Resource Pooling and Staffing in Call Centers with Skill-Based Routing

Ward Whitt

IEOR Department, Columbia University

http://www.columbia.edu/~ww2040
Joint work with:

Rodney B. Wallace

IBM and George Washington University

Thesis: Performance Modelling and Design of Call Centers with Skill-Based Routing

Advisors: William A. Massey (Princeton), Thomas Mazzucci (GW) and Ward Whitt (Columbia)
Multiple Types of Calls and Agents

skill-based routing

call types

server pools
First Contribution:

Routing and Provisioning Algorithm

Minimize the Required Staff and Telephone Lines
While Meeting the Service level Agreement (SLA)

\[P(\text{Delay} \leq 30 \text{ seconds}) \geq 0.80 \]
\[P(\text{Blocking}) \leq 0.005 \]

(service level may depend on call type)
Second Contribution:

Demonstrate Resource-Pooling Phenomenon

A small amount of cross training (multiple skills) produces almost the same performance as if all agents had all skills (as in the single-type case).

Simulation Experiments
Precedents

Joining One of Many Queues

A small amount of flexibility produces almost the same performance as if there is maximal flexibility.

- Azar, Broder, Karlin and Upfal (1994),
- Vvedenskaya, Dobrushin and Karpelovich (1996),
- Turner (1996, 1998),
- Mitzenmacher (1996) and
- Mitzenmacher and Vöcking (1999)
1. SBR Call-Center Model
2. Resource-Pooling Experiment
3. Provisioning Algorithm
4. Simulation to Show Performance
1. C agents, $C + K$ telephone trunklines, and n call types.

2. **Non-preemptive Priorities (NPrPr)** - Calls are processed in priority order. Calls are worked to completion once they are handed to an agent.

3. **Longest-Idle-Agent Routing (LIAR) Policy** - Calls are forwarded to the agent who has been waiting the longest since his last job completion and has the highest skill to handle the request.
Agent-Skill Matrix - $C \times n$

4. **Agent-Skill Profile** - Predefined in an agent-skill matrix $A \equiv (a_{ij})$ as

$$a_{ij} = \begin{cases}
 k & \text{when agent } i \text{ supports call type } k \\
 0 & \text{otherwise.}
\end{cases}$$

at skill level j (primary, secondary, etc),

where $i = 1, \ldots, C$, $1 \leq k \leq n$, and $1 \leq j \leq n$.

Examples:

$$A_{5 \times 1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad A_{3 \times 2}^{(1)} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ 2 & 0 \end{pmatrix}, \quad A_{4 \times 2} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 2 & 1 \\ 2 & 1 \end{pmatrix}, \quad A_{6 \times 4} = \begin{pmatrix} 3 & 4 & 1 & 0 \\ 1 & 4 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 3 & 1 & 2 & 4 \\ 1 & 0 & 4 & 0 \end{pmatrix}$$
What to do when an Arrival occurs

Arrival Event

Update System States
Determine Call Type
Schedule Next arrival

Are all agents busy?

Yes
No

Search Idle Agent Queue
for First Available Agent

Primary Skill
Agent Idle?

Yes
No

nth Skill Level
Agent Idle?

Yes
No

place_cust_in_q()

route_cust_to_agent()

Return
What to do when an Agent becomes free

Agent i Departure Event

Are all the queues empty?

Yes

Is Primary Skill Queue Empty?

Yes

Is nth Skill Level Queue Empty?

Yes

make_server_idle()

Return

No

Check each Supported Queue in Priority Order for First Waiting Customer

No

get_waiting_cust()

No

Yes
Resource-Pooling Experiment
1. **Arrival Process** - n types of calls arrive at the call center according to n mutually independent Poisson processes with rate λ_i, $1 \leq i \leq n$. [$n = 6$, $\lambda_i = 1.40$ for all i]

2. **Service Time Process** - Call holding (service) times are mutually independent exponential random variables with mean $1/\mu_i$ which are independent of the arrival process, $1 \leq i \leq n$. [$1/\mu_i = 1/\mu = 10$ minutes for all i]

3. **Offered Loads** - $\alpha_i = \lambda_i/\mu_i$

 [$\alpha_i = 14$ for all i, so the total offered load is $\alpha = 84$]

4. **Agents and Telephone lines**

 [$C = 90$ and $K = 30$ ($C + K = 120$)]
Agents are given k skills, $1 \leq k \leq 6$

Three Loads: Target (84), Light (77.4), Heavy (90)
1. Target Load

2. Under Load

3. Heavy Load

- Blocking Prob (%)
- Skills per Agent
- Avg Delay (min)
- Prob Delay > 0.5 (%)

Skills per Agent: 1 2 3 4 5 6
SBR Provisioning

• Solves the problem of determining the minimum number of agents \(C \) and the minimum number of telephone trunklines \(C + K \) needed to meet service level targets.

• Exploits resource pooling results.

• Exploits \(M/M/C/K \) results to determine initial estimate for \((C, K)\).

• Uses fair agent skill assignment scheme to construct agent skill matrix satisfying general agent skill profile.

• Simulation runs are performed to make improvements on the initial assignment using two heuristic algorithms.
The Initial Algorithm

1. GIVEN:
 \[i = 1, ..., n \]
 Forecast Statistics \(\lambda_i, \mu_i \)
 Service Levels \(\tau, \delta, \epsilon \)
 Agents Skill Profile

2. Compute:
 \[\lambda = \sum_{i=1}^{n} \lambda_i, \quad 1/\mu = \lambda \sum_{i=1}^{n} \lambda_i / \mu_i = \lambda \sum_{i=1}^{n} \rho_i \]

3. Determine \((C,K)\):
 1. Exact M/M/C/K
 2. Ad Hoc Erlang
 3. Asymptotic

4. Determine \(C_i \) for \(i = 1, ..., n \):
 1. \(C_i = \rho_i + x \sqrt{\rho_i} \) or
 2. \(C_i = \rho_i / \rho \cdot C \)
 Note: \(C = C_1 + ... + C_n \)

5. Construct Agent Skill’s Matrix \(A_{C_{\text{in}}} \)

6. Initialize and Run SBR Simulator

7. Is
 \[P(D) > \tau | Q \leq C + K \leq \delta ? \]
 \[i = 1, ..., n \]
 \[K = K + 1 \]
 Yes
 No

8. Is
 \[P(Q = C + K) \leq \epsilon ? \]
 Yes
 Done
 No
SBR Unbalanced Provisioning Example

- Call volume is $\lambda_1 = \lambda_2 = 0.425$, $\lambda_3 = 1.05$, $\lambda_4 = 1.375$, $\lambda_5 = 1.925$, and $\lambda_6 = 3.05$ calls/min.

- Service times are $1/\mu_1 = \ldots = 1/\mu_6 = 10$ mins

- Agents Skill Profile: Agents have 2 skills each.

- Service level targets
 1. Blocking service level target is 0.5%.
 2. 80% of the calls are answered within $\tau = 0.5$ minute.

- Square-root safety method for distributing agents into work groups is used.

- It is known that the total number of agents required is between 90 (best-case) and 106 (worse-case). Similarly, the telephone trunkline capacity is between 111 and 156.
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Number of Iterations (Agents)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (90)</td>
</tr>
<tr>
<td>1. Blocking (%)</td>
<td>0.53</td>
</tr>
<tr>
<td>4. $P(\text{Delay} \leq 0.5</td>
<td>\text{entry})$</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_1 \leq 0.5</td>
<td>\text{entry})$</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_2 \leq 0.5</td>
<td>\text{entry})$</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_3 \leq 0.5</td>
<td>\text{entry})$</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_4 \leq 0.5</td>
<td>\text{entry})$</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_5 \leq 0.5</td>
<td>\text{entry})$</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_6 \leq 0.5</td>
<td>\text{entry})$</td>
</tr>
</tbody>
</table>
Refined SBR Provisioning Algorithm

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Number of Iterations (Agents)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 (93)</td>
</tr>
<tr>
<td>1. Blocking (%)</td>
<td>0.30</td>
</tr>
<tr>
<td>4. (P(\text{Delay} \leq 0.5 \mid \text{entry}))</td>
<td>88.8</td>
</tr>
<tr>
<td>5. (P(\text{Delay}_1 \leq 0.5 \mid \text{entry}))</td>
<td>80.5</td>
</tr>
<tr>
<td>5. (P(\text{Delay}_2 \leq 0.5 \mid \text{entry}))</td>
<td>80.3</td>
</tr>
<tr>
<td>5. (P(\text{Delay}_3 \leq 0.5 \mid \text{entry}))</td>
<td>88.0</td>
</tr>
<tr>
<td>5. (P(\text{Delay}_4 \leq 0.5 \mid \text{entry}))</td>
<td>88.8</td>
</tr>
<tr>
<td>5. (P(\text{Delay}_5 \leq 0.5 \mid \text{entry}))</td>
<td>89.8</td>
</tr>
<tr>
<td>5. (P(\text{Delay}_6 \leq 0.5 \mid \text{entry}))</td>
<td>90.9</td>
</tr>
</tbody>
</table>
Unbalanced SBR Provisioning Example Summary

<table>
<thead>
<tr>
<th></th>
<th>Best Case</th>
<th>Actual Perf.</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>((C, C + K))</td>
<td>(90, 111)</td>
<td>(91, 111)</td>
<td>(106, 156)</td>
</tr>
<tr>
<td>Workgroup 1 (C_1)</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Workgroup 2 (C_2)</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Workgroup 3 (C_3)</td>
<td>11</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Workgroup 4 (C_4)</td>
<td>15</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Workgroup 5 (C_5)</td>
<td>21</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Workgroup 6 (C_6)</td>
<td>33</td>
<td>28</td>
<td>36</td>
</tr>
</tbody>
</table>