Running a simulation – Single queue

You are simulating an single queue. You want to understand mean response time, $\mathbf{E}[T]$. Interarrival times are i.i.d. instances of r.v. I. Job sizes are i.i.d. instances of r.v. S.

Assume that you know how to generate instances of I and S. You want to measure the mean response time across 10^6 jobs.

Question: How do you do this?

(Discussion)

Running a simulation – Single queue

You are simulating an single queue. You want to understand mean response time, $\mathbf{E}[T]$. Interarrival times are i.i.d. instances of r.v. I. Job sizes are i.i.d. instances of r.v. S.

Assume that you know how to generate instances of I and S. You want to measure the mean response time across 10^6 jobs.

Question: In an event-driven simulation, the 4 variables you track are:

- 1. _____
- 2. _____
- 3. _____
- 4.

Question: When exactly do you generate a new instance of I?

Question: When exactly do you generate a new instance of S?

Getting Performance Metrics from your Simulation

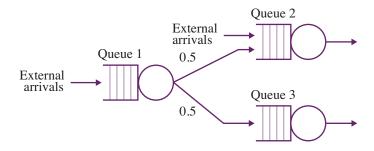
Question: You want to get the mean response time, $\mathbf{E}[T]$. What are 2 ways to get this?

Question: What are some benefits to Way 1? What are some benefits to Way 2?

Getting Performance Metrics from your Simulation

Question: How to you measure the mean number of jobs, $\mathbf{E}[N]$?

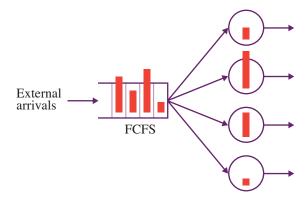
Question: What's the definition of mean number of jobs, $\mathbf{E}[N]$?


Question: Suppose $S \sim \text{Uniform}(1,2)$ and I = 1. What do your measurements show for $\mathbf{E}[N]$? What is the true $\mathbf{E}[N]$?

The power of PASTA

Question:	What went wrong in the prior example?
${f Question:}$	If the arrival process were a Poisson process, would this happen?
$PASTA = $ _	

Simulating more complex queueing networks


Question: How would you simulate this network?

Question: What is the state space?

Question: What events do we need to track?

Simulating more complex queueing networks

Assume k servers (operators ready to receive calls).

Job sizes are i.i.d $\sim S$. Interarrival times are denoted by r.v. I.

Jobs queue in a FCFS queue. When a server is free, it takes the next job off the queue.

Question: Do jobs leave in the order they arrive?

Question: What's the state space?

Question: What events do we need to track?