2 as we vary µI . Each simulation consists of 100
million job completions. Although we have already proven the optimality of IF in these cases,
Figure 7.9 shows that the improvement of IF over the competitor policies is significant. In this
small sample of the parameter space, IF outperforms PA-FCFS by up to 25%, and outperforms
EF and EQUI by as much as a factor of 3. It is interesting to note that IF outperforms EF even
when µE > µI . Even in this case, EF suffers from its failure to defer parallelizable work.

7.6.3 Jobs with Alternate Phase Size Distributions
Although we have shown that IF is optimal when phase sizes are exponentially distributed, we
wish to further show that IF outperforms other policies under a range of phase size distributions.
To examine the sensitivity of IF’s performance to the underlying phase size distributions, we ex-
amine different distributions with a range of variances. Specifically, we consider the case where
phases are Weibull distributed and the squared coefficient of variation, C2, of the phase size distri-

112

bution is both higher and lower than that of an exponential distribution.3

Figure 7.10 shows the performance of each competitor policy in simulation relative to the
performance of IF (hence, the performance of IF is always normalized to 1). In most cases, IF
is still the best of the four policies by a wide margin.

When C2 = 50 we do find examples where EQUI outperforms IF. Here, when job sizes are
highly variable, EQUI benefits from its insensitivity to the variance of the job size distribution
(see Lemma 4.1). Specifically, because the phase size distributions have decreasing failure rates,
working on phases with the least attained service will generally result in completing smaller phases
before larger phases [2]. EQUI biases in this direction by dividing cores equally amongst all jobs
in the system.

The relative performance of the competitor policies compared to IF also depends on the distri-
bution of the number of phases comprising each job. For instance, when q = 1 and all jobs begin
with an elastic phase, IF and PA-FCFS are equivalent policies. However, as q decreases, for a
given system load, the gap between IF and PA-FCFS widens as it becomes increasingly likely
that PA-FCFS will make a mistake and give priority to an elastic phase. Hence, although Figure
7.10 shows that EQUI can outperform IF when q = .2, in the case where q = .025 IF again
outperforms EQUI at all loads.

3A Weibull distribution with shape parameter k = 1 collapses to an exponential distribution (C2 = 1). Adjusting
k changes the distribution to have either higher C2 (k < 1) or lower C2 (k > 1) than an exponential distribution.

113

● ● ● ● ● ● ● ● ●●●●● ● ● ●
●

●
●

●
●

●●●●
●

●
●

●
●

●

●

●

●

●
●●

●

●

● ●
●

●
●

●
●

●
●●●●

●

µI=0.1 µI=1 µI=10 µI=100

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

0

1

2

3

System Load

P
e

rf
o

rm
a

n
c
e

 R
e

la
tiv

e
 t

o
 I

F
Policy
● EF

EQUI
IF
PA−FCFS

(a) C2 = 0.5

● ● ● ● ● ● ● ● ●●●●● ● ●
●

●
●

●
●

●
●●●●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●
●

●●●
●
●

µI=0.1 µI=1 µI=10 µI=100

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

0

1

2

System Load

P
e

rf
o

rm
a

n
c
e

 R
e

la
tiv

e
 t

o
 I

F

Policy
● EF

EQUI
IF
PA−FCFS

(b) C2 = 5

● ● ● ● ● ● ● ● ●●●●● ●
●

●
●

●
●

●
● ●

●
●
●
●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●
●

●
● ● ● ●●●●●

µI=0.1 µI=1 µI=10 µI=100

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

0.0

0.5

1.0

1.5

System Load

P
e

rf
o

rm
a

n
c
e

 R
e

la
tiv

e
 t

o
 I

F

Policy
● EF

EQUI
IF
PA−FCFS

(c) C2 = 50

Figure 7.10: The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and
IF, all compared with IF, when phases follow a Weibull distribution. In each case, n = 100,
µE = 1, q = 0.2, and jobs arrive according to a Poisson process. IF typically still outperforms the
competitor policies. When jobs are highly variable (C2 = 50), EQUI outperforms IF due to its
insensitivity to job size variance.

114

● ● ● ● ●●●●
●
●

●

●

●
●

●●●●
●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●●

●

●

µI=0.1 µI=1 µI=10 µI=100

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

0

1

2

3

System Load

P
e

rf
o

rm
a

n
c
e

 R
e

la
tiv

e
 t
o

 I
F

Policy
● EF

EQUI
IF
PA−FCFS

Figure 7.11: The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and
IF, all compared with IF, when jobs consist of a deterministic number of phases. In each case,
n = 100, µE = 1, and jobs arrive according to a Poisson process. Each job consists of 5 phases
whose sizes are Weibull distributed with C2 = 5. Each phase, including the last phase, is chosen to
be either elastic or inelastic with probability .5. Although these changes to the job structure violate
our theoretical assumptions, IF is still generally the best of the policies we consider.

7.6.4 Jobs with Alternate Structures
We can also examine the effect of the job structure on the performance of IF by considering cases
where the sequence of a job’s phases is not determined by a Markov chain of the form shown in
Figure 7.3. Specifically we consider the case where the total number of job phases is deterministic.
Furthermore, we allow each of the job phases to be either elastic or inelastic, including the final
phase of each job. The results of these experiments look largely the same as the results in Figure
7.10, and an example of these results is shown in Figure 7.11. Although IF is not optimal in this
case, it is still frequently the best of the policies we consider.

One notable exception where IF becomes worse than the competitor policies occurs when
µI = 0.1 and system load is high. In this case, the benefit of doing IF has been diminished in
several ways. First, the benefit of deferring parallelizable work is realized when there are very
few jobs in the system, but the scheduling policy is still able to utilize all n cores because at least
one job is in an elastic phase. Under very high load, the probability of having few jobs in the
system vanishes, decreasing the benefit of deferring parallelizable work. Second, the change in job
structure has made it possible for IF to work on jobs with longer expected remaining total sizes.
This is an effect of both allowing jobs to end in elastic phases and making the total number of
phases for each job deterministic. Finally, we are considering the case where µI = 0.1, meaning
inelastic phases are ten times larger than elastic phases on average. Because IF prioritizes inelastic
phases, this particular choice of the phase size distributions further increases the chance that IF
suffers by completing jobs with larger total sizes before jobs with smaller total sizes. Despite all
of these challenges, IF still performs within 18% of the best competitor policy.

115

Load = 0.75 Load = 0.95

EQUI EF PA−FCFS IF EQUI EF PA−FCFS IF
0

5

10

15

20

25

0

2

4

6

M
ea

n
R

es
po

ns
e

T
im

e

Figure 7.12: The mean response time of EQUI, EF, PA-FCFS, and IF processing a workload
consisting of a mixture of 5 queries from the Star Schema Benchmark. We assume Poisson arrivals.
Although this workload violates our modeling assumptions, IF is still the best policy by a wide
margin. IF improves upon the next best policy, the PA-FCFS policy used in the NoisePage
database, by up to 30%.

7.7 Case Study: Scheduling in Databases
Throughout this chapter, we have drawn inspiration for our model from a range of systems in-
cluding modern databases. In this section, we consider whether the scheduling policies that we
have proposed work well for real database workloads. Because this section specifically considers
scheduling in databases, we will refer to a scheduling policy as allocating cores to queries rather
than allocating cores to jobs. Real database workloads differ from our modeling assumptions in
two ways. First, phase sizes are not exponentially distributed. Second, the sequence of phases for
each query is not determined by an underlying Markov chain. In this case study, we ask whether
IF will still perform well under these real-world conditions.

To answer this question, we perform simulations using a workload consisting of a mixture of
five queries from the Star Schema Benchmark. The ordering of phases and the phase sizes in our
simulations are based on the timings of actual queries running in the NoisePage database, as shown
in Figure 7.1. Each query consists of a deterministic number of elastic and inelastic phases (either
six or seven total phases per query). Of the five queries we consider, four queries end with an
inelastic phase and one query ends with an elastic phase. For each arrival in our simulation, a
query type is drawn uniformly at random. The query sizes have a squared coefficient of variation
of C2 = 0.41, meaning that query sizes are not highly variable in this case. In particular, note that
these queries clearly deviate from the job structure illustrated in Figure 7.3.

Figure 7.12 shows the results of these simulations. The ordering of the policies with respect
to mean response time is the same as what we observed in Section 7.6. In particular, IF is again
consistently the best of the policies we consider, and IF outperforms the PA-FCFS policy used in
the current version of NoisePage by up to 30%.

116

Load = 0.75 Load = 0.95

EQUI EF PA−SRPT PA−FCFS IF IF−SRPT EQUI EF PA−SRPT PA−FCFS IF IF−SRPT
0

5

10

15

20

25

0

2

4

6

M
ea

n
R

es
po

ns
e

T
im

e

Figure 7.13: Comparison with size-aware policies. The mean response time of EQUI, EF,
PA-SRPT, PA-FCFS, IF and IF-SRPT processing a workload consisting of a mixture of 5
queries from the Star Schema Benchmark. We assume Poisson arrivals. IF-SRPT can improve
upon IF by 33% by leveraging query size information. Notably, PA-SRPT performs worse than
PA-FCFS despite attempting to leverage size information.

7.7.1 Size-Aware Scheduling
Although the focus of this chapter has been the setting where job sizes are unknown to the sched-
uler, we recognize that schedulers in real-world databases often have knowledge of the size of each
query phase and the number of phases comprising each query. Specifically, the query planner in
the NoisePage database on which we have based our simulations can provide the scheduler with
information about the sequence of phases for each query and an estimate of phase sizes in addition
to information about the current phase.

Historically, when job sizes are known, the performance modeling community has advocated
for reducing mean response time by trying to complete smaller jobs before larger jobs [93]. This
begs the question of whether the phase-aware policies developed in this chapter can be improved by
adapting them to favor short jobs. Notably, NoisePage and many other databases use a PA-FCFS
policy, and do not leverage the available information about query sizes to make better scheduling
decisions. Would favoring short queries improve response times in these systems?

Our theorems in Sections 7.4 and 7.5 have shown the importance of deferring parallelizable
work by giving priority to inelastic phases in order to maintain the overall efficiency of the system.
In the case where phase sizes are known, it is not immediately clear how to balance the objectives
of favoring shorter queries and deferring parallelizable work.
Size-aware Scheduling Policies. We now consider two size-aware scheduling policies that favor
queries with smaller remaining total size, the sum of the remaining sizes of all of a query’s re-
maining phases. As we will see, one of the scheduling policies performs well because it manages
to both favor short queries and grant strict priority to inelastic phases. However, the other policy,
which favors the shortest queries in the system but does not otherwise defer parallelizable work,
does even worse than PA-FCFS.

The first policy we consider is an adaptation of IF to the case where query sizes are known

117

to the scheduler. We call this new policy Inelastic-First-Shortest-Remaining-Processing-Time
(IF-SRPT) because it combines IF with the ubiquitous SRPT scheduling policy. IF-SRPT gives
strict priority to inelastic phases over elastic phases in the same manner as IF. However, among
inelastic phases, IF-SRPT gives priority to the phases belonging to the queries with the smallest
remaining total sizes. Likewise, when choosing to run an elastic phase, IF-SRPT will choose the
elastic phase belonging to the query with the smallest remaining total size.

Our second policy is a Phase-Aware SRPT policy, which we refer to as PA-SRPT. PA-SRPT
gives strict priority to the phases belonging to the queries with the smallest remaining total sizes,
regardless of whether a phase is elastic or inelastic. However, PA-SRPT is phase-aware in that
it avoids allocating too many cores to inelastic phases. Hence, if the query with the smallest
remaining total size is in an inelastic phase, PA-SRPT will allocate one core to this query. If the
next smallest query is in an elastic phase, PA-SRPT will allocate the remaining n− 1 cores to this
second smallest query. Although PA-SRPT does not explicitly defer parallelizable work, it biases
more strongly towards the shortest queries in the system than IF-SRPT does.

We again evaluate these policies using a workload based on the Star Schema Benchmark, and
the results are shown in Figure 7.13. Unsurprisingly, IF-SRPT is the best performer. It benefits
from biasing its allocations towards shorter queries while still deferring parallelizable work. This
leads IF-SRPT to achieve a mean response time which can be 33% lower than that of IF, and
47% lower than that of the PA-FCFS policy used in NoisePage. What is more counterintuitive is
that PA-SRPT performs quite poorly. In fact, PA-SRPT is worse than PA-FCFS in both cases
shown in Figure 7.13, and IF-SRPT outperforms PA-SRPT by up to a factor of 3.

7.7.2 Why PA-SRPT is worse than PA-FCFS
As seen in this chapter, deferring parallelizable work is vital to reducing mean response time.
PA-SRPT suffers from its failure to defer parallelizable work. It is not immediately clear, how-
ever, why PA-SRPT is even worse than PA-FCFS, given that neither policy explicitly defers
parallelizable work.

Although neither PA-SRPT nor PA-FCFS explicitly defers parallelizable work, we can see
that PA-SRPT suffers because it inadvertently defers far less parallelizable work than PA-FCFS.
We define the percentage of deferred parallelizable work under a given policy at time t to be
the number of cores allocated to inelastic phases divided by the number of cores that IF would
allocate to inelastic phases. We can then consider the long-run time-average percentage of deferred
parallelizable work under various policies. We normalize this quantity using the allocations under
IF because IF allocates as many cores to inelastic phases as possible without being wasteful. As
a result, IF defers 100% of parallelizable work by definition. Phase-unaware policies, such as
EQUI, can defer more than 100% of parallelizable work by wastefully allocating too many cores
to inelastic phases.

Figure 7.14 shows that PA-SRPT defers far less parallelizable work than PA-FCFS, leading
PA-SRPT to perform poorly. The poor performance of PA-SRPT is due to the structure of one
particular query, which is both small in total size and ends with an elastic phase. PA-SRPT tends
to give strict priority to this type of query, while PA-FCFS treats all queries equally. This leads
PA-SRPT to defer less parallelizable work than PA-FCFS. Figure 7.14 also shows that, while

118

Load = 0.75 Load = 0.95

EQUI EF PA−SRPT PA−FCFS IF IF−SRPT EQUI EF PA−SRPT PA−FCFS IF IF−SRPT
0

50

100

150

0

50

100

150

D
e

fe
rr

e
d

 P
a

ra
lle

liz
a

b
le

 W
o

rk
 (

%
)

130
0%

285
%

Figure 7.14: The percentage of deferred parallelizable work under EQUI, EF, PA-SRPT,
PA-FCFS, IF and IF-SRPT given a workload consisting of a mixture of 5 queries from the
Star Schema Benchmark. IF-SRPT defers 100% of parallelizable work, but PA-SRPT defers
even less parallelizable work than PA-FCFS.

IF-SRPT manages to favor short jobs, it still defers parallelizable work. IF-SRPT is able to both
defer 100% of parallelizable work and prioritize shorter queries, leading to lower mean response
time.

7.7.3 Implementing an Improved Database Scheduler
Given the significant performance improvement promised by the above simulations, we imple-
mented new scheduling policies for the NoisePage database [75]. NoisePage is an open-source
database which schedules queries using the concept morsel-driven parallelism [58]. In NoisePage,
each elastic phase is divided into a set of tasks which can be run concurrently. Inelastic phases are
represented as a single task, and therefore cannot be parallelized. A phase is considered complete
when all of its tasks are complete. A scheduling policy is responsible for mapping the tasks of
each query onto a pool of worker threads. For example, the default scheduling policy in NoisePage
prioritizes tasks belonging to earlier-arriving queries, and is therefore analogous to the PA-FCFS
policy described in this chapter.

We implemented scheduling policies inspired by IF and IF-SRPT in NoisePage. This re-
quired us to create mechanisms for passing task metadata to the scheduling policy. Namely, we
passed information to the scheduler about whether each task belongs to an elastic or inelastic phase,
and we passed the scheduler the overall remaining size of each query. Query sizes are determined
by an offline profiling step. We also built a new scheduling framework that is capable of enforcing
arbitrary priority schemes between queries while avoiding the synchronization and lock contention
that can arise from a centralized scheduler design. In our design, each worker thread is associated
with its own set of independent run queues, with each queue representing a different task priority
level. For example, in our implementation of IF, each worker thread has two queues. One queue
holds tasks belonging to elastic phases and one queue holds tasks that represent inelastic phases.
When looking for its next task, a worker thread gives priority to tasks in its inelastic task queue.

119

Inelastic tasks are then served FCFS order. To accommodate more complex priority schemes, each
queue is also maintained as a priority queue. For example, in our implementation of IF-SRPT,
the remaining size of each query is used to determine the relative priorities of the tasks in each in-
elastic task queue. IF-SRPT then gives priority to inelastic tasks belonging to queries with shorter
remaining sizes. Running tasks are never preempted, so priorities are enforced at a task-level gran-
ularity. New tasks are immediately enqueued onto various run queues using a Join-Shortest-Queue
dispatching policy [31].

To evaluate our new scheduling policies, we constructed a benchmark based on the queries
from the Star Schema Benchmark (SSB). Our benchmark uses a Poisson arrival process where the
query type of each new arrival is chosen uniformly at random from the full set of SSB queries.
We ran our benchmark on a 40-core, 2-socket machine 4. We found that using IF improved
mean response time by 25% and using IF-SRPT improved mean response time by 30% over the
default PA-FCFS scheduling policy used in NoisePage. These experiments show that, despite the
differences between our theoretical model and our real-world implementation, we can still realize
the significant performance gains promised by our theoretical results and simulations.

One modeling decision that likely impacts the performance of our new scheduling policies is
that our model does not consider memory or caching effects. As a result, our new scheduling
policies do not consider the state of the various on-chip caches or the virtual memory system. In-
tuitively, it seems that a policy like PA-FCFS should perform fewer preemptions, and could thus
benefit from having a lower cache miss ratio. To measure this type of effect, we ran experiments
using perf [80] to monitor the performance of the memory hierarchy. We found that the default
scheduling policy under NoisePage results in a last-level cache miss ratio of 36.2% while our IF
and IF-SRPT policies resulted in last-level cache miss ratios of 36.4% and 40.4% respectively.
That is, the number of cache misses is roughly 10% higher under IF-SRPT than under PA-FCFS
or IF. We therefore conclude that caching effects do have the potential to limit the performance
of IF-SRPT, but that these effects also appear to be minor in comparison to the benefits of prior-
itizing short queries and deferring parallelizable work. Similar measurements of virtual memory
performance, such as TLB hit ratios, were roughly identical between the different scheduling poli-
cies.

Another difference between our model and our implementation is that we do not model each
task of an elastic phase individually. Our assumption is that, as long as the number of tasks in
an elastic phase is fairly large in comparison to the number of cores in the system, the kinds of
straggler effects [85] captured by a more detailed model should be small relative to the overall
response time of a query. The benefit of this assumption is tractability — modeling queries at the
individual task level results in a DAG model of parallelism, which has proven difficult to analyze
(see Chapter 3). By default, NoisePage splits elastic operations into a large number of relatively
small tasks, so our modeling assumption is reasonable for a wide range of systems. Nonetheless,
a more detailed model could more faithfully capture the dynamics of a real-world database, and
may be necessary in order to accurately capture the performance of larger-scale systems where the
number of cores can outstrip the number of tasks comprising an elastic operation. Furthermore,
although the process for splitting an elastic phase into individual tasks is currently done statically,

4Model: Intel Xeon Gold 5218R

120

an improved scheduling policy may want to dynamically control how elastic phases are divided
based on the state of the system. Our implementation results show that the IF and IF-SRPT
policies provide a useful starting point for policies which want to further optimize query execution
at the individual task level.

7.8 Conclusion
This chapter addresses the optimal scheduling of parallelizable jobs that consist of different num-
bers of elastic and inelastic phases. In Chapter 6 we saw that if jobs were entirely elastic or entirely
inelastic, IF was optimal in many cases. Viewed through the lens of the model used in this chap-
ter, the results of Chapter 6 essentially consider a special case where each job only consists of one
phase. Given that the model presented in this chapter is much more general, allowing for an arbi-
trary number of phases per job, it is not obvious that our results from Section 6.4 should generalize
cleanly. However, we prove in this chapter that the IF policy, which defers parallelizable work,
is optimal in a strong sense: for any number of cores, n, for any system load, ρ, for any arrival
process (including adversarial arrivals), and when jobs can each consist of an arbitrary number of
phases. While our proofs require that the phases have exponentially distributed sizes and that jobs
all end with inelastic phases, experimental evaluation shows that the dominance of IF typically
extends to cases when job sizes and structures deviate from these assumptions. Furthermore, IF
only needs to know the current phase of each job in order to schedule jobs optimally. That is, IF
does not require knowledge of the job parameters, µI , µE , and q. We also show that IF performs
well in simulation under database workloads where job structures, phase sizes, and phase types
can vary widely.

In the setting of scheduling in databases, it is common that the scheduler not only knows the
phase of each job but also has knowledge of the job’s size. When job sizes are known, it is natural to
consider scheduling policies which favor short jobs. We consider two such policies: the PA-SRPT
policy which strictly favors jobs with the shortest remaining total sizes and the IF-SRPT policy
which both defers parallelizable work and favors short jobs. We find that IF-SRPT is far superior
to PA-SRPT and performs even better than IF. This somewhat counterintuitive result underscores
the importance of deferring parallelizable work when scheduling parallelizable jobs composed of
phases.

One may ask why we bothered to include EQUI in our performance evaluation for this chapter,
since it is easy to predict that nearly any phase-aware policy should be better than EQUI. However,
the fact that policies like IF and IF-SRPT outperform EQUI (and other phase-unaware policies)
by such a large margin could have important implications for the design of future systems. As
the gap between phase-aware and phase-unaware scheduling policies continues to widen, system
designers should be increasingly tempted to pursue designs which permit the efficient implemen-
tation of phase-aware scheduling policies. In fact, one could argue that the benefits of phase-aware
scheduling have already had one major influence on computer systems. The benefits of separating
elastic and inelastic work into separate phases are at least partially responsible for the popularity of
the MapReduce paradigm [22] in distributed computing. The results of this chapter argue that we
should be continuing to look for opportunities to enable phase-aware scheduling in a wide variety

121

of systems.
It is worth noting that the same kind of open theoretical problem that we faced at the end of

Chapter 6 remains open at the end of this chapter as well. In chapter 6, we were unable to provide
optimality results when elastic jobs were smaller than inelastic jobs on average. If we consider the
case where phase sizes are known to the system, we face the same kind of challenges in deriving
an optimal policy. In particular, our intuition tells us that a policy should both favor short jobs and
defer parallelizable work, leading us to recommend the IF-SRPT policy. However, it is possible
that an optimal policy could do even better by occasionally using PA-SRPT in cases where the
remaining size of a job in an elastic phase is much smaller than the remaining size of a job in an
inelastic phase. We conjecture that one could outperform IF-SRPT by dynamically switching
between IF-SRPT and PA-SRPT based on the amount of elastic work and the number of jobs in
the system. Making this decision in a principled way, however, remains an open problem.

122

Chapter 8

Conclusion and Future Work

8.1 Conclusion
This thesis has considered several of the most important settings in which a system is tasked with
scheduling parallelizable jobs. Throughout this thesis, we have demonstrated the power of our
three-pronged approach to developing policies for scheduling parallelizable jobs:

First, we develop stochastic models that are suited to the particular setting we are considering.
In Chapter 4, we modeled systems where the scheduler does not have job size information by
assuming that job sizes were unknown and exponentially distributed. In Chapter 5, we modeled
systems where the scheduler can estimate jobs sizes by assuming that job sizes are known exactly
to the system. Similarly, Chapter 4 and Chapter 5 model cases where all jobs are instances of the
same program and thus follow the same speedup function, while Chapter 6 and Chapter 7 model
cases where the workload is composed of different types of jobs that can follow different speedup
functions.

Second, each chapter considers the how the particular model being considered impacts the
kind of scheduling policy we should use. When the scheduler has no information about job sizes
and all jobs follow the same speedup function, we saw that the EQUI policy performs optimally
by maximizing instantaneous system efficiency (Chapter 4). However, when job sizes are known
(Chapter 5) or speedup functions vary from job to job (Chapter 6 and Chapter 7), an optimal policy
may be able to reduce mean response time by sacrificing instantaneous system efficiency.

Third, we examine the performance of our new scheduling policies either analytically or through
simulation to show the benefit of our principled approach to scheduling parallelizable jobs. We
conclude that policies such as heSRPT (Chapter 5) or IF-SRPT (Chapter 7) stand to dramatically
improve performance in real-world systems that process parallelizable jobs.

8.2 Scheduling Tradeoffs
This thesis demonstrates how, by formally understanding the problem of scheduling parallelizable
jobs, we can design scheduling policies that balance the complex set of tradeoffs shown in Figure
8.1.

123

Maximize	System	Efficiency

Complete	short	jobs	before	long	jobs

Preserve	Future	Efficiency

Limit	individual	allocations Defer	parallelizable	work

Chapter	5

Chapter	6

Chapter	7

Shorter	jobs	get	larger	allocations

Figure 8.1: The tradeoffs balanced by the scheduling policies described in this thesis.

Chapter 2 formally develops the notion of instantaneous system efficiency, a metric which
describes how well a set of jobs is able to make use of a corresponding set of core allocations. In
Chapter 4, we see that instantaneous system efficiency is maximized by ensuring that no single job
receives too many cores. Here, we can show that when job sizes are unknown and exponentially
distributed, and all jobs follow the same speedup function, the EQUI policy is optimal because it
maximizes instantaneous system efficiency. However, if the system has more information about
job sizes or speedup functions, finding an optimal policy becomes much more complex.

In particular, when job sizes are known to the system (Chapter 5), it is possible to reduce the
mean response time across jobs by giving larger allocations to smaller jobs. However, one cannot
simply use an SRPT policy which allocates all of the cores to the smallest job in the system.
Heavily favoring any one individual job contradicts the lesson learned in Chapter 4, that system
efficiency is maximized by sharing cores equally. Hence, an optimal policy must balance a tradeoff
between the high efficiency of a policy like EQUI, and the benefits of completing short jobs before
long jobs. We derive and analyze the optimal policy, high-efficiency SRPT, which lies between
EQUI and SRPT and gets the best features of both policies.

Similarly, when jobs are known to follow different speedup functions (Chapter 6 and Chapter
7), we must judiciously decide how to favor individual jobs in the system. In this setting, more
parallelizable jobs are able to make more efficient use of additional cores than less parallelizable
jobs. Thus, we conclude that in order to maximize instantaneous system efficiency, we should favor
the more parallelizable jobs. However, favoring the more parallelizable jobs can have unintended
consequences. Favoring the more parallelizable jobs will cause the more parallelizable jobs to
complete quickly. The system will then be left with only less parallelizable jobs to work on.
Hence, although favoring the more parallelizable jobs may maximize system efficiency in the
present, doing so may lower system efficiency in the future. We therefore develop policies such
as GREEDY∗ and IF that defer parallelizable work. These policies balance a tradeoff between
maximizing the instantaneous system efficiency, and preserving the future system efficiency.

Finally, in Chapter 7, we consider complex cases where all of the above tradeoffs must be
balanced simultaneously. That is, we must consider three competing goals of maximizing instan-
taneous system efficiency, preserving future system efficiency, and favoring short jobs. We find that
the IF-SRPT policy is able to balance these tradeoffs and significantly outperform existing po-
lices for scheduling queries from the Star Schema Database Benchmark. This result demonstrates

124

how a principled approach to scheduling parallelizable jobs can lead to policies which perform
well both in theory and in practice.

8.3 Impact
While many systems employ heuristic policies when scheduling parallelizable jobs, these policies
generally rely solely on intuition rather than a formal understanding of the scheduling problem.
This leads to suboptimal performance in systems such as [23, 82] which employ GREEDY poli-
cies, but do not use GREEDY∗. In some cases, a heuristic approach can actually make system per-
formance worse. For example, [102] advocates using a heuristic-based version of the PA-SRPT
policy instead of PA-FCFS to schedule database queries composed of multiple phases. However,
we show in Chapter 7 that PA-SRPT can be worse than PA-FCFS because it fails to defer paral-
lelizable work. Hence, real-world systems stand to benefit greatly from the results of this thesis.

Note, however, that the results of this thesis are not solely intended to prescribe the use of
a particular scheduling policy in an existing system, but to also describe the potential benefits of
building systems which provide additional information to their schedulers. For example, the devel-
opers of the NoisePage database asked us to model, based on their benchmarks, how much benefit
they could expect from building a phase-aware scheduler, since this would represent a significant
development effort. Using simulations derived from database benchmarks, we were able to show
that phase-aware scheduling would significantly improve mean query latency, and was thus worth
implementing. Each of the scenarios considered in this thesis represents a similar opportunity for
improvement for system developers. By building schedulers with a greater awareness of job size
and scalability information, our theoretical results show that we can greatly reduce response times
in real-world systems.

8.4 Future Work
Although we address a wide range of settings in this thesis, the problem of how to schedule paral-
lelizable jobs is far from solved.

The most prominent of these questions is how one should schedule jobs with more complex
sequences of phases. For example, job phases could change according to a Markov process con-
sisting of a greater number of phases with generally distributed phase sizes and speedup functions
which lie in between the elastic and inelastic speedups considered in this thesis. Furthermore, the
Markov process corresponding to each job could be unique. This model begins to resemble the
well-studied DAG model, and thus promises to be harder to analyze. However, the generality of
this model makes it well-suited to accurately modeling a wide variety of parallel computations.

Another direction to consider is to extend the analyses of this thesis to consider the tail of
response time rather than the mean. System developers and administrators are often interested in
the 99th percentile (P99) of response time, for example. It is interesting to ask whether policies
like heSRPT which favor shorter jobs in order to reduce mean response time could actually be
bad for the P99 of response time since they bias away from longer jobs which are more likely

125

to populate the tails of the response time distribution. The question here is whether heSRPT is
effective enough in reducing queueing times to offset its bias against large jobs.

Finally, the question of how to schedule parallelizable jobs in systems composed of hetero-
geneous servers is becoming increasingly important. Data centers are increasingly composed of
servers with different processors, different ratios of memory to CPU, and different hardware accel-
eration capabilities [100]. This can cause the run time of a job to depend heavily on not just how
many servers it is allocated, but the type of servers it is allocated. These trends are being mirrored
at the individual server level, and even on consumer-grade machines such as laptops and mobile
devices[54]. This heterogeneity poses important new tradeoffs not considered in this thesis. For
instance if several jobs are capable of running faster on a GPU than a CPU, which job should be
run on which type of hardware? Should we favor shorter jobs, maximize system efficiency, or
balance load between separate CPU and GPU queues? Fully accounting for the growing hetero-
geneity of modern systems will require both significant theoretical work and significant systems
work to make modern schedulers capable of measuring and balancing these new tradeoffs.

126

Appendix A

Scheduling Without Job Sizes

A.1 Mixed-Random-Chunk
In this section, we explore Mixed-Random-Chunk (MRC), which uses two chunk sizes: k1 and k2.
We will also restrict ourselves to consider policies which balance load between chunks according
to the size of a chunk. That is, given that jobs are dispatched to an average of k cores, the average
per-core arrival rate should be Λk/n.

Under Mixed-Random-Chunk, we group a1 of the n cores into chunks of size k1. We call these
chunks size-k1 chunks. The remaining a2 := n − a1 cores are grouped into size-k2 chunks. Like
before, we assume that k1 divides a1, and k2 divides a2.

Figure A.1: A system with n = 16 under a Mixed-Random-Chunk policy. Here, a1 = 8 of the
cores are grouped into chunks of size k1 = 4, and a2 = 8 of the cores are grouped into chunks of
size k2 = 2.

When a job arrives, we choose a core uniformly at random (with probability 1
n

). The job is
then parallelized across all cores in the chosen core’s chunk. We can see via Poisson splitting that
the arrivals to a size-ki chunk form a Poisson process with rate Λki

n
. Under this policy, the level of

parallelization is defined to be k = (a1k1 + a2k2)/n. Hence, the average per-core arrival rate is

Λk =
a1

n
· Λk1

n
+
a2

n
· Λk2

n
=

Λk

n
,

127

and Mixed-Random-Chunk obeys the load balancing property outlined above.

Mean Response Time

To derive the mean response time E [T] under Mixed-Random-Chunk, we must condition on the
type of chunk to which an arrival is sent. We denote by Ei the event that the arrival is sent to a
size ki chunk. Recall that the arrival rate to a core in a size-ki chunk is Λki = Λki/n and the size
of a job piece at this core is distributed as Xki = X/s(ki). This information suffices to calculate
the mean response time of a job sent to a size-ki chunk, E [T | Ei] (see Theorem 4.4 and its proof).
Next, note that a job will be sent to a size-ki chunk with probability ai/n. Hence, we can find the
mean response time for the entire system by conditioning:

E [T]MRC =
a1

n
E [T | E1] +

a2

n
E [T | E2] . (A.1)

Optimizing a1 and a2

In (A.1) observe that a1 and a2 are decision variables that can be chosen to minimize mean response
time. Surprisingly, we find in Theorem A.1 that the optimal choice is to have only one chunk size.
Theorem A.1. The mean response time under Mixed-Random-Chunk is minimized when the num-
ber of size-k1 chunks, a1, is either 0 or n.

Proof. Since a2 = n− a1, (A.1) can be rewritten as

E [T] =
a1

n
(E [T | E1]− E [T | E2]) + E [T | E2] .

This expression is of the form E [T] = a1x + y, and thus the mean response time is linear in
a1. We can also see that x and y are independent of a1 and a2. This follows since, for any core
belonging to a chunk of size ki, neither the service requirement, Xki = Xki/s(ki), nor the arrival
rate Λki = Λki/n depend on ai. Thus, our linear expression is either increasing or decreasing in
a1, and will thus be minimized at a boundary where a1 = 0 or a1 = n.

Variance of Response Time

Not only is mean response time not improved by having multiple chunk sizes, but neither is the
variance of response time, as shown in Theorem A.2.
Theorem A.2. The variance of the response time, Var(T), under Mixed-Random-Chunk is mini-
mized when the number of size-k1 chunks, a1, is either 0 or n.

Proof. By conditioning we have that the variance of the response time is given by

Var(T) =E [T − E [T]]2 = E
[
T 2
]
− E [T]2

=
a1

n
E
[
T 2 | E1

]
+
a2

n
E
[
T 2 | E2

]
−
(a1

n
E [T | E1] +

a2

n
E [T | E2]

)2

.

128

Again, the substitution of a2 = n− a1 and subsequent algebraic manipulation leads to

Var(T) =− a2
1

(
E [T | E1] + E [T | E2]

n

)2

+
a1

n

(
E
[
T 2 | E1

]
− E

[
T 2 | E2

]
− 2E [T | E1]E [T | E2] + 2E [T | E2]2

)
+ E

[
T 2 | E2

]
− E [T | E2]2 .

Note that this expression is of the form Var(T) = −a2
1x + a1y + z, and thus the variance of

the response time is quadratic in a1. Furthermore, it is clear from the expression that x is positive,
since mean response times must be positive. The variance of the response time, then, is a concave
quadratic in a1. Since the number of cores, a1, assigned to size-k1 chunks takes an integer value
between 0 and n, this means that the variance of the response time is minimized on a boundary,
when a1 = 0 or a1 = n.

Why Multiple Chunk Types Do Not Help

The issue is that the benefit of having larger chunks available is usually outweighed by a reduction
in the stability region of the system. We have therefore chosen to omit the bulk of our analysis of
these policies.

A.2 The Nelson-Philips Approximation
Here we state the approximation of mean response time under JSQ as given in [70].

Let M/M/c/JSQ denote a c core system with total arrival rate Λ and service rate µ = 1/E[X]
at each core. Let

ρ :=
Λ

cµ
.

129

We then define the following terms:

a(ρ) = 1− cρ

c+ 4

b(ρ) =
cρ

(c+ 4)(c− 1)

ξ(ρ) =
ρ(1− cρc−1 + (c− 1)ρc)

(1− ρ)(1− ρc)
q(ρ) = a(ρ) + b(ρ)ξ(ρ)

S(ρ) =
c(1− ρ)

1− ρc {ρ
c + q(1− ρc)}

α1 =0.0455, α2 = 0.7678, γ1 = 0.0216, γ2 = 0.0045

rc = γ1 log2(c) + γ2

ic = −1/ log2{α1 log2(c) + α2}

R(ρ) =
1

1− 4rcρic(1− ρic)

A(ρ) =

[
c−1∑
n=0

(cρ)n/n!

]
+ (cρ)c/(c!(1− ρ))

Pc(ρ) = (cρ)c/(c!(1− ρ)A(ρ))

WM/M/c(ρ) =
1

µ

Pc(ρ)

c(1− ρ)

The term WM/M/c(ρ) is the mean waiting time in an M/M/c system. The term S(ρ) is an ap-
proximation of the mean length of the shortest queue in the M/M/c/JSQ system. R(ρ) is an
experimentally derived error correction term. The mean response time in the M/M/c/JSQ sys-
tem given in [70] is:

E[T]JSQ ≈ WM/M/c(ρ)S(ρ)R(ρ) +
1

µ
.

130

Appendix B

Scheduling With Job Sizes

B.1 Proof of Lemma B.1
Lemma B.1. Let ΘP (t) be the allocation function which satisfies the following first-order condi-
tions:

∂F P

∂ωPk
= 0 ∀1 ≤ k ≤M.

Then for any t, ΘP
k (t) is increasing in k for 1 ≤ k ≤ m(t).

Proof. Following the same argument as Theorem 5.9, we can see that the expression for ΘP (t) is

ΘP
i (t) =

(
z(i)

z(m(t))

) 1
1−p

−
(
z(i− 1)

z(m(t))

) 1
1−p

∀1 ≤ i ≤ m(t).

Note that 1
1−p > 1, so i

1
1−p is convex in i. We know that

z(i)− z(i− 1) = wi

and
z(i+ 1)− z(i) = wi+1.

Furthermore, wi+1 ≥ wi. Hence, by convexity,

z(i)
1

1−p − z(i− 1)
1

1−p < (z(i) + wi)
1

1−p − (z(i− 1) + wi)
1

1−p

< (z(i) + wi+1)
1

1−p − z(i)
1

1−p

< z(i+ 1)
1

1−p − z(i)
1

1−p

This implies that ΘP
i (t) is increasing in i for 1 ≤ i ≤ m(t).

131

132

Appendix C

Scheduling With Multiple Speedup
Functions

C.1 Idling Policies
We define a policy to be idling if it leaves one or more servers idle rather than allocating them to
some eligible jobs.
Theorem C.1. For any policy π which unnecessarily idles servers there exists a non-idling policy
π′ such that

E[T π
′
] ≤ E[T π].

Hence, there exists an optimal policy which is non-idling.

Proof. Consider any policy π which idles servers unnecessarily in one or more states. We will
construct a new policy, π′, which is identical to π in every state where π does not idle servers
unnecessarily. In each state (i, j) where π does idle server unnecessarily, if j > 0, π′ will allocate
all of π’s idle servers to the elastic job with the earliest arrival time. If j = 0, π′ will instead
allocate π’s idle servers to each unserved (or underserved) inelastic job in FCFS order.

We now compare the performance of π to π′ on any fixed arrival sequence of elastic and inelas-
tic jobs. Suppose π first unnecessarily idles servers at time t, and suppose π gives jobs constant
allocations on the time interval (t, t + δ]. We reallocate the idle servers during this time interval
in order to match the allocations π′ would make. No job received fewer servers as a result of
this transformation, and at least one job received additional servers during (t, t + δ]. Each job
which received additional servers during (t, t+ δ] had its response time decreased, and no jobs had
their response time increased. Furthermore, after this interchange, the schedule now reflects the
allocation decisions that π′ would make.

We now proceed to the next time, t′, in the schedule where there are unnecessarily idle servers.
Note, this idle space may exist because it is part of the policy π, or because an earlier interchange
caused a job to complete earlier, creating some idle servers at time t′. In either case, we simply per-
form the same interchange as before, decreasing the response time of some jobs without increasing
the response time of any jobs.

133

Note that each interchange causes the earliest occurrence of unnecessary idle servers in the
schedule to occur at a later time. We therefore iterate this argument until all idle time either
vanishes or occurs after the completion of the last job in the arrival sequence. At this point, the
schedule reflects the actions taken by π′, and hence the mean response time under π′ is no larger
than the mean response time under π. Hence, given any optimal idling policy π, we can construct
a non-idling policy π′ which also optimal.

C.2 Lyapunov Stability of Work Conserving Policies
Theorem C.2. For any work-conserving policy π, the associated Markov chain {(Nπ

I (t), Nπ
E(t)) : t ≥

0} has a stationary distribution. If we define (Nπ
I , N

π
E) to be a random element that follows this

stationary distribution, then

lim
t→∞

(Nπ
I (t), Nπ

E(t))
d
= (Nπ

I , N
π
E). (C.1)

Furthermore,
lim
t→∞

E[Nπ
I (t)] = E[Nπ

I], (C.2)

and
lim
t→∞

E[Nπ
E(t)] = E[Nπ

E]. (C.3)

Proof. To prove this claim, it suffices to show the drift results below, which allows us to apply
the Foster-Lyapunov theorem [94] to show the convergence in distribution in (C.1) and apply the
bounds in [34] to show the convergence of expectations in (C.2) and (C.3).

Consider the following Lyapunov function V : Z2
≥0 → R≥0 for the Markov chain {(Nπ

I (t), Nπ
E(t)) : t ≥

0}:
V (i, j) =

i

nµI
+

j

nµE
.

Then its drift ∆V (i, j) can be written as

∆V (i, j) =
∑
(i′,j′)

r(i,j)→(i′,j′)(V (i′, j′)− V (i, j)),

where r(i,j)→(i′,j′) is the rate of transition from state (i, j) to state (i′, j′). Note that for any (i, j)
and (i′, j′),

|V (i′, j′)− V (i, j)| < 1

nmin{µI , µE}
.

We now show that for the finite set, F = {(i, j) : i+ j ≤ n}, we have

∆V (i, j) ≤ −ε ∀(i, j) /∈ F

for some ε > 0. Let (i, j) be any state not in F , i.e., i+ j > n. By definition,

∆V (i, j) =
λI
nµI

+
λE
nµE

−
(
πI(i, j)µI
nµI

+
πE(i, j)µE

nµE

)
.

134

Because π is assumed to be a work conserving policy, and there are at least n jobs in system, we
know that

πI(i, j) + πE(i, j) = n.

Furthermore, we have assumed that

ρ =
λI
nµI

+
λE
nµE

= 1− ε < 1

for some ε > 0. Hence, we have that

∆V (i, j) = ρ− 1 = −ε

as desired. We can therefore conclude that the Markov chain induced by π is positive recurrent and
the convergence in distribution in (C.1) follows.

Note that for any (i, j) ∈ F , V (i, j) ≥ 1
max{µI ,µE}

. Then extending Theorem 2.3 of [34] to
continuous-time Markov chains using uniformization implies that

sup
t≥0

E[(V (Nπ(t)))2] <∞.

Therefore, {Nπ
I (t), t ≥ 0} and {Nπ

E(t), t ≥ 0} are uniformly integrable, which implies the con-
vergence of expectations in (C.2) and (C.3).

C.3 Markov Chains for IF
Figure C.1a shows the Markov chain for IF. To analyze this chain we will use a busy period
transformation as described in Section 6.5.2.

We note that the inelastic jobs under IF see an M/M/n queueing system, and hence their
mean response time is known. We therefore only need to consider the mean response time of
elastic jobs under IF. When there are more than n inelastic jobs in the system under IF, elastic
jobs receive no service. The time from when there are first n inelastic jobs in the system until there
are n−1 inelastic jobs is exactly anM/M/1 busy period. Hence, we perform the same busy period
transformation described in Section 6.5.2 to the Markov chain for IF. This results in a 1D-infinite
Markov chain which we can analyze using matrix analytic methods. We depict the busy period
transformation for IF in Figure C.1

135

0, 0 1, 0 2, 0 · · · n-1, 0 n, 0 · · ·

0, 1 1, 1 2, 1 · · · n-1, 1 n, 1 ·

0, 2 1, 2 2, 2 · · · n-1, 2 n, 2 · · ·

...
...

...
...

...

λI λI λI λI λI λI

µI 2µI 3µI (n-1)µI nµI nµI

λI λI λI λI λI λI

µI 2µI 3µI (n-1)µI nµI nµI

λI λI λI λI λI λI

µI 2µI 3µI (n-1)µI nµI nµI

λE λE λE λE λEnµE (n-1)µE (n-2)µE µE

λE λE λE λE λEnµE (n-1)µE (n-2)µE µE

λE λE λE λE λEnµE (n-1)µE (n-2)µE µE

(a) Full IF chain

0, 0 1, 0 2, 0 · · · n-1, 0 b, 0

0, 1 1, 1 2, 1 · · · n-1, 1 b, 1

0, 2 1, 2 2, 2 · · · n-1, 2 b, 2

...
...

...
...

...

λI λI λI λI λI

µI 2µI 3µI (n-1)µI B

λI λI λI λI λI

µI 2µI 3µI (n-1)µI B

λI λI λI λI λI

µI 2µI 3µI (n-1)µI B

λE λE λE λE λEnµE (n-1)µE (n-2)µE µE

λE λE λE λE λEnµE (n-1)µE (n-2)µE µE

λE λE λE λE λEnµE (n-1)µE (n-2)µE µE

(b) IF chain with special states

Figure C.1: The transformation of the 2D-infinite IF chain to a 1D-infinite chain via the busy
period transformation. Special states representing an M/M/1 busy period are shown in (b). (con-
tinued on next page)

136

0, 0 1, 0 2, 0 · · · n-1, 0 b1, 0

b2, 0

0, 1 1, 1 2, 1 · · · n-1, 1 b1, 1

b2, 1

0, 2 1, 2 2, 2 · · · n-1, 2 b1, 2

b2, 2

...
...

...
...

...

...

λI λI λI λI
λI

µI 2µI 3µI (n-1)µI

γ3

γ1γ2

λI λI λI λI
λI

µI 2µI 3µI (n-1)µI

γ3

γ1γ2

λI λI λI λI
λI

µI 2µI 3µI (n-1)µI

γ3

γ1γ2

λE λE λE λE λE

λE

nµE (n-1)µE (n-2)µE µE

λE λE λE λE λE

λE

nµE (n-1)µE (n-2)µE µE

λE λE λE λE λE

λE

nµE (n-1)µE (n-2)µE µE

(c) Final 1D IF chain

Figure C.1: (continued) The busy periods from (b) are approximated by a Coxian distribution in
(c)

137

138

Bibliography

[1] S. Aalto, A. Penttinen, P. Lassila, and P. Osti. On the optimal trade-off between SRPT and
opportunistic scheduling. In SIGMETRICS. ACM, 2011. 3.3

[2] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. On the Gittins index in the M/G/1 queue.
Queueing Systems, 63(1):437–458, 2009. 7.6.3

[3] I. Adan, G. J. J. A. N. van Houtum, and J. van der Wal. Upper and lower bounds for the
waiting time in the symmetric shortest queue system. Annals of Operations Research, 48:
197–217, 1994. 3.3, 6.3.3, 6.3.3

[4] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel DAG jobs
online to minimize average flow time. In SIAM Symposium on Discrete Algorithms, pages
176–189. SIAM, 2016. 3.2

[5] Eitan Bachmat and Hagit Sarfati. Analysis of size interval task assigment policies. Perfor-
mance Evaluation Review, 36(2):107–109, 2008. 3.3

[6] Nikhil Bansal and Kirk Pruhs. Server scheduling in the Lp norm: a rising tide lifts all boat.
In STOC, pages 242–250, 2003. 5.1.4

[7] F. Baskett, K. M. Chandy, R. Muntz, and F. G. Palacios. Open, closed, and mixed networks
of queues with different classes of customers. Journal of the ACM, 22:248–260, 1975. 4.3.1

[8] B. Berg, J.P. Dorsman, and M. Harchol-Balter. Towards optimality in parallel scheduling.
ACM POMACS, 1(2), 2018. 1.6

[9] B. Berg, M. Harchol-Balter, B. Moseley, W. Wang, and J. Whitehouse. Optimal resource
allocation for elastic and inelastic jobs. In Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, pages 75–87, 2020. 1.6

[10] B. Berg, R. Vesilo, and M. Harchol-Balter. heSRPT: Parallel scheduling to minimize mean
slowdown. Performance Evaluation, 144:102–147, 2020. 1.6

[11] B. Berg, J. Whitehouse, B. Moseley, W. Wang, and M. Harchol-Balter. The case for phase-
aware scheduling of parallelizable jobs. Performance Evaluation, 153:102246, 2022. 1.6

[12] Dimitris Bertsimas and José Niño-Mora. Conservation laws, extended polymatroids and
multiarmed bandit problems; a polyhedral approach to indexable systems. Mathematics of
Operations Research, 21(2):257–306, 1996. 5.1.3

[13] Guy E Blelloch, Phillip B Gibbons, and Yossi Matias. Provably efficient scheduling for
languages with fine-grained parallelism. Journal of the ACM, 46(2):281–321, 1999. 3.2

139

[14] Robert D Blumofe and Charles E Leiserson. Space-efficient scheduling of multithreaded
computations. SIAM Journal on Computing, 27(1):202–229, 1998. 3.2

[15] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, 1999. 3.2

[16] T. Bonald and A. Proutière. Insensitivity in processor-sharing networks. Performance Eval-
uation, 49:193–209, 2002. 4.3.1

[17] A. Bušić, I. Vliegen, and A. Scheller-Wolf. Comparing Markov chains: aggregation and
precedence relations applied to sets of states, with applications to assemble-to-order sys-
tems. Mathematics of Operations Research, 37:259–287, 2012. 6.3.3, 6.3.3

[18] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys. In SIG-
COMM, volume 44, pages 443–454. ACM, 2014. 3.3

[19] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988. 1.1

[20] Richard W Conway, Louis W Miller, and William L Maxwell. Theory of scheduling. Dover,
2003. 3.3

[21] Dinesh Das, Jiaqi Yan, Mohamed Zait, Satyanarayana R Valluri, Nirav Vyas, Ramarajan Kr-
ishnamachari, Prashant Gaharwar, Jesse Kamp, and Niloy Mukherjee. Query optimization
in oracle 12c database in-memory. Proceedings of the VLDB Endowment, 8(12):1770–1781,
2015. 5.1

[22] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–113, 2008. 3.1, 6.4.1, 7.2, 7.8

[23] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware
cluster management. ACM SIGPLAN Notices, 49(4):127–144, 2014. 1.2, 3.1, 5.6, 6.1, 6.6,
7.1, 8.3

[24] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 1999. 3.2, 4.1.2, 4.3,
5.5.2, 7.6.1

[25] J. Edmonds and K. Pruhs. Scalably scheduling processes with arbitrary speedup curves.
SODA ’09, pages 685–692. ACM, 2009. 3.2, 3.2, 5.5.2, 7.6.1

[26] Jeff Edmonds, Donald D Chinn, Tim Brecht, and Xiaotie Deng. Non-clairvoyant multipro-
cessor scheduling of jobs with changing execution characteristics. Journal of Scheduling, 6
(3):231–250, 2003. 3.2, 7.6.1

[27] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online scalable scheduling for the lk-
norms of flow time without conservation of work. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 109–119. SIAM, 2011. 3.2,
3.2

[28] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. Srpt for multiserver systems. Perfor-
mance Evaluation, 127:154–175, 2018. 3.3

[29] Isaac Grosof, Mor Harchol-Balter, and Alan Scheller-Wolf. Stability for two-class
multiserver-job systems. arXiv preprint arXiv:2010.00631, 2020. 3.3

140

[30] A. Gupta, B. Acun, O. Sarood, and L. Kalé. Towards realizing the potential of malleable
jobs. In HiPC. IEEE, 2014. 6.4.1

[31] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis of join-the-shortest-queue
routing for web server farms. Performance Evaluation, 2007. 4.4.2, 7.7.3

[32] Varun Gupta, Karl Sigman, Mor Harchol-Balter, and Ward Whitt. Insensitivity for ps server
farms with jsq routing. ACM SIGMETRICS Performance Evaluation Review, 35(2):24–26,
2007. 3.3

[33] Varun Gupta, Mor Harchol-Balter, JG Dai, and Bert Zwart. On the inapproximability of
m/g/k: why two moments of job size distribution are not enough. Queueing Systems, 64(1):
5–48, 2010. 5.6

[34] Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with appli-
cations. aap, 14(3):502–525, 1982. C.2

[35] M. Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press, 2013. 4.5.2, 6.4.4

[36] Mor Harchol-Balter. Task assignment with unknown duration. Journal of the ACM, 49(2):
260–288, March 2002. 3.3

[37] Mor Harchol-Balter. Open problems in queueing theory inspired by datacenter computing.
Queueing Systems, 97(1):3–37, 2021. 5.6

[38] Mor Harchol-Balter. The multiserver job queueing model. Queueing Systems, 100(3):201–
203, 2022. 3.3

[39] Mor Harchol-Balter, Cuihong Li, Takayuki Osogami, Alan Scheller-Wolf, and Mark Squil-
lante. Task assignment with cycle stealing under central queue. In Proceedings of the 23rd
International Conference on Distributed Computing Systems, pages 628–637, Providence,
RI, May 2003. 6.5

[40] Mor Harchol-Balter, Cuihong Li, Takayuki Osogami, Alan Scheller-Wolf, and Mark Squil-
lante. Cycle stealing under immediate dispatch task assignment. In Proceedings of the 15th
ACM Symposium on Parallel Algorithms and Architectures, pages 274–285, San Diego, CA,
June 2003. 6.5

[41] Mor Harchol-Balter, Takayuki Osogami, Alan Scheller-Wolf, and Adam Wierman. Multi-
server queueing systems with multiple priority classes. Queueing Systems: Theory and
Applications, 51(3–4):331–360, 2005. 6.5

[42] Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew Young. Surprising results on task
assignment in server farms with high-variability workloads. In ACM Sigmetrics 2009 Con-
ference on Measurement and Modeling of Computer Systems, pages 287–298, 2009. 3.3

[43] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anastassia Ailamaki,
and Babak Falsafi. Database servers on chip multiprocessors: Limitations and opportunities.
In Proceedings of the Biennial Conference on Innovative Data Systems Research, 2007. 3.1

[44] Stavros Harizopoulos and Anastassia Ailamaki. A case for staged database systems. In
CIDR, 2003. 7.2

141

[45] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011. 2

[46] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41:33–38, 2008.
4.2, 5.1.2, 5.2

[47] Yige Hong and Weina Wang. Sharp waiting-time bounds for multiserver jobs. arXiv preprint
arXiv:2109.05343, 2021. 3.3

[48] Esa Hyytiä, Samuli Aalto, and Aleksi Penttinen. Minimizing slowdown in heterogeneous
size-aware dispatching systems. SIGMETRICS, 40(1):29–40, 2012. 5.5.3

[49] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Eric Torng. Competitively scheduling tasks
with intermediate parallelizability. TOPC, 3(1):4, 2016. 2, 3.2, 5.5.2

[50] David B Jackson, Heather L Jackson, and Quinn O Snell. Simulation based HPC workload
analysis. In IPDPS 2001, pages 8–pp. IEEE, 2000. 5.2

[51] H. Jahanjou, E. Kantor, and R. Rajaraman. Asymptotically optimal approximation algo-
rithms for coflow scheduling. In SPAA, pages 45–54. ACM, 2017. 3.3

[52] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and
Christos Kozyrakis. Shinjuku: Preemptive scheduling for µsecond-scale tail latency. In
16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
19), pages 345–360, 2019. 3.1

[53] Samir Khuller and Manish Purohit. Brief announcement: Improved approximation algo-
rithms for scheduling co-flows. In SPAA, pages 239–240. ACM, 2016. 3.3

[54] Myungsun Kim, Kibeom Kim, James R Geraci, and Seongsoo Hong. Utilization-aware
load balancing for the energy efficient operation of the big. little processor. In 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1–4. IEEE, 2014. 8.4

[55] L. Kleinrock. Queueing Systems, Volume II: Computer Applications. 1976. 4.4.1, 6.5.2

[56] G. M. Koole. Monotonicity in Markov reward and decision chains: Theory and applications.
Foundations and Trends in Stochastic Systems, 1:1–76, 2006. 6.3.3

[57] Guy Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic
Modeling. ASA-SIAM, Philadelphia, 1999. 6.5.3

[58] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven paral-
lelism: A numa-aware query evaluation framework for the many-core age. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data, pages 743–
754, 2014. 3.1, 5.1, 6.1, 7.7.3

[59] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, Butler W Lamp-
son, Daniel Sanchez, and Tao B Schardl. There’s plenty of room at the top: What will drive
computer performance after moore’s law? Science, 368(6495), 2020. 1

[60] Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines.
Journal of Computer and System Sciences, 73(6):875–891, 2007. 1.2, 3.2

[61] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decen-

142

tralized algorithms outperform centralized algorithms? a case study for decentralized par-
allel stochastic gradient descent. In Advances in Neural Information Processing Systems,
pages 5330–5340, 2017. 6.4.1

[62] S. Lin, M. Paolieri, C. Chou, and L. Golubchik. A model-based approach to streamlining
distributed training for asynchronous SGD. In MASCOTS. IEEE, 2018. 2, 3.1, 5.5.2, 7.1,
7.2

[63] Don Lipari. The slurm scheduler design. SLURM User Group. http://slurm. schedmd.
com/slurm ug 2012/SUG-2012-Scheduling. pdf, 2012. 3.1, 4.1

[64] S. A. Lippman. Semi-Markov decision processes with unbounded rewards. Management
Science, 19:717–731, 1973. 6.3.4

[65] Milo MK Martin, Mark D Hill, and Daniel J Sorin. Why on-chip cache coherence is here to
stay. Communications of the ACM, 55(7):78–89, 2012. 1.1

[66] J. McCool, M. Robison, and A. Reinders. Structured Parallel Programming: Patterns for
Efficient Computation. Elsevier, 2012. 4.2

[67] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A dis-
tributed framework for emerging AI applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 561–577, 2018. 1.2, 3.1, 5.1, 6.4.1

[68] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. Online scheduling to mini-
mize average stretch. In FOCS. IEEE, 1999. 5.2

[69] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay Agrawal,
Srikanth Kandula, Stephen Boyd, and Matei Zaharia. Solving large-scale granular resource
allocation problems efficiently with pop. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 521–537, 2021. 3.1

[70] R. Nelson and T. Philips. An approximation for the mean response time for shortest queue
routing with general interarrival and service times. Performance Evaluation, 1993. 4.4.2,
4.4.2, A.2

[71] Randolph Nelson and Asser N Tantawi. Approximate analysis of fork/join synchronization
in parallel queues. IEEE transactions on computers, 37(6):739–743, 1988. 3.3

[72] Marcel F. Neuts. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins Univer-
sity Press, 1981. 6.5.3

[73] Marcel F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications.
Marcel Dekker, 1989. 6.5.3

[74] Thu D Nguyen, Raj Vaswani, and John Zahorjan. Using runtime measured workload char-
acteristics in parallel processor scheduling. In Workshop on Job Scheduling Strategies for
Parallel Processing, pages 155–174. Springer, 1996. 7.1

[75] NoisePage. Noisepage. 2021. https://noise.page. (document), 5.1, 7.1, 7.1, 7.7.3

[76] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The Star Schema

143

https://noise.page

Benchmark and Augmented Fact Table Indexing, pages 237—-252. 2009. 1.5, 6.1, 7.1, 7.1.2

[77] Takayuki Osogami and Mor Harchol-Balter. Closed form solutions for mapping general
distributions to quasi-minimal PH distributions. Performance Evaluation, 63(6):524–552,
2006. 6.5, 6.5.2

[78] Takayuki Osogami, Mor Harchol-Balter, and Alan Scheller-Wolf. Analysis of cycle stealing
with switching times and thresholds. In Proceedings of ACM Sigmetrics, pages 184–195,
San Diego, CA, June 2003. 6.5

[79] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The star schema
benchmark and augmented fact table indexing. In Technology Conference on Performance
Evaluation and Benchmarking, pages 237–252. Springer, 2009. 2

[80] Perf. perf: Linux profiling with performance counters. 2021. https://perf.wiki.
kernel.org/. 7.7.3

[81] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Chichester, 1994. 6.3.3, 6.3.4

[82] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger, Qirong Ho,
Hao Zhang, Gregory R Ganger, and Eric P Xing. Pollux: Co-adaptive cluster scheduling
for goodput-optimized deep learning. In 15th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 21), 2021. 1.2, 3.1, 5.1, 6.6, 8.3

[83] Zhen Qiu, Cliff Stein, and Yuan Zhong. Minimizing the total weighted completion time of
coflows in datacenter networks. In SPAA, pages 294–303. ACM, 2015. 3.3

[84] Runtian Ren and Xueyan Tang. Clairvoyant dynamic bin packing for job scheduling with
minimum server usage time. In SPAA, pages 227–237. ACM, 2016. 3.1

[85] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. Hopper: Decentralized speculation-
aware cluster scheduling at scale. ACM SIGCOMM Computer Communication Review, 45
(4):379–392, 2015. 3.1, 7.7.3

[86] Dennis M Ritchie and Ken Thompson. The unix time-sharing system. Bell System Technical
Journal, 57(6):1905–1929, 1978. 1

[87] Gerald Sabin, Matthew Lang, and P Sadayappan. Moldable parallel job scheduling using
job efficiency: An iterative approach. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 94–114. Springer, 2006. 3.1

[88] Bilal Sadiq and Gustavo De Veciana. Balancing SRPT prioritization vs opportunistic gain
in wireless systems with flow dynamics. In International Teletraffic Congress. IEEE, 2010.
5.1.3

[89] Z. Scully, G. Blelloch, M. Harchol-Balter, and A. Scheller-Wolf. Optimally scheduling jobs
with multiple tasks. In Proceedings of the ACM Workshop on Mathematical Performance
Modeling and Analysis, 2017. 4.3.3

[90] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. Optimal multiserver scheduling with
unknown job sizes in heavy traffic. Performance Evaluation, 145:102150, 2021. 5.6

144

https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/

[91] Mehrnoosh Shafiee and Javad Ghaderi. Brief announcement: a new improved bound for
coflow scheduling. In SPAA, pages 91–93. ACM, 2017. 3.3

[92] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In 2010 IEEE 26th symposium on mass storage systems and tech-
nologies (MSST), pages 1–10, 2010. 7.1

[93] Donald R Smith. A new proof of the optimality of the shortest remaining processing time
discipline. Operations Research, 26(1):197–199, 1978. 5.1.1, 7.7.1

[94] R. Srikant and Lei Ying. Communication Networks: An Optimization, Control and Stochas-
tic Networks Perspective. Cambridge Univ. Press, New York, 2014. C.2

[95] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan. A robust scheduling strategy for
moldable scheduling of parallel jobs. In Proceedings of the IEEE International Conference
on Cluster Computing, CLUSTER ’03, pages 92–99, 2003. 3.1

[96] Nathan R Tallent and John M Mellor-Crummey. Effective performance measurement and
analysis of multithreaded applications. In Proceedings of the 14th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming, pages 229–240, 2009. 7.1

[97] Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new beginning for
information technology. Computing in Science & Engineering, 19(2):41–50, 2017. 1

[98] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhijing Gene Qin, Steven
Hand, Mor Harchol-Balter, and John Wilkes. Borg: the next generation. In Proceedings of
the Fifteenth European Conference on Computer Systems, pages 1–14, 2020. 3.1, 4.1

[99] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-Balter, and
Gregory R Ganger. Tetrisched: global rescheduling with adaptive plan-ahead in dynamic
heterogeneous clusters. In Proceedings of the Eleventh European Conference on Computer
Systems, pages 1–16, 2016. 3.1

[100] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale
cluster management at Google with Borg. In EUROSYS. ACM, 2015. 3.1, 4.1, 6.1, 8.4

[101] Rares Vernica, Michael J Carey, and Chen Li. Efficient parallel set-similarity joins using
mapreduce. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, pages 495–506, 2010. 3.1

[102] Benjamin Wagner, André Kohn, and Thomas Neumann. Self-tuning query scheduling for
analytical workloads. In Proceedings of the 2021 International Conference on Management
of Data, pages 1879–1891, 2021. 1.2, 3.1, 8.3

[103] Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, and Rayadurgam
Srikant. Delay asymptotics and bounds for multitask parallel jobs. Queueing Systems, 91
(3):207–239, 2019. 3.3

[104] Adam Wierman, Mor Harchol-Balter, and Takayuki Osogami. Nearly insensitive bounds on
SMART scheduling. SIGMETRICS, 33(1):205–216, 2005. 5.5.2, 5.5.3

[105] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwa-
tra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, et al. Gandiva:

145

Introspective cluster scheduling for deep learning. In 13th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 18), pages 595–610, 2018. 3.1

[106] Y. Xu, A. Scheller-Wolf, and K. P. Sycara. The benefit of introducing variability in single-
server queues with application to quality-based service domains. Operations Research, 63:
233–246, 2015. 6.3.6

[107] David D Yao. Dynamic scheduling via polymatroid optimization. In IFIP International
Symposium on Computer Performance Modeling, Measurement and Evaluation, pages 89–
113. Springer, 2002. 5.1.3

[108] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pages 15–28, 2012. 7.1, 7.2

[109] X. Zhan, Y. Bao, C. Bienia, and K. Li. PARSEC3.0: A multicore benchmark suite with
network stacks and SPLASH-2X. SIGARCH, 44:1–16, 2017. (document), 2, 4.2, 5.2, 5.2

[110] Jingren Zhou, John Cieslewicz, Kenneth A Ross, and Mihir Shah. Improving database
performance on simultaneous multithreading processors. In Proceedings of the 31st Very
Large Data Bases Conference (VLDB), 2005. 7.1

[111] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion Stoica, and
Xin Jin. Racksched: A microsecond-scale scheduler for rack-scale computers. In 14th
USENIX Symposium on Operating Systems Design and Implementation ({OSDI} 20),
pages 1225–1240, 2020. 3.1

146

	1 Introduction
	1.1 The Importance of Scheduling Parallelizable Jobs
	1.2 The State-of-the-Art In Scheduling Parallelizable Jobs
	1.3 Thesis Statement
	1.4 Tradeoffs in Scheduling Parallelizable Jobs
	1.5 Contributions
	1.6 Outline

	2 Our Model
	3 Prior Work
	3.1 The Systems Community
	3.2 The Worst-Case Theoretical Community
	3.3 The Performance Modeling Community

	4 Scheduling Without Job Sizes
	4.1 Introduction
	4.1.1 Scheduling Tradeoffs
	4.1.2 Contributions

	4.2 Our Model
	4.3 EQUI: An Optimal Policy
	4.3.1 Insensitivity of EQUI
	4.3.2 Proving that EQUI is Optimal
	4.3.3 EQUI with General Size Distributions

	4.4 Fixed-Width Policies
	4.4.1 Random-Chunk
	4.4.2 JSQ-Chunk

	4.5 JSQ-Chunk Converges to EQUI
	4.5.1 The Performance of JSQ-Chunk
	4.5.2 Why JSQ-Chunk is Close to EQUI

	4.6 Conclusion

	5 Scheduling With Job Sizes
	5.1 Introduction
	5.1.1 Scheduling Tradeoffs
	5.1.2 Why Core Allocation is Counter-intuitive
	5.1.3 Why Finding the Optimal Policy is Hard
	5.1.4 Contributions

	5.2 Our Model
	5.3 Overview of Our Results
	5.4 Minimizing Weighted Response Time
	5.4.1 The Optimal Completion Order
	5.4.2 The Scale-Free Property
	5.4.3 Finding the Optimal Allocation Function

	5.5 Discussion and Evaluation
	5.5.1 Applying heSRPT
	5.5.2 Numerical Evaluation: Offline Setting
	5.5.3 Numerical Evaluation: Online Setting

	5.6 Conclusion

	6 Scheduling With Multiple Speedup Functions
	6.1 Introduction
	6.1.1 Scheduling Tradeoffs
	6.1.2 Contributions

	6.2 Our Model
	6.2.1 General Speedup Functions
	6.2.2 Elastic and Inelastic Jobs

	6.3 General Speedup Functions
	6.3.1 EQUI is No Longer Optimal
	6.3.2 A GREEDY Class of Policies
	6.3.3 The Best GREEDY Policy: GREEDY*
	6.3.4 Computing the Optimal Policy
	6.3.5 GREEDY* is Near-Optimal
	6.3.6 Does Fixed-Width Scheduling Work?

	6.4 The Case of Elastic and Inelastic Jobs
	6.4.1 Elastic and Inelastic Jobs in the Real World
	6.4.2 Optimal Scheduling of Elastic and Inelastic Jobs
	6.4.3 Optimality when I = E
	6.4.4 Optimality when I E
	6.4.5 Failure when I < E

	6.5 Response Time Analysis with Elastic and Inelastic Jobs
	6.5.1 Markov Chains for IF and EF
	6.5.2 Converting From 2D-Infinite to 1D-Infinite
	6.5.3 Matrix Analytic Method

	6.6 Conclusion

	7 Scheduling Jobs with Phases
	7.1 Introduction
	7.1.1 Scheduling Tradeoffs
	7.1.2 Contributions

	7.2 Our Model
	7.3 Overview of Theorems
	7.3.1 Main Result
	7.3.2 How We Prove Theorem 7.1

	7.4 Two-Phase Jobs
	7.4.1 Two-Phase Jobs with Equal Rates
	7.4.2 Two-Phase Jobs with Unequal Rates

	7.5 Optimality in the General Case
	7.5.1 System coupling
	7.5.2 Proof of Lemma 7.6

	7.6 Evaluation
	7.6.1 Competitor Scheduling Policies
	7.6.2 Evaluation of Policies Under Our Job Model
	7.6.3 Jobs with Alternate Phase Size Distributions
	7.6.4 Jobs with Alternate Structures

	7.7 Case Study: Scheduling in Databases
	7.7.1 Size-Aware Scheduling
	7.7.2 Why PA-SRPT is worse than PA-FCFS
	7.7.3 Implementing an Improved Database Scheduler

	7.8 Conclusion

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Scheduling Tradeoffs
	8.3 Impact
	8.4 Future Work

	A Scheduling Without Job Sizes
	A.1 Mixed-Random-Chunk
	A.2 The Nelson-Philips Approximation

	B Scheduling With Job Sizes
	B.1 Proof of Lemma B.1

	C Scheduling With Multiple Speedup Functions
	C.1 Idling Policies
	C.2 Lyapunov Stability of Work Conserving Policies
	C.3 Markov Chains for IF

	Bibliography

