REVIEW: M/G/1 mean queueing time

$$\mathbf{E}[T_Q] = \frac{\rho}{1-\rho} \cdot \frac{\mathbf{E}[S^2]}{2\mathbf{E}[S]}$$
$$= \frac{\rho}{1-\rho} \cdot \frac{\mathbf{E}[S]}{2} \cdot (C_S^2 + 1)$$

Question: What is the importance of load ρ ?

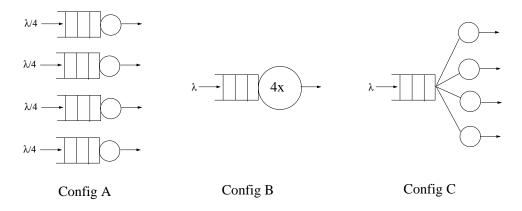
Question: Why does C_S^2 come up? What does this have to do with the Inspection Paradox?

REVIEW: Very high queueing times

Question: If a system has low load, is its mean queueing time low?

Comparison of three server organizations from HW3

Three server organizations. Outside arrivals occur according to a Poisson proces with rate λ . Job sizes denoted by r.v. S. When a job runs on a server of speed 4x, its service time is S/4.



Question: How do A and B compare?

Question: How is the comparison between B and C affected by load ρ ?

Question: How is the comparison between B and C affected by C_S^2 ?

So what is C_S^2 in practice?

Question: What was C_S^2 for the Exponential distribution?

Question: What was C_S^2 for the Deterministic distribution?

Question: What is C_S^2 for Uniform(a = 1, b = 1000)?

Question: Which do CS distributions look like?

- Distribution of job CPU usage
- Distribution of file sizes
- Distribution of IP flow times

In HW 4 you will each look at the distribution of job size in YOUR research.

For now we will hear about my exploration into this question.

Pay attention: You will follow a similar process in HW 4.

The Dark Ages of the 1990's ... my P vs. NP story

Definitions

A job's **size** refers to its total CPU requirement.

A job's **age** refers to its total CPU usage thus far.

A job's **remaining size** is its remaining CPU requirement.

Question: Which of these jobs likely has higher remaining size?

What we want to understand: $P\{\text{Size} > x + a \mid \text{Size} > a\}$

Question: What's the answer if Size $\sim \text{Exp}(\mu)$?

Failure Rate – informally

$$\mathbf{P}\left\{ \text{Size} > x + a \mid \text{Size} > a \right\}$$

Q: Examples?

Failure Rate more formally

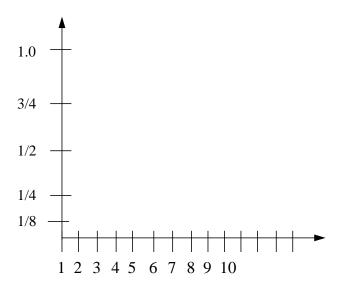
Definition: For continuous X with p.d.f $f_X(t)$ and tail $\overline{F_X}(t)$, the failure rate function $\mathbf{r_X}(\mathbf{t})$ for X is:

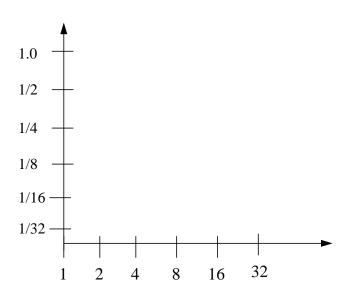
$$r_X(t) \equiv \frac{f_X(t)}{\overline{F_X}(t)}$$

- When $r_X(t)$ is strictly decreasing in t, we say: ______.
- When $r_X(t)$ is strictly increasing in t, we say: ______.

Question: What if $r_X(t)$ is constant?

To try to understand the failure rate, I measured millions of UNIX jobs \dots





Properties of Power-law Distribution

Suppose that

$$\overline{F}_X(t) = \frac{1}{t}, \qquad t \ge 1$$

1. Is the above a valid distribution?

2. What is $\mathbf{E}[X]$?

3. What is $r_X(t)$, $t \ge 1$? What kind of failure rate is this?

4. Derive $\mathbf{P}\left\{X>2a\mid X>a\right\}$

The Pareto(α) Distribution

<u>Definition</u>:

Let $0 < \alpha < 2$.

$$X \sim \operatorname{Pareto}(\alpha)$$
 if $\overline{F}(x) = x^{-\alpha}, \quad x \ge 1$

Question: What kind of Pareto distribution did I have?

3 Properties of Pareto(α) Distribution:

• DFR

• Infinite Variance

• "Heavy-tailed property"

Q: What do the above properties tell us about migration?

Measured distribution is BoundedPareto(k, p, α)	

End of the story ...

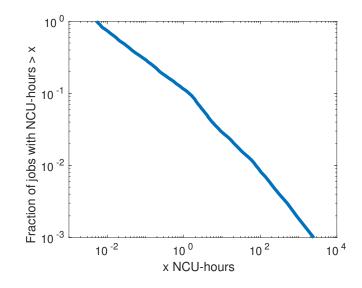
Today's Distributions -2022

Question: How have workloads changed between 1996 and today?

See: "Borg: the next generation" by Tirmazi et al. *Proceedings of EUROSYS*, 2020.

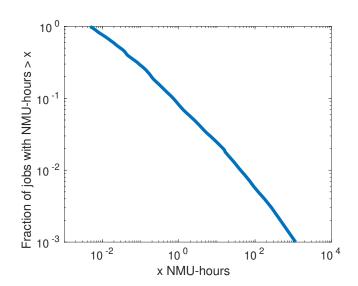
COMPUTE CONSUMPTION AT GOOGLE 2020:

- Units: _____
- Distribution: _____
- $C^2 =$ _____
- Span in job sizes: _____
- \bullet Top 1% jobs consume ____ % of total load



MEMORY CONSUMPTION AT GOOGLE 2020:

- Units:_____
- Distribution: _____
- $C^2 =$ _____
- Span in memory consumption: _____
- \bullet Top 1% jobs consume ____ % of total load



Pareto Distributions are Everywhere

 \bullet Compute consumption across jobs

 \bullet Memory consumption across jobs

• Web file sizes		
• Internet node degrees		
• IP flow durations		
• Wireless session times		
• Phone call durations		
• Wealth		
• Natural disasters		
WHY?		

SNEAK PREVIEW: What can we do when C_S^2 is high?

1. Help from multiple servers (recall what we saw in HW 3)

2. Help from scheduling (don't do FCFS)